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A B S T R A C T

Efficient life-cycle management of civil infrastructure systems under continuous deterioration can be improved
by studying the sensitivity of optimised preventive maintenance decisions with respect to changes in model
parameters. Sensitivity analysis in maintenance optimisation problems is important because if the calculation of
the cost of preventive maintenance strategies is not sufficiently robust, the use of the maintenance model can
generate optimised maintenances strategies that are not cost-effective. Probabilistic sensitivity analysis methods
(particularly variance based ones), only partially respond to this issue and their use is limited to evaluating the
extent to which uncertainty in each input contributes to the overall output's variance. These methods do not
take account of the decision-making problem in a straightforward manner. To address this issue, we use the
concept of the Expected Value of Perfect Information (EVPI) to perform decision-informed sensitivity analysis:
to identify the key parameters of the problem and quantify the value of learning about certain aspects of the life-
cycle management of civil infrastructure system. This approach allows us to quantify the benefits of the
maintenance strategies in terms of expected costs and in the light of accumulated information about the model
parameters and aspects of the system, such as the ageing process. We use a Gamma process model to represent
the uncertainty associated with asset deterioration, illustrating the use of EVPI to perform sensitivity analysis on
the optimisation problem for age-based and condition-based preventive maintenance strategies. The evaluation
of EVPI indices is computationally demanding and Markov Chain Monte Carlo techniques would not be helpful.
To overcome this computational difficulty, we approximate the EVPI indices using Gaussian process emulators.
The implications of the worked numerical examples discussed in the context of analytical efficiency and
organisational learning.

1. Introduction

The cost effective life-cycle management of civil infrastructure
systems is highly dependent on the determination of optimal main-
tenance and rehabilitation strategies. The determination of optimal
maintenance decisions is widely recommended [6] as an effective way
of minimising system downtime and corresponding maintenance costs.
For instance, Dobbs et al. [1] report that maintenance costs for
infrastructure systems such as water energy, rail, etc. are rapidly rising
and current estimates suggest that optimised maintenance strategies
could save $100 bn p.a. on global infrastructure costs. Infrastructure
maintenance practices have traditionally been premised on one of two
strategies; Corrective Maintenance (CM) which involves repairing
failed components and systems, or Preventative Maintenance (PM)
which involves the systematic inspection and correction of incipient

failures before they develop into major defects. Recent years have seen
increasing dominance of PM approaches with overall costs demon-
strated to (perhaps counter-intuitively) be lower than for a CM
strategy. PM is widely used to mitigate asset deterioration and reduce
the risk of unexpected failure and as a strategy can be sub-classified
into two approaches; time-based maintenance (TBM), where main-
tenance activities take place at predetermined time intervals, and
condition-based maintenance (CBM) where interventions are
prompted by information collected through condition sensing and
monitoring processes (either manual or automated). Ahmad and
Kamaruddin [6] provide an extensive review comparing TBM against
CBM (see also [2–5]).

Preventive maintenance strategies (both time and condition based)
are widely used for infrastructure life-cycle management decision
making. These strategies can be planned and scheduled and their costs

http://dx.doi.org/10.1016/j.ress.2017.02.002
Received 4 January 2016; Received in revised form 15 January 2017; Accepted 18 February 2017

⁎ Corresponding author.
E-mail addresses: a.daneshkhah@warwick.ac.uk (A. Daneshkhah), N.G.Stocks@warwick.ac.uk (N.G. Stocks), p.j.jeffrey@cranfield.ac.uk (P. Jeffrey).

Reliability Engineering and System Safety 163 (2017) 33–45

Available online 21 February 2017
0951-8320/ Crown Copyright © 2017 Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).

MARK

http://www.sciencedirect.com/science/journal/09518320
http://www.elsevier.com/locate/ress
http://dx.doi.org/10.1016/j.ress.2017.02.002
http://dx.doi.org/10.1016/j.ress.2017.02.002
http://dx.doi.org/10.1016/j.ress.2017.02.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2017.02.002&domain=pdf


are typically lower than those for CM strategies. However, early
preventive maintenance intervention adds little to the reliability of the
system and can lead to unnecessary costs, hence maintenance strategies
often comprise a combination of preventative and corrective approaches.
The challenge is then to identify the optimal PM decision that achieves
the best balance between these types of maintenance and minimise
overall maintenance costs, controlled over an appropriate time period.
The central challenge for those who wish to make informed PM decisions
is that determining the time to first inspection, maintenance interven-
tion, or replacement is confounded by model parameter uncertainties
associated with the adopted failure, deterioration, repair, or maintenance
model. Consequently, SA of the model output (to identify an optimal
maintenance strategy) with respect to the changes in the model
parameters is of great interest. In this paper we investigate the issue
of SA for maintenance optimisation models. To achieve this, we consider
time based and condition based preventive maintenance strategies for
infrastructure systems under continuous deterioration. Both strategies
are discussed in detail in [6,11] and references therein. Under TBM, a
component is replaced (or perfectly repaired) either at failure (CM) or
when it has reached age T - whichever occurs first. The central objective
of a TBM decision problem is to determine the replacement time which
minimizes expected total cost. The CBM strategy involves the periodic
inspection of a component/structure at a fixed time interval Ti and cost
Ci. At the specti inspection, one of the following actions might be taken:
(i) the system is operating satisfactorily and no action is required to be
taken; (ii) immediate preventative maintenance is required to avoid
component or system failure; (iii) a failure is identified and corrective
maintenance (or a perfect repair) is required to restore the system's
functionality (see Section 5.2 and [11] for further details). The optimal
maintenance decision under the CBM strategy is taken as the inspection
time and the PM ratio which are similarly determined by minimising the
cost function of interest. The decision under a CBM policy for a
deteriorating component constitutes a two-dimensional optimisation
problem, whilst for the TBM case the aim is to find the critical age as
a single variable. It has been argued that the types of PM strategy
discussed above is more useful in practice (particularly for larger and
more complex systems) since it removes the need to record component
ages [6,7].

As inferred above, the preventive maintenance policy cost function
is influenced by both the deterioration model and repair model's
parameters. Thus, the calculation of a mean cost rate for a particular
preventive maintenance policy is not sufficiently robust because of the
uncertainty around parameter values, and the corresponding main-
tenance model can generate inefficient outcomes. In other words, the
identification of an optimal maintenance intervention becomes sensi-
tive to the model parameters creating uncertainty as to the optimal
strategy. Variance based approaches [14] offer a partial answer to this
problem and can be used to assess the degree to which uncertainty in
each variable contributes to the overall variance in model output.
However, these approaches do not take account of the decision-making
context properly. In order to address this issue, we make use of the
concept of the Expected Value of Partially Perfect Information (EVPPI).
The EVPPI provides a decision-informed SA framework which enables
researchers to determine the key parameters of the problem and
quantify the value of learning about certain aspects of the system
[8,7]. In maintenance studies [9,10], this information can play an
important role, particularly where we are interested in not only
identifying an optimal maintenance decision but in also gathering
additional information about the system characteristics including the
deterioration process to improve the robustness of decisions.

The determination of EVPPI involves the calculation of multi-
dimensional integrals that are often computationally demanding,
making conventional numerical integration or Monte Carlo simulation
techniques infeasible in practice. To partially overcome this computa-
tional difficulty, we follow the work of [7,8], and execute SA through
the use of Gaussian process emulators. The following section presents a

well-known probabilistic model of deterioration; the Gamma process
model, and discusses how this relates to TBM and CBM maintenance
optimisation problems. We go on to describe how Gaussian Process
(GP) emulators can be used to compute EVPPIs within the context of
decision-theoretic SA. Robust optimised maintenance decisions are
then derived for two forms of PM policy using several illustrative
settings of varying complexity. We conclude by discussing the implica-
tions of our approach and identify opportunities for future work.

2. Deterioration models

Infrastructure asset deterioration processes are uncertain and can
best be regarded as stochastic. Two previous studies have demon-
strated the values of using Gamma process models to analysis the
deterioration of physical assets. Pandey et al. [11] compared the use of
random variable and gamma process models in the life-cycle manage-
ment of infrastructure systems. They demonstrated that the random
variable model cannot capture the temporal variability associated with
the evolution of asset degradation. As a consequence, this model tends
to underestimate the life-cycle cost due to the lack of consideration of
temporal uncertainty. Van Noortwijk [12] extensively reviewed the
application of stochastic deterioration processes, and particularly the
use of the Gamma process model in maintenance. He concluded that
gamma processes are well suited for modelling the temporal variability
of deterioration, and of particular value when determining optimal
inspection and maintenance decisions.

We now briefly introduce the Gamma process for deterioration
modelling of an ageing asset. In mathematical terms, a gamma process
is a stochastic process with independent non-negative increments
having a gamma distribution [11,12]. The Gamma process with a
shape function ν t( ) > 0 and scale parameter ξ > 0 is a continuous-time
stochastic process X t t{ ( ), ≥ 0} with the following properties:

1. Pr X( (0) = 0) = 1
2. X ι X t Ga ν ι ν t ξ ι t( ) − ( ) ∼ ( ( ) − ( ), ), ∀ > ≥ 0
3. X(t) has independent increments

and where ν t( ) is a non-decreasing, right-continuous, real-valued
function of t ≥ 0 with ν (0) ≡ 0.

Let X(t) denote the deterioration at time t ≥ 0, and let X(t) follows a
gamma process with the shape function ν t( ) > 0 and scale parameter
ξ > 0, then the probability density function of X(t) is given by

f x Ga x ν t ξ x ξ
ξΓ v t

x ξ x( ) = ( ( ), ) = ( / )
( ( ))

exp{− / }, for ≥ 0X t

v t

( )

( )−1

(1)

The structural failure for a deteriorating structure or component is
defined as an event when its deteriorating resistance, denoted by
R t r X t( ) = − ( )0 , falls short of the applied stress s. The initial resistance
r0 and s are assumed to be fixed and known. We denote
ρ r s= ( − ) > 00 as the available design margin or a failure threshold.
We let the time at which failure occurs be denoted by the lifetime T
(also called the first hitting time of level ρ). Since the deterioration of a
component at time t is given by Eq. (1), the cumulative lifetime
distribution of this is then given by

F t Pr T t Pr X t ρ ρ ν t t ξ( ) = ( ≤ ) = ( ( ) ≥ ) = 1 − ( ; ( ) , )T
G (2)

where ρ ν t t ξ( ; ( ) , ) denote the cumulative distribution function of the
deterioration model at ρ.

Expression (2) features outstanding duality between a component's
deterioration and its lifetime that makes the Gamma process model
tractable for cycle-life management analysis. It should be noted that the
lifetime probability density function, denoted by f F t= ( )T

G
t T

G∂
∂ , has no

closed form expression, and the corresponding maintenance optimisa-
tion problem requires a computationally fast and powerful numerical
method.
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3. Optimal preventive maintenance policy

The central objective of a preventive maintenance (TBM or CBM)
optimisation model is to determine the value of the decision variable T
(replacement time or inspection time) that optimizes a given objective
function amongst the available alternative maintenance decisions. For
instance in a TBM policy, the optimisation problem is usually defined
over a finite time horizon t[0, ], and the objective function, denoted by
C(t), represents costs over the interval t[0, ]. For infinite horizon
models, we seek to minimise the long-term average costs [13]. If a life
cycle of an asset is defined over the period between two consecutive
maintenance/replacements, then the expected cost per unit of time
under decision T (which could be either optimised maintenance time or
inspection interval) is given by

θ θ
θ

T C T
L T

( | ) = ( | )
( | ) (3)

where θC T( | ) is the expected cost during the system's life cycle, θL T( | )
is the expected length of the life cycle or length of time between two
consecutive replacements/repairs, and θ is the vector of deterioration/
failure and time to repair/replacement. We assume that system/
component failure and time to repair or replacement is a random
variable characterized by a distribution as discussed in Section 5.

The following formula is an example of the expected cost per unit of
a component under a general TBM policy

∫
T c F T c R T

T R T tf t t τ
( ) = ( ) + ( )

· ( ) + ( )d +
T

1 2

0 (4)

where F(T) is the failure distribution function of a system at time T (or
probability of unplanned replacement due to an unexpected failure),
R T F T( ) = 1 − ( ) is the probability of planned replacement at time T, c1
is the cost of a corrective maintenance, c2 is the cost of planned
replacement and τ is the expected duration of replacement. The
objective is then to identify the optimal strategy T* that corresponds
to the minimum cost rate (cost per unit of time), that is;

T T* = arg min{ ( )}.
T>0 (5)

A similar method is used to determine the optimised CBM strategy. The
cost function in this policy is the mean cost rate which is defined as

t υ E C t υ
E L t υ

( , ) = [ ( , )]
[ ( , )]I

I

I (6)

where E C t υ[ ( , )]I represents the renewal cycle cost, E L t υ[ ( , )]I is the
renewal cycle length, tI is the inspection time interval and υ is the PM
ratio. The details of numerator and denominator of the mean cost rate
will be given in Section 5. The objective is then to find t*I and υ* so that

t υ( *, *)I becomes the minimal cost solution.

3.1. Uncertainty quantification via decision-informed sensitivity
analysis

The optimal maintenance strategies derived by minimising the
expected cost rate is influenced by characteristics such as the deteriora-
tion process or failure behaviour of the system and the characteristics
of maintenance tasks (including repair/replacement policy, mainte-
nance crew and spare part availability etc.). These characteristics are
subject to uncertainty, prompting study of the sensitivity of an optimal
maintenance strategy with respect to changes in the model parameters
and other uncertain inputs. Such an analysis improves understanding
of the ‘robustness’ of the derived inferences or predictions of the model,
and, offers a tool for determining the critical influences on model
predictions [14]. Zitrou et al. [7] summarise the main sensitivity
measures and discuss their values and applications in an extensive
SA. They conclude that a simple yet effective method of implementing
SA is to vary one or more parameter inputs over some plausible range,

whilst keeping the other parameters fixed, and then examine the effects
of these changes on the model output. Although this method is
straightforward to implement and interpret, it becomes inconvenient
where there are large numbers of model parameters or when the model
is computationally intensive.

In order to resolve this difficulty, we use a variance-based method
for SA [14]. This approach can capture the fractions of the model
output variance which are explained by the model inputs. In addition, it
can also provide the total contribution to the output variance of a given
input – i.e. its marginal contribution and its cooperative contribution.
The contribution of each model's input to the model output variance
serves as an indicator of how strong an influence a certain input or
parameter has on model output variability. However, within a decision-
making context like the maintenance optimisation problem, we are
primarily interested in the effect of parameter uncertainty on corre-
sponding utility or loss. To achieve this objective, we use the concept of
EVPPI as a measure of parameter importance [7,8]. Incorporating the
value of information (or EVPPI) in a sensitivity analysis allows the
decision-maker (or model user) to relate the importance of each
uncertain input parameter directly to the decision problem at hand,
something that is lacking in a traditional variance-based sensitivity
analysis method. The EVPPI approach thus allows the application of SA
to the maintenance optimisation model and identifies the model
parameters for which collecting additional information (learning) prior
to the maintenance decision would have a significant impact on total
cost.

Monte Carlo sampling can be used to estimate partial EVPIs [18],
but again, in the case of computationally expensive models this may not
be practical due to the numbers of model runs typically required.
Oakley [8] shows how Gaussian process emulators can be used to
obtain estimates more efficiently in this case.

4. Decision-informed sensitivity analysis

4.1. Sensitivity analysis

The mean cost rate induced by a specific maintenance strategy
(chosen value for T or tI) is effected by features like the deterioration
process of individual structure/system and the aspects of the replace-
ment/repair task. As these aspects are part of a real-world system, they
are then subject to uncertainty. It is thus of key importance to
investigate sensitivity of the maintenance model with respect to these
uncertain aspects.

Sensitivity analysis is widely used in modelling to examine whether
alternative assumptions or modelling choices lead to different predic-
tions or inference. In general, there are two types of approach: ‘local
and ‘global sensitivity analysis. The aim of the former is to evaluate the
change in output, θf ( ) due to small perturbations in the input from
some baseline value/choice, and typically involves the consideration of
partial derivatives of the function under study with respect to the
variables, θf θ∂ ( )/∂ i [34,35]. When f (·) is non-linear in its inputs, x and
small perturbations of the inputs do not adequately reflect the input
uncertainty, a local sensitivity analysis is unlikely to be a plausible
approach. In this situation, a global sensitivity analysis can be used to
examine how the output varies as the inputs vary over some range.
Where we are interested in reducing uncertainty about model inputs by
collecting more data, a global sensitivity approach may identify how to
prioritize data collection by identifying the most important uncertain
inputs.

There are two approaches to global sensitivity analysis: variance-
based methods, and decision-theoretic approaches based on the
expected value of perfect information. The variance-based global
sensitivity analysis method is extensively reviewed in [36], and its
applications can be found in [37]. The two most useful measures of
input importance within the variance-based approach are the main
effect index θ θz θ E f θ E f θ( ( ) = ( ( )| ) − ( ( )| ))i i i i and the total sensitivity
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index. A third concept, related to the main effect index, is the main
effect plot, which can be used to display graphically the relationship
between an input and the output [16,14].

There are various computational methods for estimating these
sensitivity measures. One of the earliest proposed approaches was
the FAST (Fourier amplitude sensitivity test, [36,14]) which involves
evaluating simulator outputs at inputs along a curve which explores the
input space, oscillating at different frequencies in each input dimen-
sion. Other approaches relate enhancements on simple Monte Carlo
sampling [38]. The computation of the sensitivity indices for the
complex functions (e.g., consists of non-linear terms or expressed
based on a complicated mathematical formulae) would be very
challenging. In these situations, the emulators can be then used for
computationally expensive simulators. In [17], the GP emulator was
used to compute sensitivity indices and produce main effects plots (see
also [25,39]).

Variance-based measures are more concerned with the individual
elements within vector outputs (or simply scalar outputs) and express
what fraction of the variance of θf ( ) can be attached to an uncertain
input variable θi, or any subset of θ. However, these approaches do not
take account of the decision-making context properly. In order to tackle
this drawback, a sensitivity analysis method based on the concept of
value of information which allows the decision-maker to relate the
importance of each uncertain input parameter directly to the decision
problem at hand was developed in [8].

In the field of life-cycle management of civil infrastructure, the
value of information concept is widely used to determine the optimum
preventive maintenance policy or condition monitoring strategy. For
instance, a methodology based on partially observable Markov decision
process was proposed in [40] to calculate the value provided by
condition monitoring systems for infrastructure assets. This was
achieved by combining “value of information” concepts with Markov
sequential decision process.

The determination of the benefits offered by the two condition
monitoring technologies can then be ascertained and the decision
maker can choose the most appropriate one in an informed manner. In
order to understand the factors that influence the information value,
sensitivity analysis on the specific model parameters are carried out. In
order to understand the impact of accuracy, the parameter can be
varied, keeping other parameters constant, and the resulting total
expected costs can be calculated for each technology. In a similar study
[41] Markov chains and simulation techniques were used to quantify
the benefits of condition monitoring for wind turbines by conducting
sensitivity analysis to operational parameters.

A comprehensive overview of the mathematical framework for
estimating the value of information adapted to life-cycle analysis of
structural systems was provided in [42,43]. It was shown the computa-
tion of the expected value of information relating to decisions on
maintenance of the civil infrastructure systems requires a large number
of life-cycle analyses, and the computational cost can be very high when
decisions concern the systems that are modelled with complex compu-
tational models [44]. In order to tackle this computational burden, it
was suggested to use the Kriging meta-models.

In this paper, we provide a holistic approach for guiding making
optimised decisions in the presence of uncertainty using value of
information analysis. We show how global sensitivity analysis can be
conducted within the framework of preventive maintenance decision
making, based on the concept of the expected value of perfect
information. It should be noted that the variance based sensitivity
analysis method is considered as a special case of this approach. The
computational challenges are tackled using computationally efficient
meta-models known as Gaussian process emulators which enable us to
compute the value of information indices (including EVPI and EVPPI)
of complex scenarios. In this section, we describe how GP emulators
can be used to compute EVPPIs within the context of decision-theoretic
sensitivity analysis.

A comprehensive overview of the mathematical framework for
estimating the value of information adapted to life-cycle analysis of
structural systems is provided in [42,43]. It was shown the computa-
tion of the expected value of information relating to decisions on
maintenance of the civil infrastructure systems requires a large number
of life-cycle analyses, and the computational cost can be very high when
decisions concern the systems that are modelled with complex compu-
tational models [44]. In order to tackle this computational burden, it
was suggested to use the Kriging meta-models.

In this paper, we provide a holistic approach for guiding making
optimised decisions in the presence of uncertainty using value of
information analysis. We show how global SA can be conducted within
the framework of preventive maintenance decision making, based on
the concept of the expected value of perfect information. It should be
noted that the variance based SA method is considered as a special case
of this approach. The computational challenges are tackled using
computationally efficient meta-models known as Gaussian process
emulators which enable us to compute the value of information indices
(including EVPI and EVPPI) of complex scenarios. In this section, we
describe how GP emulators can be used to compute EVPPIs within the
context of decision-theoretic SA.

4.2. Expected value of perfect information

To briefly recap, the objective function of interest to us is the
expected cost function (e.g., the cost rate function given in Eq. (4) for
TBM or the mean cost rate given in (6) for CBM). These cost functions
take reliability and maintenance parameters as uncertain inputs
(denoted by θ) and a decision parameter, T (which could be critical
age or periodic inspection interval). A strategy parameter (which is
fixed) needs to be selected in the presence of unknown reliability and
maintenance parameters. These unknown parameters can be modelled
by a joint density function, θπ ( ). In the maintenance optimisation
setting, the decision maker can choose the strategy parameter T (from a
range or set of positive numbers) where each value of T corresponds to
a maintenance decision. The decision T is selected so that the following
utility function is maximised

θ θU T T( , ) = − ( ; ) (7)

where θT( ; ) is a generic cost function per unit of time given the
unknown parameters θ.

Suppose that we need to make a decision now, on the basis of the
information in θπ ( ) only. The optimal maintenance decision (known as
baseline decision), given no additional information, has expected utility

θU E U T= arg max [ ( , )]θ
T

0
>0 (8)

where

∫θ θ θ θE U T T π[ ( , )] = − ( ; ) ( )dθ
θ (9)

Now suppose that we wish to learn the precise value of a parameter θi
in θ before making a decision (e.g., through exhaustive testing; new
evidence elicited from the domain expert). Given θi, we are still
uncertain about the remaining input parameters,
θ θ θ θ θ= ( ,…, , ,…, )i i i n1 −1 +1 , and so we would choose the maintenance
strategy to maximise

∫θ θ θ θE U T T π θ[ ( , )] = − ( ; ) ( )dθ
θ

θ i i| i
i (10)

The expected utility of learning θi is then given by

⎡
⎣⎢

⎤
⎦⎥θU E E U T= arg max { ( , )}θθ θ

T
θ

>0
i i i (11)

Now, learning about parameter θi before making a maintenance
decision will benefit the decision-maker by
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E U UEVPI = [ ] − .θ θ θ 0i i i (12)

Therefore, the quantity EVPIθi, known as the partial Expected Value of
Perfect Information (partial EVPI or EVPPI), is a measure of the
importance of parameter θi in terms of the cost savings that further
learning (data collection) will achieve.

EVPIs allow for SA to be performed in a decision-theoretic context.
However, the computation of partial EVPIs as in (12) requires the
evaluation of expectations of utilities over many dimensions. Whereas
the one-dimensional integral E U[ ]θ θi i can be evaluated efficiently using
Simpson's rule, averaging over the values of multiple parameters is
computationally intensive. One way to approximate these expectations
is to use a Monte Carlo numerical method. However, the Monte Carlo
based integration methods require a large number of simulations which
make the computation of the EVPPIs impractical. Zitrou et al. [7]
propose an alternative method for resolving this problem by utilizing a
Gaussian Process emulator based SA to the objective function of
interest. This method enables computation of the multi-dimensional
expectations at a limited number of model evaluations with relative
computational ease. We develop this method further for the purposes
mentioned above.

4.3. Gaussian process emulators

An emulator is an approximation of a computationally demanding
model, referred to as the code. An emulator is typically used in place of
the code, to speed up calculations. Let (·) be a code that takes as input
a vector of parameters θ ∈ ⊂ q, for some q ∈ +, and has output

θy = ( ), where y ∈ . As we will see later on, this is not a restrictive
assumption, and we will let y ∈ s, for some s ∈ +. For the time
being, let (·) be a deterministic code, that is for fixed inputs, the code
produces the same output each time it ‘runs’.

An emulator is constructed on the basis of a sample of code runs,
called the training set. In a Gaussian Process emulation context, we
regard (·) as an unknown function, and use a q − dimensional
Gaussian Process (GP) to represent prior knowledge on (·), i.e.

N m v(·) ∼ ( (·), (·,·))q (13)

We subsequently update our knowledge about (·) in the light of the
training set, to arrive at a posterior distribution of the same form.

Expression (13) implies that for every θ θ{ ,…, }n1 output
θ θ{ ( ), … ( )}n1 has a prior multivariate normal distribution with mean

function m (·) and covariance function v (·,·). There are many alternative
models for the mean and covariate functions m (·). Here, we use the
formulation in line with [15], and assume

θ θ βm h( ) = ( )⊤ (14)

for the mean function, and

θ θ θ θv σ c( , ′) = ( , ′).2 (15)

for the covariance function. In (14), h (·) is a vector of q known
regression functions of θ and β is a vector of coefficients. In (15), c (·,·)
is a monotone correlation function on + with θ θc ( , ) = 1 that
decreases as θ θ| − ′| increases. Furthermore, the function c (·,·) must
ensure that the covariance matrix of any set of outputs is positive semi-
definite. Throughout this paper, we use the following correlation
function which satisfies the aforementioned conditions and is widely
used in the Bayesian Analysis of Computer Code Outputs (BACCO)
emulator [8,16] for its computational convenience:

θ θ θ θ R θ θc ( , ′) = exp{−( − ′) ( − ′)}⊤ (16)

where R is a diagonal matrix of positive smoothness parameters (also
known as length scales). R determines how close two inputs θ and θ′
need to be such that the correlation between θ( ) and θ( ′) takes a
particular value. For mathematical tractability, the conjugate prior form
for β and σ2, the normal inverse gamma distribution, is assumed [17]:

β β βp σ σ V a σz z( , ) ∝ ( ) exp{−{( − ) ( − ) + }/(2 )}κ q T2 2 − 1
2 ( + +2) −1 2

where the hyperparameters V az, , and κ (the number of regressors in
the mean function) are known.

The cost function of interest (·) is evaluated at N design points
θ θ,…, N1 to generate the outputs θ θy = ( ( ), … ( ))T

N1 . The following set
θ θ i N= {( , ( )), = 1,…, }i i is then considered as the data required to

train the standard GP. These design points are chosen based on a
suitable space filling design, such as Max-Min Latin Hypercube scheme
which is designed to ensure the multi-dimensional parameters pace is
fully covered without having to use a very large sample size which is
required in the Monte Carlo based methods. As a result, we only need
to evaluate θ( ) at limited input points. Since θ is unknown, the beliefs
about θ is represented by the probability distribution θπ ( ). Therefore,
the choice of the design points will also depend on π (.) (the choice of
design points is discussed in [19]). The standardised posterior dis-
tribution of (·) given θ θ i N= {( , ( )), = 1,…, }i i is

θ θ
θ θ

Rm
σ c

t( ) − *( )
*( , ′)

, ∼ q N+
(17)

where tq n+ is a student t random variable with n q+ degrees of
freedom,

θ θ β θ β θ θ θ θ θ θ

θ θ θ θ θ
θ θ θ θ θ θ

m A H c c A

A H H A H h A H

c c H

h t y t t

h t t t
h h

*( ) = ( ) + ( ) ( − ) *( , ′) = ( , ′) − ( ) ( ′)

+ ( ( ) − ( ) )( ) ( ( ′) − ( ′) ) ( )

= ( ( , ),…, ( , )) = ( ( ),…, ( ))

T T T

T T T T T T T

n
T

n

−1 −1

−1 −1 −1 −1

1 1
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⎛

⎝
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⎞
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⋮ ⋱
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1 2 1
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The outputs corresponding to any set of inputs will now have a
multivariate t-student distribution as presented in (17). The resulting t-
distribution is obtained as a marginal distribution for θ( ) after
integrating out the hyperparameters β and σ2. It is not tractable to
remove analytically the smoothness parameters R, and we deal with
uncertainty in R by sampling from the posterior distribution of R y|
using MCMC methods (see [20]). These estimates can be obtained by
using the posterior mode approach, and cross validation.

The GP emulators developed above are useful tools for uncertainty
and SA [8,17] and it has been shown that they perform better than
standard Monte-Carlo methods in terms of both accuracy of model
output and computational effort. This is mainly due to their analytical
efficiency which can be used to evaluate θE [ ( )] and θVar [ ( )]
relatively fast. Thus, it is trivial to show that if θ GP( ) ∼ (·,·), then

∫θ θ θ θE π[ ( )] = ( ) ( )d
θ (18)

follows a GP distribution.
In order to perform the decision-theoretic sensitivity approach, we

need to compute the partial EVPIs given in (12). By using an emulator,
the expected value of the utility function θU T( , ) for each decision
variable T, including the first and second moments can be rapidly
computed with relatively low much computational effort. In recent
years, GP emulators have been extensively used for a wide range of
applications including sensitivity/uncertainty analysis [25,16,17], cali-
bration [20], forecasting [22,49,50], optimisation [50,7], etc. A detailed
comparison of the use of Monte-Carlo and emulator methods to deal
with uncertainty and sensitivity analyses and relevant examples is
provided in [16] showing that both methods can provide an estimate
for the model/quantity of interest, with an error term to represent
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model uncertainty. Model uncertainty can be reduced by executing
multiple model runs which, in the case of Monte-Carlo methods can
run in to the tens or hundreds of thousands. In the case of the GP
emulator, the set of model runs is used to construct the emulator and
achieving acceptable accuracy would require only a handful of runs for
a model with just one or two inputs, or up to a few hundred for a
complex function of many inputs. Therefore, achieving the desired
precision can be a cumbersome business for a complex model even with
a handful of input variables when using the Monte-Carlo methods. [16]
draws a similar conclusion in computing the sensitivity measures for an
application in the field of health economics. He shows that achieving
negligible bias may require a very large number of simulations. This
can lead to evaluate θ( ) numerous times (of the order of 10000) at
different values of θ to achieve a sufficiently small bias using the Monte
Carlo sampling method for a simple case study.

In another study presented in [25], an emulator-based sensitivity
analysis was used to examine the changes in system availability and
reliability with respect to changes in time-to-failure and time-to-repair
distribution parameters. It was shown that only tens to hundreds of
model runs are required to construct an emulator (depending on the
complexity of the system under study), and subsequently compute the
variance-based sensitivity measures while the computation of the same
sensitivity indexes would require millions of model runs using the
Monte-Carlo method.

In this study, we are interested in identifying the robust optimised
PM strategy T* which minimizes the cost rate function given in (7).
This optimisation problem can be addressed using two sub approaches.
In the first approach, the PM strategy, T belongs to a finite set

T T T= { , ,…, }m m1 2 , and the main objective is to identify the optimal
decision among this finite set of decision options. Oakley [8] addressed
this issue for a limited number of the available decisions in a health
economics context. Zitrou et al. [21,7] use the same method to find the
robust optimised maintenance action. In this framework, a separate GP
model is first fitted to approximate the mapping between θ and θ T( , )i
for each Ti. The computed partial EVPI for each Ti is then used to select
the optimised PM strategy over a subset of the parameter space.

In the case that the decision space is not finite or consists of many
decision options, the methodology addressed in these works is not
useful and practical. In addition, regardless of the model complexity
and the model runs required to compute the EVPPI for each decision
option, the conventional Monte Carlo based methods will also not be
useful when the decision space is not finite [21,7]. Consequently, we
adopt the multi-output Gaussian process models proposed in [22].
They propose various methods to deal with the modelling of multi-
variate computer code model outputs including Multi-Output emulator
(MO), Many Single Outputs (MS) and Time Input (TI) emulators. The
MO emulator is a multivariate version of the single output emulator,
where the dimension of the output space is υ. This process allows for
the representation of any correlations existing among the multiple
outputs. The MS emulator procedure treats the multi-outputs of the
function of interest, Y Y{ ,…, }s1 as independent random variables, and
emulates each output Yj separately. This means that s separate GP
emulators are built, each describing the utility for each decision
T ∈ m. This is the model that is used in [8,21]. Finally, the TI
emulator is a single-output emulator that considers decision variable
T as an additional input parameter. In this paper, we show that this
model can be used to find the robust optimised PM when m does not
have to be a finite space, and cost rate function θ T( , ) can be
determined for any value of T over any interval, as T T( , )l u . In other
words, the optimised maintenance strategy T identified using the TI
emulator can be a continuous variable, and the expectations of any
order of θ T( , ) are continuous functions of T, and the utilities of the
optimal strategies are calculated without restricting the decision-maker
to choose amongst a pre-determined, finite number of options. This
feature of the TI emulator outweighs the general correlation structure
provided by the MO emulator (see [22]). In the next section, we briefly

introduce the TI emulator and demonstrate how it can be used to
identify the optimised PM strategy.

4.4. The TI emulator

Suppose that the optimal decision T in a maintenance optimisation
problem (critical age or periodic interval) belongs to an infinite set
T T T= ( , )l u . We consider T as an additional code input and we are
interested in building a single-output emulator to approximate the
utility function, θ θU T T( , ) = − ( ; ). As mentioned above and shown in
the related literature, the computation of θE U T[ ( , )]θ and

θE U T[ ( , )]θ θ| i for any TT ∈ , required to calculate EVPI and the partial
EVPI, using the TI emulator would be very fast and efficient.

The main challenge is to estimate the hyper-parameters of the TI
emulator, based on the generated training dataset consisting of code
outputs x xy yy = ( = ( ),…, = ( ))NN11 , where x x x( , ,…, )N1 2

⊤ are design
points defined as follows:

θx T l N s n= ( , ), = 1, 2,…, = ×jl i

where Ti is a maintenance decision i s( = 1,…, ) and θj are (reliability,
maintainability) parameter values (j=1,…,n). The choice of design
points affects how well the emulator is estimated. Here, we choose
equally spaced points T T{ ,…, }s1 so that interval T is properly covered.
Points θ θ θ( , ,…, )n1 2

⊤ are generated using Latin hypercube sampling
(see [23]), which ensures that the multidimensional parameter space is
sufficiently covered.

As mentioned earlier, building a TI emulator requires the inversion
of an N N× matrix. Given the size of the training set, this can be
computationally challenging. Essentially, there are two ways to build
the TI emulator: (1) fit a Gaussian process directly to the whole training
set y obtained as described above; (2) separate y and fit two Gaussian
Processes: one on the set of design points θ θ θ( , ,…, )n1 2 and one on the
time input data points T T{ ,…, }s1 . Multiple authors [24,22,7] have
concluded that the first approach based on fitting a single GP to the
whole training set y takes longer, but that it produces more accurate
results. In addition, they have shown that the relative mean squared
error of the posterior predictive mean of the first model (based on
fitting a single Gaussian process) is much smaller than when fitting two
Gaussian process. We therefore follow their suggestion and fit a single
GP to the full training set.

The baseline maintenance strategy is the choice of T that maximises
utility, and the baseline expected utility in (8) is now calculated as

T
θU E E T= max { [ ( , )]}θ

T
0

∈ (19)

and the utility of the optimal strategy in (10), after learning the value of
Θi, becomes

T
θU E E T= max { [ ( , )]}.θθ

T
T θ

∈
, |i i (20)

Bayesian quadrature [15] allows us to compute the expectations
given in (8) and (10) relatively fast based on the fitted GP to y. The
details of the approximation of this type of integral (expectation) in
terms of the fitted GP can be found in [25]. The computation steps of
computing EVPI and partial EVPI are given in Algorithm 1. In Eq. (21),

i and Wi are given by

∫ ∫θ θ θ θ θ θT π d T π dh W t= ( , ) ( ) , = ( , ) ( )i i
T

i
T

i
T

The computation of these integrals is trivial. For example, if inputs are
normally distributed, and the correlation and mean functions are
respectively given in (14) and (16), these integrals can be evaluated
analytically. If the inputs are not normally or uniformly distributed,
then numerical or Monte Carlo integration can be used without
significant computational effort [8].

As we are interested in conducting a global sensitivity analysis (how
the output varies as the inputs vary over some range), then the
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following prior distribution defined over the input parameters would be
plausible:

∏θπ U a b( ) = ( , )
i

q

i i
=1

where the hyper-parameters ai and bi are determined based on
information elicited from experts or published studies (e.g., see [11]).

Algorithm 1. The computation of EVPI and Partial EVPI of the given
cost function.

1: Require: The cost function of interest: θT( , ); the prior
distribution over θ; and the set of the possible strategy options:
T T{ ,…, }s1 .

2: Using Max-min Latin hypercube, generate the design points of
size n over , as θ θ θ( , ,…, )n1 2 .

3: By including the set of the strategy options, expand the design
points to

θx T l N s n i s j n{ = ( , ), = 1, 2,…, = × , = 1,…, , = 1,…, }jl i

4: Evaluate, N n s= × values of y x l N{ = ( ), = 1,…, }l l

5: Fit a TI Emulator to x y l N{( , ), = 1,…, }l l

6: Estimate: A−1; β β β β β= ( , ,…, , )q T0 1 ; and σ2;

7: For each strategy, Ti, compute

θ β βE E T A HW y[ [ ( , )]] = + ( − )θT i i i i( ,.)
−1

i (21)

8: θU E E T= max [ [ ( , )]]θi T i0 ( ,.)i

9: For each strategy, Ti, compute

θ β βE E T A HW y[ [ ( , )]] = + ( − )θT T θ i ij ij i( ,.) ,
−1

i i j (22)

10: θU E E T= max [ [ ( , )]]θθ i T T θ i( ,.) ,j i i j

11: EVPI E U U= [ ] −θ θ θ 0j j j

By choosing this prior distribution, i and Wi
T can be analytically

evaluated as follows:

∫

∫

∑θ θ θ

θ θ θ

T π d β β E θ β T

T π d

h W

t

= ( , ) ( ) = + ( ) + ,

= ( , ) ( ) ,

i i
T

l

p

l π l T i i
T

i
T

0
=1

where the jth element of Wi
T , associated with the jth design point, is

given by

∫ θ θ θ θ θ θT T T T π dRexp{−(( , ) − ( , )) (( , ) − ( , ))} ( ) ,i j i
T

i j i

which can also be analytically evaluated,

∫

∫

∑θ θ

θ θ

T dπ θ β β θ β E θ β T

T dπ θ

h W

t

= ( , ) ( | ) = + + ( ) + ,

= ( , ) ( ),

ij i
T

j j j
l l j

p

l π l T i ij
T

i
T

j

0
=1, ≠

where the lth element of Wij
T , associated with the lth design point, is

given by

∫ θ θ θ θ θT T T T dπ θRexp{−(( , ) − ( , )) (( , ) − ( , ))} ( | ),i l i
T

i l i j

which can be analytically evaluated, diag r r rR = { ,…, , }̂ ̂ ̂q T1 and
θ θT Th( , ) = (1, , )T .
We use R and GEM-SA packages to fit the GP to the training points

and then approximate the expected utilities and their corresponding
uncertainty bounds. To calculate the aforementioned expected utilities,
the calculations are carried out based on the discretisation of the
interval (maintenance decision) and the support of the joint prior

distribution of the parameters θπ ( ). It is apparent that the computation
of these expectation can become quite expensive by choosing a finer
discretisation. The following section presents two illustrative
examples. The focus here is on the way emulators can be used to
perform SA based on EVPI, providing a resource efficient method for
maintenance strategy identification and identifying targets for institu-
tional learning (uncertainty reduction). In the first example we
build an emulator for a TBM optimisation problem and in the second
example find a robust CBM strategy for a civil structure using
emulator-based SA.

5. Numerical examples

5.1. Time-based maintenance decisions model

Under the TBM policy (also known as age-based replacement), the
system or component under study is in one out of two operating
conditions; working or failed. System failure is identified immediately
and corrective maintenance (CM) actions are undertaken to restore the
system to its original condition. Regardless of the system condition, the
system is renewed when it reaches a predetermined time (or age) T*. In
the TBM optimisation problem, the main challenge is to identify the
optimal time to maintenance to minimise overall maintenance costs.
This optimisation problem is usually defined over a finite horizon t[0, ],
and we seek to minimise the objective cost function t( ) over this time
interval.

It can be illustrated [26,28] that the cost per unit of time, as defined
in (3) for a deteriorating component under the TBM strategy is
equivalent to

∫
θ θ

θ θ
t C t

L t
C ρ γt ξ C ρ γt ξ

ρ γt ξ dt τ
( ; ) = ( | )

( | )
= [1 − ( ; , )] + ( ; , )

( ; , ) + ( )
G

F P
T

0 2 (23)

where the cumulative distribution function of system failure (due to
deterioration) is represented by ρ γt ξ( ; , ) as defined in Section 2, the
unexpected replacement of the component cost is denoted by CF, each
preventive maintenance action costs CP ( C C0 < ≤P F), and θτ ( )2 is the
expected duration of the maintenance action, and is defined by

∫θ θτ tg t dt( ) = ( ; )T2
0

∞
2 (24)

where θg t( ; )T 2 is the time to repair (or replacement) distribution,
and θ2 is the set of repair distribution parameters. The repair
distribution, θg t( ; )T 2 is assumed to follow a Gamma distribution with
α and β as shape and scale parameters respectively. A more general
age-based replacement (and inspection) policy can be found in [33].

For numerical illustration, we follow [11] and set C = 50F and
C = 10P . Fig. 1 illustrates how the expected cost rates change over the
decision variable T for specific values of parameters, θ γ ξ α β= ( , , , ) and
the given costs. It can be clearly concluded that the optimal replace-
ment time would change by varying the parameter values. As a result,
the sensitivity of the optimal maintenance strategy should be examined
with respect to the changes of the input parameters to achieve robust
optimised TBM decisions.

The decision-maker proposes the following prior distribution on
θ

θπ π γ π ξ π α π β( ) = ( ) ( ) ( ) ( )1 2 3 4 (25)

where each of these parameters individually is uniformly distrib-
uted as follows

γ U ξ U α U β U∼ (0.18, 0.22), ∼ (9, 11), ∼ (1, 3), ∼ (2, 3)

where U a b( , )1 1 denote a uniform density function defined over
a b( , )1 1 .

It can be shown that the cost function in (23) has a unique optimal
solution (according to Theorem 1 given in [26]). When the uncertainty
in input parameters θ are included, the optimal maintenance decision
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will lie in the interval, I = [25, 35] (see [7] for the technical details of
the existence of such an interval for the considered cost rate function).

In order to lower the computational load of computing the value of
information measures (EVPPIs) as the SA index, a TI emulator is fitted
to the cost rate function θt( ; )R . The total training data-points to build
this emulator is 1260 and selected as follows. We first generate 60
design points from θπ ( ), using the Latin hypercube design (see [19]).
We then calculate the cost rate function (as a computer code) at each
design point for 21 values of T (i.e., T = 25, 25.5, 26,…,35).

Using the fitted Gaussian process, the baseline optimal decision is
derived at T=28.2 where the corresponding maximum utility is
U = 0.3690 . So, if there is no additional information available on
individual input parameters, apart from the prior information, the
optimal time to maintenance is at 28.2 time units. The maximum
expected net benefit (or cost saving) that a decision maker can gain by
selecting the optimal maintenance time at T=28.2, given no informa-
tion, will be U = 0.3690 monetary unit. Further benefit can be achieved
if additional information about the values of the parameters can be
provided before making any decision. For example, suppose that ξ is
known before making a decision. Table 1 provides the detailed
information about the optimal decisions for the different values of ξ,
γ α, and β. For instance, when the scale parameter, ξ, of the lifetime
distribution of a component under study takes values in (9.05, 9.25),
then the cost rate is minimum for T=32.5, but if ξ ∈ (10.25, 10.75), then
the optimal maintenance decision is T=26.75.

The values of the EVPPIs along with the uncertainty intervals for
this case are given in Table 2. By learning the values of input

parameters, the decision-maker could select the maintenance time that
maximises the expected utility for a particular value of the parameter of
interest. For instance, if the decision maker learns about the value of
“α” with the details given in Table 1, before making any decision, the
expected increase in utility of learning α will be 0.3361 (in monetary
unit) which is gained on the top of the situation when a decision was
made based on no information (or the prior information only). The
benefits that can be gained by learning α and β (the shape and scale
parameters of the repair distribution) are much higher than γ and ξ. In
addition, knowing α and β prior to the decision shows the most
substantial differentiation between optimal strategies. Thus, these
parameters are ‘important’ in the sense that reducing uncertainty
about their values is likely to trigger selection of a different strategy.

Fig. 2 summaries the SA of the cost rate function with respect to the
changes of the model input parameters at T=28.2. In this figure, the
variance contribution of each parameter to the total variance of the cost
rate at T=28.2 is shown. The variance contribution of ξ, γ and α are
46%, 26% and 24% respectively based on only 60 data-points at
T=28.2, while β covers only 4% of total variance. In other words, this
analysis exposes the behaviour of the expected cost at a specific time for
different values of the parameters. Fig. 3 illustrates how expected cost

θE t[− ( ; )]θ θ R| i when T=28.2 changes with different values of the
parameters (i.e., η δ α β( , , , )), along a 95% uncertainty bound (the
thickness of the band).

5.2. The CBM policy under the GP deterioration model

The inspection and replacement scenarios under the Gamma
process deterioration model are more convoluted and complicated
due to the temporal uncertainty (see [11]). The CBM policy under the
GP deterioration model is illustrated in Fig. 4 and explained as follows:

Fig. 1. Total long-run average costs per unit time function for different values of
θ γ ξ α β= ( , , , ) for Gamma-process.

Table 1
Optimal TBM decisions when a parameter of interest is known prior the maintenance
decision.

Range T Range T

Parameter γ
(9,9.05) 35 (9.75,10.25) 29.5
(9.05,9.25) 32.5 (10.25,10.75) 26.75
(9.25,9.75) 29 (10.75,11) 25
Parameter ξ
(0.18,0.1890) 28.4 (0.1890,0.22) 28.2
Parameter α
(1,1.35) 29.25 (2.05,2.45) 29.25
(1.35,1.55) 28.25 (2.85.2.95) 28.25
(1.55,1.95) 27.25 (2.65,2.85) 27.25
(1.95,2.05) 28 (2.45,2.55) 28
(2.95,3) 29.5
Parameter β
(2,2.07) 28.7 (2.69,2.81) 28.2
(2.07,2.21) 28.2 (2.81, 2.93) 28.5
(2.21,2.69) 27.9 (2.93,3) 29

Table 2
Estimated EVPPIs based on the fitted GP emulator for the parameters of the GP
deterioration model for the TBM policy.

θi EVPPIi C I.

γ 0.0049 (0.0047,0.0051)
ξ 0.0075 (0.0077,0.0079)
α 0.3361 (0.3359,0.3363)
β 0.3359 (0.3357,0.3361)

Fig. 2. The variance contribution of each input parameters to the mean cost rate of the
TBM policy at T=28.2 for the GP deterioration model.
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1. The system at the ith inspection is at sound operating state (if
X it υt( ) <I I), and no action is required to be taken at this stage.

2. Immediate PM should be done (when υρ X it ρ< ( ) <I ) to prevent any
unexpected failure

3. A failure is identified at the ith inspection (if X it ρ( ) >I ), and
subsequent CM is required to restore the system.

where υ0 < < 1 is called PM ratio, and υρ is the threshold for the PM
which is a fraction of the failure threshold.

According to renewal theory [29,26], the mean cost rate for the
CBM policy under the GP deterioration model is given by

θ θ
θ

t υ E t υ
E t υ τ

( , ; ) = [ ( , ; )]
[ ( , ; )] +G I

UG I

DG I r (26)

where the expected cost associated with a renewal cycle is given by

g∫

∑

∑

θE t υ C C C υρ nγt ξ

C C C ρ γt ξ z nγt ξ

ρ z γt ξ dz

[ ( , ; )] = + ( − )[1 + ( ; ; )]

− ( − − )[ ( ; ; ) + ( ; ; )

( − ; ; ) ]

UG I P F P
n

I

F I P I
n

υρ
I

I

=1

∞

=1

∞

0

and the mean cycle length is as follows

g∫ ∫ ∫∑θE t υ ρ γt ξ dt z nγt ξ

ρ z γt ξ dtdz

[ ( , ; )] = ( ; ; ) + ( ; ; )

( − ; ; ) ]

DG I
t

n

υρ t
I

0 =1

∞

0 0

I I

where g z nγt ξ( ; ; )I denote to gamma density function with nγtI as
shape and ξ as scale parameter, and θ γ ξ α β= ( , , , ).

The objective in the CBM policy is to find the optimal inspection
time and PM ratio so that the corresponding mean cost rate becomes
minimum, that is,

θt υ t υ( *, *) = arg min{ ( , ; )}I
t υ

G I
( , )I

As discussed in [29,11], one can conclude that the optimal
inspection time (tI) is unique and will lie in an interval derived from
the system information, failure and the characteristics of the inspection
and replacement tasks. These decision variables would clearly change
by varying the parameter value of θ. As a result, the sensitivity of the
determined inspection time and PM ratio parameters should be
examined with respect to the changes of the input parameters to
achieve robust optimised CBM decisions.

The PM ratio, υ is considered as an extra parameter and included
into the uncertain parameters input, that is, ψ γ ξ α β υ= ( , , , , ), where
γ ξ, are respectively the shape and scale parameters of the GP
deterioration model given in (2), α β, are respectively the shape and
scale parameters of the maintenance distribution. The corresponding
joint prior distribution is given by

ψπ π γ π ξ π α π β π υ( ) = ( ) ( ) ( ) ( ) ( )1 2 3 4 5 (27)

where

γ U ξ U α U β U υ U∼ (0.2, 0.4), ∼ (9, 12), ∼ (1, 3), ∼ (2, 3), ∼ (0.2, 0.8)

We first generate 80 design points generated from the joint
distribution of ψ (using the Latin hypercube design) and then evaluate
the mean cost rate, ψt υ( , ; )G I . An emulator based SA is implemented
using this data, ψ ψt i= {( , ( ; )), = 1,…,80}i

G I
i( ) 0 at a fixed inspec-

tion time, t = 24.5I
0 . From the variance contribution fractions of these

parameters shown in Fig. 5, it is evident that the PM ratio (covers 83%
of the total variance) has a substantial role on determining the optimal

Fig. 3. Expected utilities and 95% uncertainty bounds for T=28.2 when the parameters are completely known before the maintenance decision.

Fig. 4. CBM decision tree for the GP deterioration model.
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inspection interval and minimising the maintenance costs.
Due to the importance of the PM ratio in determining the optimal

inspection interval, the robustness of tI with respect to the changes in θ
at some fixed values of υ is examined. We first let υ = 0.55. To train the
TI emulator, we generate 60 design points from the prior joint
distribution of θ over the range of the parameters given above. For
each of these design points we then calculate the mean cost rate,

θt υ( , ; )G I
(1) for 35 values of tI, in particular for t = 18, 18.5,…,35I . The

final training set is comprised of 2100 points.
The baseline optimal inspection time is derived at t = 33.64I where

the corresponding maximum utility is U = 0.6690 . The maximum
expected net benefit (U0) shows the decision maker's gain (in monetary
unit) corresponds to the optimal inspection time at t = 33.64I which
derived without any knowledge of the input parameters' values. Table 3
shows the optimal inspection interval decisions when the values of
γ ξ α, , and β are learned prior to making any decision about the
inspection time. For example, if the decision maker learns that
γ ∈ (0.2, 0.226), the baseline decision for the inspection time will not
be changed. But, if it was learned that γ ∈ (0.226, 0.234), the optimal
inspection time should be t = 31.44I .

The values of the estimated EVPPIs along with the uncertainty
intervals are given in Table 4. These values illustrate the expected
increase in utility of learning each input parameter before making any
decision regarding the optimal inspection time. For example, if the

decision maker learns about the value of γ in advance, the expected net
benefit will increase to 0.145 (in monetary unit) more than the
maximum expected net benefit, U0. A similar interpretation can be
made about the benefits of learning ξ, α and β based on their estimated
EVPPIs given in Table 4. From these results, it can be concluded that γ
(the shape parameters of the lifetime distribution) is the most
important factor in the sense that knowing its value prior to making
any decision would result in substantial cost savings and reduced
uncertainty about the optimal inspection strategy. A similar conclusion
can be derived from Fig. 6 which summaries the variance fractions of
each parameter to the total variance of the cost rate at t = 33.64I . It also
confirms that γ which covers about 92% of total variance of the mean
cost rate is the most important factor affecting the maintenance cost.

As demonstrated above, the optimal inspection decision is very
sensitive to υ's changes (see Fig. 5). As a result, by changing υ value
from 0.55 to 0.75, the derived results would be changed dramatically
and this extreme behaviour at these two points is the main reason
behind selecting υ = 0.55 and υ = 0.75 for the SA of the cost function
(and the optimal inspection strategy) with respect to the changes in
parameter values. We list the possible changes of the SA when υ = 0.75
as follows

• The optimal inspection interval, t ∈ [25, 39]I .

• The baseline optimal inspection interval is t = 29.76I (corresponding
to the maximum benefit of U = 0.951)0 .

• Based on the computed EVPPIs of the parameters, β and γ are in
order the most important factors in reducing the uncertainty about
the optimal inspection interval (see Table 5).

• At the baseline decision t( = 29.76)I , ξ, γ and α are the most
important factors affecting the maintenance costs (see
Fig. 7).Table 6 shows the optimal inspection interval decisions when

υ = 0.75 and the values of γ ξ α, , and β are learned prior to making any
decision about the inspection time.

Fig. 5. The variance contribution of each input parameters to the mean cost rate of the
CBM policy at t = 26.5I for the GP deterioration model.

Table 3
The optimal inspection interval, tI when a parameter is known prior the maintenance
decision for the CBM policy and under the GP deterioration model for υ = 0.55.

Range tI Range tI

Parameter γ
(0.2,0.226) 33.64 (0.278,0.29) 25.65
(0.226,0.234) 31.44 (0.290,0.294) 25.14
(0.274,0.278) 26.16 (0.294,0.318) 24.50
(0.234,0.254) 29.56 (0.318,0.338) 23.44
(0.254,0.27) 27.6 (0.338,0.398) 22.06
(0.270,0.274) 26.50 (0.398,0.4) 19.70
Parameter ξ
(9,9.03) 28.20 (9.51,9.57) 24.80
(9.03,9.09) 27.86 (9.57,9.63) 24.46
(9.09,9.15) 27.52 (9.63,9.69) 24.12
(9.15, 9.33) 26.50 (9.69,11.31) 23.44
(9.33,9.51) 25.40 (11.31,12) 20.44
Parameter α
(1, 1.10) ∪ (1.30, 1.42) 24.46 (1.42, 1.58) ∪ (1.78, 3) 23.44
(1.10,1.30) 25.14 (1.58,1.78) 21.54
Parameter β
(2,2.07) 21.54 (2.27,2.41) 25.24
(2.07, 2.21) ∪ (2.51, 2.69) ∪ (2.85, 2.95) 23.5 (2.69,2.85) 22.76
(2.21, 2.27) ∪ (2.45, 2.51) ∪ (2.95, 3) 24.60

Table 4
The estimated EVPPIs for the parameters of the GP deterioration model for the CBM
policy when υ = 0.55.

θi EVPPIi C I.

γ 0.145 (0.142,0.148)
ξ 0.14 (0.137,0.143)
α 0.1375 (0.134,0.141)
β 0.1378 (0.1344,0.1412)

Fig. 6. The variance contribution of each input parameters to the mean cost rate of the
CBM policy at t = 33.64I for the GP deterioration model when υ = 0.55.
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6. Discussion and conclusions

In this paper we have investigated the robustness of preventive
maintenance policies (TBM and CBM) as they relate to a deteriorating
infrastructure system with respect to the changes of the lifetime and
repair distributions’ parameters using a decision-informed SA ap-

proach. The concept and application of Expected Value of Perfect
Information (EVPI) have been furthered to help the decision-maker in
choosing an optimised maintenance decision (critical age or inspection
interval) out of the infinite set of decisions. Using this sensitivity
method, analysts can examine the effect of parameter uncertainty on
cost calculations, resulting in more robust maintenance decisions with
respect to changes in parameter values. When planning inspections or
predicting the remaining useful life of an asset, engineers must assess
the benefits of the additional information that can be obtained and
weigh them against the cost of these measures. The methodology
developed in this paper provides an efficient framework to quantify
these benefits, and possibly revise decisions based on the aggregation
of the information including the system deterioration process, main-
tenance aspects, etc. The computation of the EVPPI requires the
evaluation of multi-dimensional integrals which are often computa-
tionally exhausting. We have demonstrated how the Gaussian process
emulator can be used to reduce the computational burden associated
with the EVPI-based SA. In particular, we have used a Time-Input GP
emulator to obtain expected utilities as continuous functions of the
decision parameter (critical age or inspection interval). One of the main
practical benefits of using such an emulator is that it does not restrict
the decision-maker/engineer to choosing a maintenance decision from
a limited number of decision options. This flexibility enables the
decision maker to take maintenance decisions which are as precise as
possible in the presence of parameter uncertainty which in turn would
have a considerable effect on the overall cost of the maintenance
strategy.

We have applied this sensitivity approach in the life-cycle manage-
ment of infrastructure systems under continuous deterioration through
two illustrative examples comprise both time-based (or age replace-
ment policy) and condition-based maintenance strategies. The sensi-
tivity results have identified the most ‘important’ parameters in terms
of the benefit to be achieved by ‘learning’. It is shown that the optimal
strategy may change if a parameter becomes known prior to a
maintenance decision, and this may have significant effect on the
resulting cost. For instance, under the time-based maintenance exam-
ple, the shape and scale parameters of the repair distribution were
found to be the main influencing factors affecting the cost calculations
and consequently the optimal maintenance decision. In contrast,
under CBM and when υ = 0.55, the shape and scale parameters of
the lifetime distribution play the primary role in determining
the cost-effective inspection strategy. Identifying important parameters
in this way can provide guidance on reliability testing, monitoring or
inspection. The EVPI-based SA presented here can be used for
other maintenance optimisation problems including problems with
imperfect maintenance [30], or delay-time maintenance [31], consid-
ered as one of the more effective preventive maintenance policies for
optimising inspection planning. An efficient condition-based mainte-
nance strategy which allows us to prevent system/component failure by
detecting the defects via an optimised inspection might be identified
using the SA proposed in this paper to determine a robust optimal
solution for delay-time maintenance problems and the expected related
cost when the cost function parameters are either unknown or partially
known.

Finally, the method articulated in this contribution might usefully
be extended to calculate the EVPI measures associated with decisions
at multiple points in time. In many contexts, maintenance decisions
can be made at multiple points in time, at which different amounts of
information from the monitoring system are available. A classic
example is the monitoring and inspection of a deteriorating structure.
In this situation, the EVPI measures should be computed so that the
maintenance decisions could be optimised sequentially. Gramacy and
Polson [32] proposed a sequential design and optimisation approach
for a complex system using particle learning of Gaussian process which
could be very useful in computing the corresponding EVPPIs. We
would encourage further developments in this field to enhance

Table 5
The estimated EVPPIs for the parameters of the GP deterioration model for the CBM
policy when υ = 0.75.

θi EVPPIi C I.

γ 0.0128 (0.0122,0.0133)
ξ 0.0095 (0.0089,0.0099)
α 0.0092 (0.0087,0.097)
β 0.0149 (0.0144,0.0154)

Fig. 7. The variance contribution of each input parameters to the mean cost rate of the
CBM policy at t = 29.76I for the GP deterioration model when υ = 0.75.

Table 6
The optimal inspection interval, tI when a parameter is known prior the maintenance
decision for the CBM policy and under the GP deterioration model for υ = 0.75.

Range tI Range tI

Parameter γ
(0.2,0.3615) 30.88 (0.3615,0.3855) 30.66
(0.3855,0.4) 30.32
Parameter ξ
(9,9.10) 36.76 (9.74,9.90) 35.64
(9.10,9.38) 36.48 (9.90,10.10) 35.36
(9.38,9.58) 36.20 (10.10,10.98) 35.08
(9.58,9.74) 35.92 (10.98,12) 35.36
Parameter α
(1,1.38) 30.18 (2.14,2.26) 29.48
(2.34,2.78) 30.32 (2.78,2.92) 30.88
(1.38,1.66) 39 (2.92,3) 31.44
(1.66,2.14) 28.64
Parameter β
(2,2.07) 29.22 (2.39,2.51) 31.44
(2.07,2.11) 30.20 (2.51,2.59) 30.32
(2.07,2.15) 30.54 (2.59,2.65) 29.48
(2.15,2.39) 31.72 (2.65,3) 28.36
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engineers' ability to make informed decisions about infrastructure
maintenance and rehabilitation.

In this work, we have been concerned with computing the value of
information indices and determining optimised CBM or TBM based on
available information and a given cost function. In [45], it was
discussed that whilst most existing autonomous condition monitoring
systems provide functions for data collection they lack decision support
functionality. It thus becomes crucial to understand the link between
the information we have to hand and our ability to make informed
decisions about asset management. The quality of information pro-
vided by the condition monitoring system is another important factor
which influences the effectiveness of maintenance decisions and thus
the performance of the asset [46]. For instance, the accuracy of
information regarding the rate of asset degradation is critical to
improving civil infrastructure life-cycle management. In order to better
evaluate the accuracy of information (and the quality of the corre-
sponding maintenance decisions) provided by condition monitoring,
the value of information methodology has been used to compare the
benefits offered by these techniques and the factors that affect the value
delivered by them.

Autonomous condition monitoring systems (e.g., sensors) provide
higher quality information in comparison to more traditional ap-
proaches such as visual inspection [40]. However, sensor location,
sensitivity, and parameter recording frequency across multiple
components and assets become important determinants of robust
decision making. The value of information approach proposed in this
paper can be used to guide more efficient information collection by
identifying high information value locations for sensors and sensor
arrays [47]. Furthermore, the approach might be extended to deter-
mine the timing of condition-based maintenance interventions using
data from multiple sensors or time sequenced measurements from a
single sensor.

It would be also interesting to extend the methodology proposed in
this paper to determine the condition-based maintenance when data
comes from multiple sensors or time sequenced measurements from a
single sensor are combined. In this situation a data fusion should be
first employed for improving condition monitoring, quality of informa-
tion and system health assessment and then integrated with the
condition-based maintenance system [48]. The EVPPI methodology
presented in this paper can play a key role in making a decision of
fusing data/features from multiple sensors which could result in
improving the information quality and decision accuracy.
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