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Fast Catheter Segmentation From Echocardiographic
Sequences Based on Segmentation From
Corresponding X-Ray Fluoroscopy for
Cardiac Catheterization Interventions

Xianliang Wu*, James Housden, YingLiang Ma, Benjamin Razavi, Kawal Rhode, and Daniel Rueckert

Abstract—Echocardiography is a potential alternative to X-ray
fluoroscopy in cardiac catheterization given its richness in soft
tissue information and its lack of ionizing radiation. However, its
small field of view and acoustic artifacts make direct automatic
segmentation of the catheters very challenging. In this study,
a fast catheter segmentation framework for echocardiographic
imaging guided by the segmentation of corresponding X-ray fluo-
roscopic imaging is proposed. The complete framework consists
of: 1) catheter initialization in the first X-ray frame; 2) catheter
tracking in the rest of the X-ray sequence; 3) fast registration
of corresponding X-ray and ultrasound frames; and 4) catheter
segmentation in ultrasound images guided by the results of both
X-ray tracking and fast registration. The main contributions
include: 1) a Kalman filter-based growing strategy with more clin-
ical data evalution; 2) a SURF detector applied in a constrained
search space for catheter segmentation in ultrasound images; 3)
a two layer hierarchical graph model to integrate and smooth
catheter fragments into a complete catheter; and 4) the integration
of these components into a system for clinical applications. This
framework is evaluated on five sequences of porcine data and
four sequences of patient data comprising more than 3000 X-ray
frames and more than 1000 ultrasound frames. The results show
that our algorithm is able to track the catheter in ultrasound im-
ages at 1.3 s per frame, with an error of less than 2 mm. However,
although this may satisfy the accuracy for visualization purposes
and is also fast, the algorithm still needs to be further accelerated
for real-time clinical applications.
Index Terms—Cardiac catheterization, echocardiography, fluo-

roscopy, segmentation, tracking.

I. INTRODUCTION

C ARDIAC catheterization is a category of minimally inva-
sive surgery (MIS) procedures in which catheters are in-

serted into the heart through a small incision in a patient's neck,
arm, or groin. Catheter-based ablation is a minimally invasive
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procedure to correct a cardiac arrhythmia, such as atrial fibrilla-
tion, by ablating specific parts of the cardiac tissue. In this pro-
cedure an ablation catheter is used to destroy the abnormal tissue
by emitting high-frequency electrical energy from the catheter
tip. Other types of catheters such as a lasso catheter or coronary
sinus catheter are used to measure the electrical activity of the
heart and observe the result of the ablation [1].
Any type of catheterization procedure needs to be closely

monitored and guided by intra-operative imaging techniques.
Currently, X-ray fluoroscopy and echocardiography (also
known as ultrasound, US) are two modalities that are widely
used in real-time cardiac interventions. X-ray fluoroscopy is
particularly suited to visualizing catheters and is the standard
modality to monitor cardiac catheter ablation interventions,
but does have limitations: specifically a lack of 3-D soft tissue
information and use of harmful radiation. In contrast, echocar-
diography does not have the above limitations and can be seen
as a good alternative for catheterization procedures. However,
acoustic artifacts and a small field of view render guidance only
by ultrasound extremely challenging [2]. Catheter visualization
is particularly difficult in echocardiography, even for experi-
enced physicians, due to the acoustic artifacts and the general
difficulty of interpreting ultrasound images. Thus, computer
assisted techniques are required to enhance the visualization
of the catheters. A fast, accurate and stable algorithm for the
detection and tracking of catheters will aid the physician in MIS
interventions, by highlighting the catheter location in real-time
in the images.

A. Related Work

Most of the earlier approaches focusing on catheter tracking
in X-ray images are catheter tip type-specific and cannot
be extended to other types. These works have specifically
addressed the segmentation and tracking of circumferential
mapping catheter tip [3], coronary sinus (CS) catheter tip
[4], [5], and multiple CS catheter tips [6]. Recent approaches
have focused on tracking the entire catheter (low-contrast
sheaths or guide wires) rather than just the catheter tip. A
fast parameterized curve tracking strategy has been proposed
in [7]and applied to guide-wire tracking based on a discrete
optimization framework. Since then, discrete optimization has
been preferred to address flexible curve tracking and most of
the more recent studies have employed a discrete optimization
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framework. In [8], to track deformable guide-wires, the data
term of the optimization was modelled through support vector
regression based on learning the relationship between features
and tracking errors. [9]proposed a hybrid tracking model which
combines a graph-based B-spline curve model and geometric
landmark matching through a discrete Markov random field
(MRF) optimization. In [10], a hierarchical scheme was devel-
oped to track a deforming guidewire by combining a semantic
guidewire model, a learning-based detector and an online
appearance model. A recent study based on guide-wire tracking
[7], [11]evaluated several discrete optimization methods and
suggested that fast primal-dual (Fast-PD) is one of the most
efficient making it ideally suited for real-time applications.
However, these discrete optimization approaches can only track
an approximately fixed portion of the catheter without large
tangential motions. This is mainly because in this optimization
framework the corresponding search range along the tangential
direction for each control point of the B-spline model is limited,
and large tangential motions may cause the control points to
move out of the search range. We will elaborate on this in the
Methodology section.
In ultrasound imaging, early efforts regarding surgical tool

tracking require external markers [12]that are usually impos-
sible to attach to micro tools. Biopsy needle tracking in US has
been studied previously [13]–[16]but the methods cannot be ex-
tended to catheter tracking due to the inherent nonrigidity of
catheters and interference from other catheter-like structures. In
[17], only the catheter tips were tracked. Although the final pur-
pose of catheter tracking is often to localize the catheter tip, it is
important that the entire catheters are segmented so that the tip
localization is constrained. Recently, several methods have been
developed that register the X-ray images to ultrasound images
[2], [18]–[21]. Thus, the information from the corresponding
X-ray images can assist in detecting or segmenting structures in
ultrasound.
Our previous work in [22], [23]provides a framework which

employs the transformation between these two modalities to
constrain the catheter segmentation in the ultrasound image.
This involves three main parts: 1) catheter tracking in the X-ray
images; 2) registration of the X-ray and echo images; 3) catheter
tracking in the echo images. The first two parts are also used in
this paper andwill be introduced in detail withmore clinical data
than in the original work [22], [23]. The last part is to extract
the catheter in the echo images based on the results of the first
two steps. A curved surface in the 3-D echo image, which corre-
sponds to the extracted results in 2-D X-ray images, is back-pro-
jected based on this transformation. Then a 3-D SURF detector
is used to detect tubular-like features around this surface and
a graph model is defined to organize these features. Two end
points are defined in this graph and the shortest path between
these two ends through this graph model is found. This path is
considered as the position of the catheter in the echo images.

B. Challenges and Contributions
[22] and [23]provide a framework for catheter extraction

from echo data. However, it fails on most clinical data. The
failure is due to three aspects of the method that are unsuitable
for the complexities seen in clinical data: 1) the search space

corresponds to a region around the back-projected surface.
Due to the surface being curved, normal searches from nearby
points on the initial catheter location can lead to an out-of-order
set of landmarks defining the new catheter, because of the
search regions intersecting on the inside of the curve. Besides,
the 3-D SURF detector used in [22]and [23]is designed to
detect blob structures, which are different to tubular structures.
Thus it is not suitable for tubular structure measurement in
3-D echo volumes; 2) the previous method used a shortest path
model in a single layer graph to extract the catheter from the
back-projected surface. Clinical data requires a more complex
model, especially when the catheter is in an upright position,
perpendicular to the X-ray, in the curved surface. Furthermore,
the single layer graph method cannot model catheters with
discontinuities, meaning that a catheter fragmented by echo
artefacts cannot be detected beyond one fragment; and 3) the
previous proposed framework has a small tolerance to the
registration error, thus the registration obtained from one frame
can not be used for the other. Registration has to be carried out
every frame.
In this paper we propose an improved framework for catheter

tracking in 3-D transesophageal echocardiography (TEE) for
cardiac interventions.
Our key contributions lie in the part of catheter segmentation

in echo images. 1) A search space around the curved surface
is defined with a unified normal search direction and it is
straightened to form a rectangular space. The 2-D Speed Up
Robust Feature (SURF) detector is used to detect the blob-like
structure on the cross-sectional planes of this straightened
space where the catheter passes through perpendicularly. This
strategy is proved to achieve better performances than some
popular vesselness filtering techiniques [24], [25]and the 3-D
SURF detector used in [22], [23]. 2) A two-layer graph model,
with its corresponding optimal path, is proposed to address
catheters with discontinuities and upright positions, which
cannot be tackled by the single layer graph in [22], [23]. 3)
As to the Kalman filter based growing strategy for catheter
extraction, it is our original contribution in the previous work
[22], [23]but with insufficient introduction and unconvincing
phantom data experiments. Given that no similar study has been
performed previously on sufficient clinical data, experimental
validation was carefully carried out here. 4) To the best of our
knowledge, the proposed system is the first complete system
combining X-ray and echo imaging with sufficient clinical data
validation. The way how to integrate different modules is also
improved to [22], [23]. The registration can be carried out once
and then used for other frames. More details, such as the extent
of manual interventions, are also specified here. Performance
metrics are devised to give a suitable evaluation of the pro-
posed system, reflecting not only the real-time performance,
segmentation error and completeness of catheter tracking, but
also its stability and robustness.

II. METHODOLOGY

A. Pipeline Overview
The algorithm pipeline is summarised in Fig. 1. It starts with

the automatic or semiautomatic segmentation of the catheter
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Fig. 1. Overview of the algorithm. Complete algorithm consists of four main modules: catheter extraction as an initialization in the X-ray sequence, catheter
tracking in X-ray, X-ray and ultrasound registration, and catheter segmentation in ultrasound. Each module consists of several sub-steps colored in yellow in the
figure which will be detailed in the following sections. Blocks in green indicate a potential manual intervention. Block in orange is the offline procedure. Facts
regarding manual interventions were not taken into account since the previous system can be fully automatic on phantom data in [22]and [23].

in the first X-ray frame (Section II-B). The semiautomatic
approach is necessary when other catheters or catheter-like
structures, such as the TEE probe, are simultaneously in the
field of view but need not be tracked; then the desired catheters
must be specified manually. Electrodes are detected using
SURF features and flexible tube is detected using Frangi-based
tubular structure detection. Then Kalman filter is employed to
extend the extraction from the local electrodes to the whole
catheter. After segmentation of the first X-ray frame, the
tracking is used to identify the catheter in the following frames
(Section II-C). Fast-PD is used to track movements normal to
the catheter and a Kalman filter is used to extend the tracked
parts to a larger portion of the length of the catheter. This
Kalman filter allows for tangential movement of the catheter,
which would not be detected by Fast-PD. The X-ray and ultra-
sound images are registered by mapping a previously obtained
3-D TEE probe model to its projection image in the X-ray frame
[18](Section II-D). This registration is only required at the
beginning of the tracking. This is different from our previous
framework. In particular there is no reason for registration in
every frame since: 1) the registration mainly varies according to
respiration but this type of motion is small in our application; 2)
our catheter extraction in the echo volume tolerates small errors
in the registration. With the results of the X-ray segmentation,
the search space in ultrasound is reduced to a narrow region
around the curved surface defined by back-projecting the line
detected in the X-ray (Section II-E). This reduced space is
then transformed to a straightened volume. A SURF detector
is used to detect key features on the cross-sectional planes of
the 3-D search space and then these features are organized
as a two-layer graph model. The optimal path combining the
shortest path on the bottom layer graph and the longest path
on the top is solved as an estimation of the catheter location in
ultrasound. An optional growing stage is used again to ensure
that as much of the catheter as possible is tracked.

B. Catheter Initialization in X-Ray Images
The catheter extraction in the X-ray images enables the whole

system to be initialized or to recover from a tracking failure.
Fig. 2 illustrates each stage of the extraction method.

1) Blob Detection and Tubular Structure Detection: Most
catheters have electrodes on the tip, which appear as blob-like
structures in the X-ray images. To detect these, the method of
Speed Up Robust Features (SURF) detector [26], which is based
on integral images, is employed. It is straightforward to extract
candidate blobs in the image by setting the threshold for
the response of the SURF detector [Fig. 2(b)]. Note that in this
paper only the overall SURF detector response is used rather
than the 64 dimensional vector response of the SURF descriptor.
However, not all detected blobs are retained since not all are
located on the shaft of the catheter. To decide which blobs to
retain we look for tubular structures in the neighborhood of each
blob.
While SURF is used for blob-like electrode detection, the

flexible shaft of the catheter requires a different detector. For
this the Frangi vesselness filter [24]is a good choice. This de-
tector yields a response for a local patch of the image indicating
whether a tubular structure passes through [Fig. 2(c)]. We use
another threshold, , on the response to determine whether
or not a tubular structure is passing through each patch. The fea-
ture responses above the threshold are also later used as scores
to indicate the likelihood of a catheter fragment being present.
2) Patch Analysis: A patch is initially placed on each de-

tected blob [Fig. 2(d)] and later on the position determined by
the Kalman filter, as detailed in the following section. Given a
small square patch of the image, we determine whether there is
a section of catheter inside using the Frangi filter. If the patch
contains a catheter, a centerline is fitted to the shape of the
catheter segment. The direction of the centerline, together with
the updated position on the line, are two important features for
the Kalman filter-based growing in the next step. However, the
Frangi filter does not give an accurate direction and position of
the catheter fragments within the patch. This is because to make
the whole algorithm fast, the Hessian matrix, base on which the
Frangi vesselness filter is deduced, is calculated in an approxi-
mate way instead of by the standard procedure. This calculation
is carried out based on a integral image as suggested by [26].
Thus, instead of calculating the direction and position, we ana-
lyze the statistical properties of the edge points with their cor-
responding gradients.
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Fig. 2. Catheter extraction as an initialization in X-ray. (a) Example of an original X-ray image. (b) Blob-like structures (including real electrodes and outliers)
detected by SURF, highlighted in yellow. (c) Image after Frangi vesselness filtering. (d) Patch located on a potentially relevant blob. (e) Edge points and their
gradients extracted within the patch. (f) Edge points classified into two groups corresponding to the two sides of the catheter. (g) Edge points (after RanSaC outlier
removal) used to calculate the growing direction and update the centerline. (h) Result of growing using patch analysis and Kalman filtering step-by-step.

The basic assumption is that the section of the catheter in-
side the local patch is straight. The basic patch analysis can be
divided into edge point extraction, point classification, outlier
removal and centerline fitting.
Edge Point Extraction: First, the border of the catheter in the

patch is detected using Sobel features [27]based on two Haar
filters along the and directions in the integral image. The
filter responses of the two directions at a point are collected
into vector . Then the magnitude and the
orientation of the vector are calculated. By thresholding the
magnitude of with and selecting the maximum response
in a neighborhood, a set of candidate edge points are identified:

[Fig. 2(e)].
Point Classification: Based on the edge points, a histogram

for is constructed. We use rather than for
the histogram so that parallel but opposite edgesmap to the same
histogram bin. The maximum value in the histogram defines the
most likely direction of the catheter. Two angles are then defined
from this maximum: and so that . All edge
points are then classified as catheter edges if they are within a
certain range of these angles, usually . Edge points are
therefore classified into three categories

if
if
otherwise

(1)

where and represent opposite edges of the catheter
[Fig. 2(f)] and contains all other edge points.
Before calculating and , a mask is used to filter the his-

togram and set some bins to zero if these correspond to unlikely
directions as identified by prior knowledge (if there is avail-
able prior knowledge such as the tangential direction calculated
in a nearby patch). Patches are analyzed one by one and the
prior knowledge can be the output direction from the last patch

analysis in an adjacent patch. The purpose is to ensure only the
correct direction, consistent with the direction of the centerline
in the previous patch, is calculated. This adds robustness for
patches which contain two catheters intersecting each other.
Outlier Removal: Because of the assumption that the section

of the catheter inside the local patch is straight, the edge points
can be modelled using linear equations. Thus each set and

can be modelled with a line equation corresponding to one
edge of the catheter within the local patch. Assuming that the
proportion of outlier points is below 50%,Random Sample Con-
sensus (RanSaC) [28]is a good choice to remove these. In our
application, two points (the minimal required quantity to model
a line equation) are sampled and a line equation is fitted through
them. The distances between this line and the other points are
then calculated. If the number of points in the vincinity of the
line is above a threshold, the line is accepted and the supporting
points are retained while the others are removed as outliers. Out-
liers are moved from sets to .
Centerline Fitting: After outliers are eliminated from the two

sets, a line equation is determined using [Fig. 2(g)]. This line
equation encodes direction and position information and can be
written as . Points from fitting to this line
can be denoted by

(2)

Given the 2-D coordinates of the points from , the
coordinates can be rewritten as . Finding
the centerline can then be easily transformed to a linear opti-
mization problem to find the solution that sat-
isfies

(3)
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where and is the total
number of points in set . This can be solved using singular
value decomposition (SVD). After the parameters of the center-
line are determined, the direction angle and the intersection

of the centerline and the perpendicular line
through the center of the patch are given by

if
if (4)

(5)

where is the center of the patch.
Multiple Line Equation Fitting: In a clinical scenario, mul-

tiple catheters may be present in one view simultaneously. It is
likely that two or more catheters will be close or intersect each
other. Even if only one catheter is present, it may have sharp
turns and in the corresponding local patches the line fitting may
fail. In such cases, multiple line equations may need to be fitted
simultaneously within one patch. A feasible solution is to repeat
the above procedure iteratively: in each iteration we perform the
above line fitting and the corresponding supporting edge points

and are then removed from the histogram. Thus, a dif-
ferent line equation is fitted in the next iteration. This procedure
is repeated until a stopping criterion is reached, with the cri-
terion depending on the numbers of edge points in and
and the number of iterations. If the ratio of the numbers of points

and approximates 1 ( in our application) and
the sum of these two numbers is above a threshold , then
the line equation is accepted. If there is an accepted line fitted
and the number of the iteration is below 3, then the loop con-
tinues; otherwise it stops. We choose a maximum of 3 iterations
because in most of cases the number of catheters in the same
patch would not beyond 3.
Parallel Lines Within One Patch: An exception for multiple

catheter patch analysis is the case with parallel catheters in one
patch. The above strategy cannot work in this case, because the
supporting edge points for all parallel catheters are within the
same bin in the orientation histogram. Thus they need to be sep-
arated first in order to correspond to edges of different catheters.
Given a direction , the 2-D spatial positions of all points in

and are projected onto an axis with direction . An-
other histogram is then constructed with the number of projected
points in each bin of this projected axis (the length of the bin is
two pixels). Peaks of the histogram which have a large number
of projected points (above at least 20), may correspond to the
parallel catheters. Points within the bins in the neighborhood of
the peak (three pixels distance to the peak) are then used to cal-
culate the line equation.
3) Kalman Filter-BasedGrowing: Given a set of initial blobs

detected using SURF, the catheter can be extracted by growing
it from each blob to form the whole catheter. At each step of
growth, the centerline fitting via local patch analysis is carried
out. The measurements (direction and updated center) from the
previous step are employed to locate the next patch. If a patch
yields no fitted line or the border of the image has been reached,
the process is terminated [Fig. 2(h)]. This process can be inte-

grated into a Kalman filter framework. The system model of the
Kalman filter is defined as

(6)

The state vector , where and de-
note positions while and denote angular displacement and
velocity at th time respectively, is updated at every step as well
as its corresponding covariance matrix . is the sampling
time and . We use to denote the instanta-
neous velocity which is then defined as a function of angular
velocity

(7)

should be within and (usually set to 1) denotes
how sensitive the velocity is in response to the change of .
This means that the step size for the growth is proportional to
the size of the instantaneous angular velocity. As a result, land-
marks are sampled more densely on sharper turns of the curve
and more sparsely on smoother sections. The state vector el-
ements and are directly measured by the
values of and obtained from patch analysis.
The system and measurement equations of the Kalman filter

can then be written as follows:

(8)
(9)

with system matrix

(10)
and measurement matrix

(11)

where and .
is the measurement error covariance matrix which is set to

(12)

The coordinate and the direction obtained from the initial patch
analysis are used to initialize the first three states in the state
vector , , and . is set to zero. The corresponding co-
variance matrix is initialized as a diagonal matrix with diag-
onal entries (5,5,0.25,0.25). By applying the extended Kalman
filter equations, a sequence of sorted displacements
representing the potential catheter can be acquired. The value
of both and are set based on a rough analysis on the
measurement error of the corresponding variables. They are not
fine-tuned because small changes of these values cannot affect
the performance significantly and so they can be fixed for a gen-
eral application.
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Fig. 11. Examples of the tracking result on patient echo data. Rows (a), (b), (c), (d), and (e) correspond to the results using a vesselness filter [24]and [25], a
previous graph-based extraction method [23], and the proposed method without and with the growing postprocessing. Tracked curves are marked in green. For
each row, the six columns correspond to frame nos. 1, 21, 41, 61, 81, and 101.

Fig. 12. A side effect of the growing strategy: a small rise in ITP. One echo
frame is used to illustrate this effect with the ground truth marked in green (with
a green arrow pointing the end). Left and the right sub-figure show the results
without and with the growing strategy in light blue (with a light blue arrow
pointing the end), respectively. It is clear that the strategy without growing
cannot detect the entire length while the one with growing can, but with a small
error in tracked length.

0.03 s, with nearly all of this time taken for the step of can-
didate measurements in the search region. During this step, the
nearly in the search region can be examined indepen-
dently and could be processed simultaneously. Thus could
potentially be reduced significantly on a GPU platform. Mean-
while, the improvement potential for echo image extraction is
even larger, given that the echo volume is 3-D. During the stage
of echo extraction, the preprocessing and feature searching, on

both the original volume and the straightened volume, which
takes 0.7 s in total, can be fully parallelized by examining each
voxel independently and simultaneously on a GPU. The rest
of the computation, such as growing, cannot be fully paral-
lelized directly and costs around 0.7 s. However, the main cost is
calculation of measurements on each voxel independently and
these computations could be calculated in advance and stored
in memory. The average total echo time on a
CPU and the minimal real-time requirement is 10 fps. Given
the easily parallelizable nature of the proposed algorithm, the
required speed-up of 10 times may well be achievable with a
GPU or multi-GPU implementation.
The FTP of 27.7% for echo data is larger than expected. This

is due to the echo tracking not making use of temporal consis-
tency. Currently, given one frame of the echo data, the algo-
rithm does not take the previous location of the catheter into
account. The extraction for each echo frame is completely inde-
pendent and the consistency between frames is not preserved.
This could lead to an extraction of less than the full length of
the catheter, which will cause a high FTP. Future work will con-
centrate on echo tracking which brings inter-frame consistency
into the system.
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V. CONCLUSION

We have proposed a fast X-ray assisted catheter segmentation
strategy for ultrasound imaging in cardiac catheterization. The
experimental results show that it can track catheter motions in
ultrasound at 1.3 s per frame, with an error of less than 2 mm.
Fewer than 4.5% of the tracked results are incorrect and more
than 72% of the ground truth is tracked. Fewer than 12% of
frames have a tracking failure. Compared with [23], our method
is better in any performance metric.
The growing strategy for both X-ray and echo tracking trades

off a small rise in the percentage of incorrectly tracked features
(increased ITP), but is able to track a larger proportion of the
catheter (reduced FTP). This strategy makes the system more
adaptive to the cases where the catheter moves tangentially and
causes a change in the visible length of the catheter. The 2-D
SURF detector in the straightened space gives better measure-
ments than the widely used vesselness filtering methods. The
two-layer hierarchical graph model is more suitable in this ap-
plication than the single layer model that finds only the shortest
path. Future work will include the GPU parallelization of this
system and will look at catheter tip tracking in real-time.
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