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Abstract 

Due to increasingly customised manufacturing, unpredictable ambient working conditions in shop 

floors and stricter requirements on sustainability, it is challenging to achieve energy efficient 

optimisation for machining processes. This paper presents a novel Cyber Physical System (CPS) and 

Big Data enabled machining optimisation system to address the above challenge. The innovations and 

characteristics of the system include the following four aspects: (1) a novel process of “scheduling, 

monitoring/learning, rescheduling” is designed to enhance system adaptability during manufacturing 

lifecycles; (2) an innovative energy model to support energy efficient optimisation over 

manufacturing lifecycles is developed. The energy model, which is enabled by CPS, Big Data 

analytics and intelligent learning algorithms, considers dynamic and aging conditions of machine tool 

systems during manufacturing lifecycles; (3) an effective evolutional algorithm based on Fruit Fly 

Optimisation (FFO), is applied to generate an adaptive energy efficient schedule, and improve 

schedule when there are significantly varying working conditions and adjustments on the schedule are 

necessary (that is rescheduling); (4) the system has been successfully deployed into European 

machining companies to verify capabilities. According to the results, around 40% energy saving and 

30% productivity improvement have been achieved in the companies. A practical case study 

presented in this paper demonstrates the effectiveness and great potential of applicability of the 

system in practice. 
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1. Introduction 

Manufacturing such as Computer Numerical Control (CNC) machining is characterised by 

increasingly customised and low-volume orders as well as stricter energy saving and faster delivery 

requirements for products. That is, in a manufacturing shop floor, there could be various changes on 

order priorities, unexpected delays and ambient working conditions, requiring companies to rapidly 

adjust their manufacturing processes timely to fit the current conditions. Meanwhile, manufacturing 

processes are energy intensive due to the powering and heating of motors, compressors and machine 



tool systems, making the manufacturing sector one of the primary energy consumption sources. 

Accordingly, in recent years, energy efficiency related regulations and incentives have taken effect to 

drive the manufacturing industry undergoing a full-scale transformation towards sustainability (Stark 

et al., 2017). In manufacturing, scheduling is a key enabler to improve manufacturing sustainability 

and enhance shop floor performance (Li and McMahon, 2007; Wang et al. 2015). On the other hand, 

the developed scheduling systems are mainly based on pre-defined conditions of machine tool 

systems for decision-making and optimisation. The conditions are presumed to be unchanged during 

machining lifecycles. However, machine tool systems are prone to aging and degrading, resulting in 

dynamic breakdowns and adjustment requirements during manufacturing lifecycles. This issue has not 

been addressed in the scheduling research yet, which cripples the effectiveness of energy efficient 

scheduling in supporting manufacturing sustainability. 

In this paper, an innovative energy efficient machining system (I2S) has been developed. Enabled 

by CPS, Big Data analytics, intelligent learning and optimisation algorithms, Due to integration of 

these technologies, the proposed I2S can be effectively adapted to dynamic machining conditions 

while achieving the energy efficient requirement. CNC machining processes have been selected for 

system development, validation and industrial deployment. The innovations and characteristics of the 

research are below: 

 A novel process of “scheduling, monitoring/learning, rescheduling” during machining lifecycles 

has been developed. That is, 

- Based on historical energy consumption data from previous manufacturing cycles, an effective 

Fruit Fly Optimisation (FFO) algorithm is applied to achieve multi-objective optimisation as 

an initial schedule; 

- During the manufacturing lifecycle, CPS is used to continuously monitor the energy 

consumption patterns of components’ machining, meanwhile the monitored data are analysed 

by using Big Data Analytics algorithms to predict the conditions of machine tool systems. 

Based on these two processes, an updated rescheduled plan will be generated by using the FFO 

algorithm when there are significantly varying conditions occurred and adjustments on 

scheduling are needed. 

 The proposed I2S is innovative in that the aging conditions of machines and cutting tools are 

considered in an innovative energy model during a manufacturing lifecycle. This will establish a 

more accurate energy model thereby achieving effective scheduling. Meanwhile, based on this 

process, prior experiments, required to establish the energy models of machine tool systems for 

scheduling optimisation, are minimised, thereby improving the efficiency and effectiveness of 

scheduling. 

 CPS, Big Data analytics, intelligent learning and optimisation algorithms are integrated for 

systematic implementation of manufacturing intelligence. Benchmarking and analysis are 



conducted to justify the methodologies and intelligent mechanisms. The system has been validated 

through various real-world industrial case studies in European machining companies. The 

successful industrial deployment and validations demonstrate the effectiveness and significant 

potential applicability of I2S in practice. 

 

The rest of the paper is organised as follows: In Section 2, literature surveys on energy modelling 

and machining scheduling optimisation, CPS and Big Data technologies for intelligent manufacturing 

systems are given. In Section 3, the system functions and framework are presented. In Section 4, 

algorithm designs of Artificial Neural Networks (ANN)-based energy modelling and monitoring are 

discussed in detail. The scheduling/rescheduling optimisation is described in Section 5. The CPS 

infrastructure, case studies and system validation are given in Section 6. In Section 7, conclusions are 

drawn and future research directions are outlined. 

 

2. Literature Survey 

In the past decade, attributing to the increasing importance on sustainable manufacturing, research 

on energy efficient scheduling has been actively conducted. The relevant research has been mainly 

investigated from two aspects: 1) energy modelling to support scheduling, and 2) effective algorithms 

and strategies to optimise energy efficient scheduling. Meanwhile, due to the development of IT 

technologies, research on CPS and Big Data for manufacturing has been conducted in recent years. 

Comprehensive review and research frameworks can be found from Wang et al. (2015), Gahm et al. 

(2016) and Babiceanu and Seker (2016). The latest research is summarised below. 

 

2.1 Energy modelling for manufacturing 

Sustainability and energy saving are important aspects to be considered in manufacturing 

optimisation nowadays. It is essential to build effective energy models to support sustainability 

optimisation. Fang et al. (2011) developed a generic multi-objective mixed integer programming 

formulation. An energy model has been established based on an empirical machining model. The 

model considers width of cut, feed per tooth, machining speed and specific machining energy. He et 

al. (2011) built an energy assessment framework for a machining workshop based on CNC codes. The 

framework consists of four layers, i.e., workshop layer, task layer, manufacturing unit layer and 

machine tool layer. For each layer, the major element that affects the energy consumption mostly is 

modelled. Yan and Li (2013) proposed a thermal equilibrium and empirical approach for energy 

consumption modelling during machining processes. The model includes various machining 

parameters, such as material removal rate, idling power, machine tool specific coefficients and 

standby power etc. Winter et al. (2014) developed a sensitivity analysis method to analyse the energy 

performance of a grinding process, in which energy consumption is affected by key grinding 



parameters, including grinding depth, grinding speed and dressing speed. Wang et al. (2015) built 

multi-level models for energy consumption from two levels: 1) on a machining level, ANNs are 

employed to estimate energy consumption and surface roughness based on the spindle speed, 

machining speed, depth of cut and width of cut; 2) on a shop floor level, an energy model is 

established, in which start-up, idle, machining and shutdown phases are considered. Yan et al. (2016) 

designed a multi-level model to optimise energy consumption from both machining parameters and 

shop floor levels. It requires off-line experiments to build the energy model of machining processes 

based on qualitative analysis and grey relational analysis. A model in a shop floor consists of 

processing energy, set-up energy, transportation energy, standby energy, and overhead energy. The 

above works are summarised in Table 1. 

However, in the above work, the dynamic conditions of machine tool systems (e.g., aging and 

wear conditions of machines and cutting tools) have not been considered in energy modelling, which 

highly limits adopting the models to be used in a real production line due to the low accuracy in a 

complex and unpredictable environment. Meanwhile, in the past research, energy modelling is 

established via experiments before production. It could be highly beneficial if energy models could be 

developed and timely updated along with manufacturing lifecycles by avoiding gruelling and time-

consuming experiments. 

 

Table 1: Energy models for machining processes. 

Works Input Optimisation targets Research methods 

Fang et al. 

(2011) 

Machining width, feed per 

tooth, machining speed and 

specific machining energy 

Makespan, peak power 

demand, and carbon 

footprint 

Empirical models and case 

studies of machining cast 

iron plates with slots 

He et al. 

(2012) 

CNC codes Energy consumption for 

spindle, axis feed, tool 

changes, coolant pump and 

fixed energy consuming 

units of CNC machines 

Empirical models for 

spindle, axis feed, tool 

changes, coolant pump and 

fixed energy consuming 

units 

Yan and Li 

(2013) 

Material removal rate, idle 

power, machine tool specific 

coefficients and standby 

power 

Energy consumption model Thermal equilibrium and 

empirical 

Winter et al. 

(2014) 

Machining depth, machining 

speed and dressing speed 

Energy consumption Sensitivity analysis method 

Wang et al. 

(2015) 

Spindle speed, machining 

speed, depth of cut and width 

of cut 

Number of machines and the 

number of jobs to be 

processed 

Surface quality, energy 

consumption and machining 

removal rate 

Energy consumption for 

idle, working, tool change 

and set-up 

ANNs to establish a model 

for surface quality and 

energy consumption 

Empirical models for idle, 

working, tool change and 

set-up 



Yan et al. 

(2016) 

Material removal rate, spindle 

speed 

Number of machines and the 

number of jobs to be 

processed 

Idle power and operation 

power, energy consumption 

for processing  

set-up, transportation, 

standby, and overhead 

Off-line experiments for 

grey relational analysis 

Empirical models for 

processing, set-up, 

transportation, standby, etc. 

 

2.2 Energy efficient scheduling for manufacturing 

Based on energy models, optimisation algorithms are applied to improve the energy efficiency of 

machining processes. A number of research works have focused on investigation of better 

optimisation algorithms to improve the energy efficiency of machining processes. Tang et al. (2016) 

developed an improved Particle Swarm Optimisation (PSO) approach to address dynamic scheduling 

under unexpected disruptions, so energy consumption and makespan can be reduced simultaneously. 

Liu et al. (2016) developed a novel multi-objective Genetic Algorithm (GA) based on NSGA-II to 

minimise the total non-processing electricity consumption and total tardiness. The process provides a 

function for parent and children combination as well as elitism to improve the optimisation efficiency. 

Yan et al. (2016) designed a multi-level energy model, utilised grey relational analysis to optimise 

machining parameters and applied a Genetic Algorithm to optimise the makespan and energy 

consumption. Xu et al. (2016) designed an enhanced Pareto-based bees algorithm to optimise energy 

consumption and productivity. Salido et al. (2016) developed a memetic algorithm to minimise energy 

consumption under makespan constraints within a reschedule zone. The above works are summarised 

in Table 2. 

On the other hand, dynamics and varying ambient working conditions in shop floors could lead to 

unexpected breaks and unnecessary inspection, standby, repairing and maintenance of manufacturing 

systems, thus resulting in waste of time, energy and resource (Wang et al., 2015). It is imperative to 

incorporate CPS-based condition monitoring and Big Data analytics into scheduling optimisation so 

that the system will be able to respond to rapid the changing working conditions efficiently during 

manufacturing lifecycles. 

 

Table 2: Optimisation algorithms of energy efficient scheduling for machining. 

Works Optimisation targets Algorithms 

Tang et al. (2016) Energy consumption and makespan Improved particle swarm algorithm 

Liu et al. (2016) Energy consumption and tardiness NSGA-II based genetic algorithm 

Yan et al. (2016) Makespan and energy consumption Grey relational analysis, genetic algorithm 

Xu et al. (2016) Energy consumption and productivity Enhanced Pareto-based bee algorithm 

Salido et al. (2016) Energy consumption A memetic algorithm 

 

2.3 CPS and Big Data technologies for manufacturing 



With more and more widespread CPS in a manufacturing sector, Big Data technologies has been 

increasingly considered as a leverage for industries to streamline manufacturing management. 

Nagorny et al. (2012) developed CPS to support control, monitoring and management for 

manufacturing devices in a manufacturing shop floor. Big Data technologies for the Engine Health 

Monitoring Unit (EHMU) were developed in Rolls-Royce Plc. to monitor and optimise system 

performance and manufacturing quality by collecting real-time Big Data from working engines, 

systems and factory lines. In Raytheon Corp, a Big Data technology was implemented in a smart 

factory to manage information from different data sources, such as sensors, simulations and all other 

manufacturing records in the factory (Noor, 2013). Prabhu (2013) investigated Big Data collection 

using CPS. The collected data can be modelled as a set (device ID, time, event ID) to support real 

time device monitoring and response by actuators. Chaplin et al. (2015) developed a method for the 

integration of legacy CNC controllers and decentralisation, context-awareness, and data distribution 

services. Liu and Jiang (2016) designed CPS for intelligent manufacturing with Big Data collection, 

processing and visualisation. The system was validated in a micro manufacturing system lab. The 

above works are summarised in Table 3. When Big Data are accumulated, effective information 

management infrastructures, such as Hadoop Distributed File System (HDFS), MapReduce, YARN, 

HBase, HiveQL and NoSQL, become effective tools for storing, managing, processing, interpreting, 

and visualising of Big Data (Loshin, 2014). Thus, Big Data analytics are imperative to facilitate 

intelligent decision marking and optimisation in manufacturing. 

 

Table 3: CPS and Big Data technologies for manufacturing applications. 

Works System characteristics 

Dai et al. (2011) Integrating Big Data platform in cloud for dataflow-based analysis 

Nagorny et al. (2012) CPS devices, information collection for reasoning-based control, monitoring, and 

management functions. 

BigData-Startups 

(2013) 

Big Data for Engine Health Monitoring Unit 

Noor, A. (2013) Big Data technology to achieve smart factories to manage information from 

different data sources 

Prabhu (2013) CPS as a set model with device ID, time, event ID, which can be modified 

Chaplin et al. (2015) Integration of legacy CNC controllers with decentralisation, context-awareness, 

data distribution services 

Liu and Jiang (2016) CPS for achieving intelligent manufacturing establishment for Big Data collection, 

processing and visualisation 

 

In summary, based on aforementioned research works, the following research gaps and 

requirements are identified: 

 The current researches on optimisation of energy efficient scheduling are mainly relying on 

prior/off-line experiments to develop energy models. This highly time consumed and heavily 



labour engaged low effort method is not fitted for supporting dynamic industrial cases. Future 

research should ensure energy models to be established and timely updated throughout 

manufacturing lifecycles to improve the efficiency and effectiveness of the energy modelling; 

 It is critical to develop an adaptive CPS and Big Data enabled system to efficiently optimise multi-

objective schedules for highly customised manufacturing. Through this system, the complex and 

rapid changing conditions during customised manufacturing lifecycles can be effectively captured 

and corresponding optimisation solution can be developed to achieve the best system performance 

during machining lifecycles; 

 It is very rare to have an industry implementation to validate the proposed system in a real-world 

case to prove the system capabilities. It will be a significant contribution if the developed systems 

are proved through system deployment in factories by using various industrial real-world case 

studies for system validation. 

 

3. System Functions and Framework 

3.1 System functions 

As reviewed earlier, scheduling for CNC machining processes in a shop floor has been developed 

based on pre-defined machining conditions. Generated scheduling plans are represented in a relatively 

rigid format (Zhou et al., 2009). On the other hand, machining in shop floors has become increasingly 

customised. Machining customisation is characterised by upcoming disturbance, disruption and 

uncertainty (e.g., dynamic changes of job priority, unexpected delay, aging or degrading of tooling 

and machines, etc.) (Adibi et al., 2010). It is essential to update scheduling flexibly when machining 

conditions are changed in a shop floor to ensure the effectiveness of optimised schedules. It is critical 

to have real-time monitoring, analysis and optimisation functions to address specific and dynamic 

working conditions for achieving adaptive scheduling optimisation. The current practice of the 

relevant data collection in shop floors is mainly based on manual processes. Due to large quantities 

and diverse product models, this data collection process is tedious and error-prone. To address the 

challenge, in this research, a novel I2S (CPS and Big Data enabled machining scheduling optimisation 

system) has been developed. I2S, which is shown in Figure 1, consists of the following functions: 

 A wireless sensor network has been designed and integrated with CNC machines as CPS for 

measuring the energy consumption of CNC machines to support scheduling optimisation. 

Electricity measurement sensors are mounted onto CNC machines for electricity energy collection; 

 A Big Data infrastructure has been developed for collecting, storing, processing and visualising 

real-time energy data from the wireless sensor network which is integrated into the CNC machines; 

 Scheduling and rescheduling functions have been developed into the system. For scheduling, an 

ANN-based algorithm (i.e., energy modelling-ANN) has been designed to establish the energy 

models of components machined in a shop floor. Based on these energy models, a scheduling 



optimisation algorithm would generate an optimal schedule with the target of minimal energy 

consumption, the shortest makespan and the most balanced level of utilisation. When the 

difference between the predicted energy model and real energy model is large, the energy model 

will be updated and rescheduling optimisation process will be triggered. Furthermore, in order to 

accurately indicate the abnormal machining condition from dynamic environments, another ANN-

based algorithm (i.e., energy monitoring-ANN) has been developed to identify the energy patterns 

of machining components under the current working conditions. Rescheduling optimisation 

process will be triggered using the scheduling algorithm to obtain an updated scheduling plan 

when significant difference of energy patterns is identified, which may indicate machine 

problem/tool wear/new orders requiring rescheduling adjustments. More details of the above 

processes are explained in the following sections. 

 

Figure 1: Functions of I2S. 

 

3.2 System flow 

I2S adopts a novel process of “scheduling, monitoring/learning, and rescheduling” for 

manufacturing lifecycles. The detailed process is shown in Figure 2. Explanations are given below: 

Measuring energy consumption of CNC 

machines using wireless sensor network  

Processing monitored Big Data 

Energy modelling-

ANN 

Scheduling/rescheduling 

optimisation 

Energy 

models 
Energy 

monitoring-ANN 

I2S 
Significantly different 

energy patterns 

requiring rescheduling  



Figure 2: I2S for scheduling, monitoring/learning and rescheduling. 

 

 Normally, a customised machining process can be managed as a series of production cycles in a 

shop floor. During a production cycle, the types and quantities of components for production are 

certain. When a new production cycle starts, the types of components could be updated to the 

system. New types may be added and old types during the last production cycle may be 

discontinued for further machining during this cycle. Scheduling optimisation needs to consider 

the dynamic characteristics of production cycles to achieve multi-objective optimisation, such as 

the least overall energy consumption for the production line, the shortest makespan, and the most 

balanced utilisation of machines, etc. During machining, CNC machines are continuously 

monitored via the WSN and the collected energy consumption data are stored in the Big Data 

infrastructure for further processing and analysis; 

 A production cycle is defined as three stages. These stages are described below: 

(1) Stage A (start point of a production cycle): The energy modelling-ANN, which uses precision 

requirement, machining feature quantity, material and machining volume as inputs, will be 

trained and applied to estimate the energy consumptions (energy models) and machining time 

of new components. For the energy models, a tool aging factor and model are innovatively 
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used to adjust the models to accurately reflect the current situation. The energy models are 

prerequisite for schedule optimisation to generate an optimised schedule. The energy 

modelling-ANN has been trained based on the historical data for those components machined 

in previous production cycles. For new types of components added into this production cycle, 

their energy consumption can be estimated by using the energy modelling-ANN; 

(2) Stage B (during the manufacturing lifecycle): During the whole period of the manufacturing 

lifecycle, the difference between the predicted results of energy models and real energy data 

will be calculated. If the value of the difference exceeds a certain value (e.g. 5% - the rational 

to decide the value is given in Section 5.3), the energy data for machined components will be 

used to update the training of the energy modelling-ANN and energy monitoring-ANN to 

improve the accuracy of the scheduling (rescheduling). 

(3) Stage C (during the manufacturing lifecycle): During the whole period of the manufacturing 

lifecycle, another ANN, i.e., energy monitoring-ANN, is also trained based on the historical 

data for machining components. In order to accurately identify abnormal cutting conditions 

from massive data set, continuously monitored energy data (power) are partitioned into a 

series of energy patterns according to the machining duration of each component and formed 

as the input vector. The output is a vector representing the type of the component. The 

deviation between the current energy pattern and standard energy pattern of the corresponding 

component is calculated. If the difference is within a small range (e.g., 18%, determined by 

experiments in Section 4.2), the tooling condition is in reasonable aging or degrading 

conditions; otherwise the system will consider that severe aging or degrading conditions of 

machines/cutters are occurred. An indicator message will inform the engineer that 

machines/cutters should be replaced or maintained/temporarily excluded from scheduling. 

Under the circumstance, rescheduling optimisation will be triggered to generate a reschedule 

plan. 

 Through this design, the experiments, for establishing the energy consumption model of 

components to support scheduling and rescheduling optimisation, can be carried out during 

machining processes. Hence the time and cost required for scheduling and rescheduling can be 

significantly reduced and dynamic working conditions can be effectively addressed. 

 

4. Energy Modelling and Monitoring 

In I2S, as shown in Figure 1 and Figure 2, the energy modelling-ANN has been designed to 

establish energy models for components machined in a shop floor. The energy modelling-ANN is 

used to predict the energy consumption for machining a component for scheduling and rescheduling 

optimisation. Meanwhile, the energy monitoring-ANN has been developed to monitor the machining 

process to identify abnormal conditions and support rescheduling if necessary. Design and analysis of 



the two ANNs are given below in detail. Meanwhile, the performance of the ANNs is compared with 

that of a latest deep learning algorithm for benchmarking analysis. 

 

4.1 Energy modelling-ANN 

The energy consumptions for machining two identical components under the different conditions 

of a cutting tool will be different. To support energy modelling, a tool aging factor and model will be 

first set up. 

 

Tool aging factor and model 

During the consecutive components machining, the machine tool will gradually wear during the 

metal cutting processes. This will lead deviation of energy consumption occurs even when the same 

component to be machined under the same tool and machining parameters. According to the research 

of Liu et al. (2016) and Sealy et al. (2016), the energy consumption could maximally increase for 

about 17% for using the same cutting tool to manufacture the same component within an acceptable 

surface quality range. Figure 3 shows an example of energy pattern changes from the identical 

component which have been consecutively machined 52 times by using single machine with the same 

settings. 

 

Figure 3: Energy pattern changes of 52 consecutive machining of identical components. 

 

It can be observed that the energy consumption patterns gradually increase along the process of the 

machining lifecycle due to tool wear. Therefore, a tool aging factor is introduced to indicate the tool 

wear of a cutting tool for machining. It is presented in the following Equation 1:  

𝑓(𝑘) =
𝐸𝑘−𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙
× 100% (1) 

(a) Component 1 (b) Component 2 (c) Component 3 

(d) Component 4 (e) Component 15 (f) Component 52 



where 𝑓(𝑘) is the tool aging factor of machining the kth volume, 𝐸𝑘 is the energy used for machining 

the kth volume, and 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the energy consumed for machining the same volume using the cutting 

tool under its new condition. 

 

The wear curve of a cutting tool is shown in Figure 4(a). The wear curve of a cutting tool consists 

of three regions: a break-in region, a steady-state region and a failure region. When the tool reaches 

the failure region, the quality of the machined component is low and the tool needs to be changed. 

Therefore, only the periods of break-in and steady-state are used during machining, and the tool aging 

factor is considered. Figure 4(b) shows that the tool aging process against the machined volumes from 

52 cutting samples. The curves are aligned (without including the failure region). 

 

 

Figure 4: Wear curve of a cutting tool and tool aging factor. 

 

Based on the tool aging factor, a tool aging model can be established in the following Equation (2). 

A power curve fitting method is used based on the characteristics of factor distribution to build up the 

equation (Guest 1961). 

𝑇(𝑘) = 𝛽1 × 𝑘𝛽2 + 𝛽3 (2) 

(b) The tool aging process against the machine volume. 

(a) The wear curve of a cutting tool (Liu et al. 2016). 



where 𝑇(𝑘) is the predicted tool aging factor by regression computation for the kth volume; 𝛽1, 𝛽2 and 

𝛽3 are the coefficients of the power curve. 

 

The values of 𝛽1-𝛽3 are decided by minimising the Root Mean Square Error (RMSE) between the 

tool aging factors 𝑓(𝑘) and the tool aging model 𝑇(𝑘). RMSE is defined in the following Equation: 

𝑅𝑀𝑆𝐸 = √
∑(𝑓(𝑘)−𝑇(𝑘))2

𝑁
 (3) 

where N is the total number of machined components. 

 

Based on the above definitions, the energy consumption on machining the kth component 

𝐸𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔(𝑘) can be calculated below: 

𝐸𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔(𝑘) = 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 × (1 + 𝑇(𝑘)) (4) 

where 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is energy consumption of machining the identical component with a fresh cutting tool. 

 

Energy modelling-ANN 

To support scheduling and rescheduling optimisation, energy models for components to be 

machined (energy modelling-ANN) have been established using a multi-layer ANN architecture. A 

multi-layer ANN provides several distinguishing characteristics (Li et al., 2006): (1) the capability to 

capture and perform complex input and output relationships; (2) no prior knowledge regarding input 

and output is needed to develop learning models. The trained model can enhance the knowledge 

database and the newly learned knowledge can refine the ANN. A fitting function is performed by the 

ANN and it is not necessary to define it explicitly; (3) the capability to update the ANN when new 

data are used. The inputs of the energy modelling-ANN are precision requirement, machining feature 

quantity, material and machining volume. The outputs are predicted energy consumption and 

machining time. The historical energy information is used to train the ANN. The design of the energy 

modelling-ANN is illustrated in Figure 5. In the ANN, the energy consumptions for both training and 

estimation are based on the conditions of tools during training time. They will be calibrated using the 

above tool aging factor and model to support the energy modelling process of the following 

scheduling and rescheduling optimisation. 



 

Figure 5: Design of the energy modelling-ANN. 

 

It is important to decide a suitable training algorithm and neuron structure for the ANN to improve 

accuracy and computing efficiency. In the past, various training algorithms have been developed for 

ANNs to deal with different applications. According to the research of Drouillet et al. (2016) and 

Karkalos et al. (2016), Levenberg–Marquardt has the best performance (accuracy and time) when 

dealing with non-linear problems.  

The number of hidden neurons decides the accuracy and computing time of the system. According 

to guidelines by Zhang et al. (1998), it is recommended that the numbers of hidden neurons are n/2, 

1n, 2n, 2n + 1, where n is the number of neurons in the input layer. The number of hidden layers also 

decides the accuracy and computing time of the system, a single hidden layer is sufficient for most 

work (Karkalos et al. 2016; Louly et al. 2017). Two hidden layers may be more accurate for some 

cases (Zain et al. 2010). For the energy modelling-ANN, one layer and two layers with different 

numbers of neurons in the hidden layer(s) are compared to decide the best structure. The comparisons 

are given in Section 6.3. 

The trained energy modelling-ANN will be used for prediction at the beginning of production 

cycle. Energy data is continuously collected, the actual energy consumption for components 

machining will be calculated and compared with prediction result in equation 5. 

∆𝐸= (
𝐸𝑎𝑐𝑡𝑢𝑎𝑙−𝐸𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝐸𝑎𝑐𝑡𝑢𝑎𝑙
) × 100% (5) 

where ∆𝐸  is difference between the predicted results of energy models and real energy model. If 

difference exceeds threshold value of 5% (decided in Section 5.3), the energy modelling-ANN will be 

updated and reschedule will be triggered. 

 

4.2 Energy monitoring-ANN 

During a machining lifecycle, identical component operations with the same machining parameters 

under the same cutting should generate similar energy consumption patterns with slight deviations. 

Abnormal energy patterns during machining indicate significant condition changes of machines 
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and/or tooling, thus a corresponding action such as system maintenance, rescheduling and tool 

changing, will be necessary. 

The design of the energy monitoring-ANN is illustrated in Figure 6 and Table 4. To train the 

energy monitoring-ANN with energy profiles, continuously monitored energy data (power) are 

partitioned into a series of energy patterns according to the machining duration of each component. 

The monitored power consists of several stages, e.g., idle, machining, machine start-up/shutdown. The 

data partition process is based on the power range to concentrate on the data of the machining process. 

When the power is above a given threshold defining the working range for machining, the energy 

profiles of a component are partitioned from the monitored Big Data. An illustrative example is given 

in Figure 7. The input is a vector of an extracted energy samples during production, and the output is a 

vector representing the component operation for the input energy pattern. The vector length of the 

input n is the maximum length of power readings (maximum number of a machining process of a 

component). For a component operation with a smaller number of durations compared to the 

maximum number of duration, 0 will be added at the end of the pattern to standardise the vector 

lengths of the patterns to be the same, so all the data can be facilitated for ANN’s processing. In terms 

of output, o is the total number of component types. For instance, if the output is for component 

operation 1, the output will be [1 0 0 ··· 0] and the vector length of the output is the number of 

component operation types. P is the individual power reading, Y is the value for hidden neuron and J 

is the output which can indicate the types of component. 

 

 

Figure 6: Design of the energy monitoring-ANN. 

 

Table 4: Input and output of the energy monitoring-ANN. 

Input vector Output vector 

Point 1 in the energy pattern Component category 1 [1, 0, 0, …, 0] 

Point 2 in the energy pattern Component category 2 [0, 1, 0, …, 0] 

… … … … 

Point n in the energy pattern Component category o [0, 0, 0, …, 1] 
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Figure 7: Examples of energy partition to individual energy patterns for individual components. 

 

The abnormal condition can be detected by calculating the deviation of the current energy pattern 

and the previous energy pattern for the identical component. The deviation (∆) of energy consumption 

of an identical component is expressed in Equation 6. 

∆=
𝐸𝑖−𝐸𝑗

𝐸𝑗
× 100% (6) 

where 𝐸𝑖 and 𝐸𝑗 are the energy consumption of two identical components under different conditions.  

 

If the value of deviation exceeds a large threshold (ơmax) , which means that an abnormal 

condition occurs. And then a message will be sent out to the machine operator and the investigation 

will be carried out. If this is caused by severe aging or degrading conditions of tooling and/or 

machines, the machines or tools will be replaced and then rescheduling optimisation will be triggered 

to generate a new plan to address the current working conditions. ơmax  is set as 18% which is 

obtained from the following experiment. Meanwhile, the values for individual components would be 

updated during machining stage when more energy data is acquired. 

As shown in Figure 8 (a) and (b), a metal cover was selected and machined repeatedly several 

times. The energy consumption and surface roughness are measured and compared. According to the 

comparison result between the normal condition and defeat condition, shown in Figure 8 (c) and (d), 

(a) Energy consumption for a single day 

(b) Two energy patterns for two individual components partitioned from the daily energy 

Threshold defining 

the working range 

for machining 



respectively, it is noted that when the machine tool is in a severe wear condition, the energy deviation 

of the two components is 21.67%. And the surface roughness of the defeat component is 3.22μm 

which is much bigger than the quality standard threshold 1.15μm. Through statistic results, all the 

machined parts with the surface roughness meet the design requirements all have less energy 

deviation than 18% by comparing with the standard one. And thus, in this work, ơmax is set as 18% 

that any energy deviation higher than it will be recognised as abnormal condition. 

 

 

Figure 8: Power profiles for machined components under normal and abnormal conditions (energy 

consumptions are 2.03Kwh and 2.47Kwh respectively - the deviation is 21.67%). 

 

4.3 Benchmarking with Convolutional Neural Network 

To justify the choice of the ANNs in this research, they are benchmarked with a popular deep 

learning algorithm - Convolutional Neural Network (CNN). CNN is mostly used in classification 

research for EEG/ECG signals (Rajpurkar et al., 2017; Hosseini et al., 2017), which have the similar 

data format to that of power signals. The high-level structure of the CNN is depicted in Figure 9(a). In 

the convolution layer, neurons are connected as rectangular grids through a kernel filter with the same 

weights. In the pooling max layer, rectangular grids are subsampled to extract core information 

(Rajpurkar et al., 2017). Normally, the first layer of CNN can only extract basic information of data. 

The following layers are able to extract deeper information. Therefore, aiming to guarantee both 

accuracy and shorter computing time, convolution and max pooling are only applied twice in this case 

(Rajpurkar et al., 2017). The dimension of the kernel filter is selected as 2×2. For each layer between 

convolution and max pooling, Batch Normalisation (BN) is applied to address the saturating 

nonlinearities issue. An activation function ReLu is then applied to introduce nonlinearity in the 

model (Ioffe and Szegedy, 2015). The data are fully connected after convolution and max pooling. At 

(c) Power profile under a normal condition (d) Power profile under an abnormal condition 

(a) Machined component under a normal condition (b) Machined component under an abnormal condition 



the end, Dropout and Softmax are applied to avoid over-fitting and extreme values (Srivastava et al., 

2014). The detailed structure of the CNN used in this benchmarking is shown in Figure 9(b). The 

dataset used for the ANN training is also used for training the CNN. 78 samples of component data 

with length of 1024 are trained in the CNN. The dimension of each layer is shown in Figure 9(b). The 

fully connected structure at the end is 4096-13. 

 

Figure 9: Design of the CNN for comparison. 

 

The result comparison of the ANN and CNN for the same dataset is shown in Table 3. By 

comparing the CNN and ANN, the CNN method can achieve 100% average accuracy, which is 1.13% 

higher than that of the ANN method. However, the CNN method is more time-consuming. It needs 

average 18.36 seconds to process a set of data, which is 8.3 times more than that of the ANN method. 

For a real-time processing, time is a more critical factor if the accuracy can meet application 

requirements. Therefore, in this research, the ANN method even with a slightly lower accuracy is 

considered as a better solution than the CNN method. ANN has been selected for I2S. 
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Table 3: Comparison of ANN and CNN for this research. 

Method Average iterations Average computing time (s) Average accuracy (%) 

ANN 9.8 1.973 98.97 

CNN 15.6 18.36 100 

 

5. Scheduling and Rescheduling Optimisation 

In a shop floor, a poor and out of data scheduling plan will lead a long time machines standby and 

extra labour costs. Therefore, scheduling and rescheduling optimisation algorithms are vital for 

achieving sustainable manufacturing.  

 

5.1 Energy, makespan and machine utilisation level 

In this research, the conditions/assumptions for scheduling and rescheduling optimisation are 

defined as following: 

 A shop floor consists of a set of CNC machines: Machine M={M1, M2, M3….Mn}, to machine a set 

of components: J={J1, J2, J3…Jm}; 

 Each component has to be finished in a single machine when it is available; 

 Each component will use different machining time and energy consumption by using different 

machines; 

 During different lifecycle of a cutting tool, the energy consumption for machining a component 

will be different; 

 The preparation time is assumed to be constant in the same machine; 

 There are no sequencing constraints for machining components; 

 The machine start-up and shut-down energy are negligible. 

 

The energy consumption of a machine is from machining and waiting phases:  

𝐸𝑡𝑜𝑡𝑎𝑙(𝑀𝑖) = 𝐸𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔(𝑀𝑖) + 𝐸𝑤𝑎𝑖𝑡𝑖𝑛𝑔(𝑀𝑖) (7) 

where Etotal(Mi) represents the energy consumed during all the phases of Machine Mi. 𝐸𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔(𝑀𝑖) 

and 𝐸waiting(𝑀𝑖) represent the energy consumption of this machine during the machining and waiting 

phases, respectively. 

 

For the energy consumption of Machine Mi during the machining phase is computed below: 

𝐸𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔(𝑀𝑖) = ∑ (𝐴𝑖𝑗 ×𝑚
𝑗=1 𝐸𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔(𝑀𝑖, 𝐽𝑗)) (8) 



where 𝐴𝑖𝑗  represents whether Machine Mi needs to be machining for Component Jj. 

𝐸𝑚𝑎𝑐h𝑖𝑛𝑖𝑛𝑔(𝑀𝑖, 𝐽𝑗) represents the machining energy consumption of Component Jj by Machine Mi. m 

is the total number of components to be machined. Aij can be defined as below: 

𝐴𝑖𝑗 = {
1 
0

𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑡 𝐽𝑗 𝑖𝑠 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑑 𝑏𝑦 𝑀𝑖

         𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑡 𝐽𝑗 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑑 𝑏𝑦 𝑀𝑖
 (9) 

 

For the energy consumption of Machine Mi during the waiting phase is computed below: 

𝐸𝑤𝑎𝑖𝑡𝑖𝑛𝑔(𝑀𝑖) = ∑ (𝐴𝑖𝑗 ×𝑚
𝑗=1 𝐸𝑤𝑎𝑖𝑡𝑖𝑛𝑔(𝑀𝑖, 𝐽𝑗)) (10) 

where 𝐸𝑤𝑎𝑖𝑡𝑖𝑛𝑔(𝑀𝑖, 𝐽𝑗) represents the energy consumption of the machining waiting time of Machine 

Mi for Component Jj. 

 

The total energy consumption for all the machining jobs by all the machines are calculated below: 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐸𝑡𝑜𝑡𝑎𝑙(𝑀𝑖)𝑛
𝑖=1  (11) 

where Etotal represents the total energy consumption in all machines. n is the number of total machines. 

 

Similarly, the time consumption for each machine during machining can be calculated as below: 

𝑇𝑡𝑜𝑡𝑎𝑙(𝑀𝑖) = 𝑇𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔(𝑀𝑖) + 𝑇𝑤𝑎𝑖𝑡𝑖𝑛𝑔(𝑀𝑖) (12) 

where 𝑇𝑡𝑜𝑡𝑎𝑙(𝑀𝑖)  represents the total time consumption during all the phases of Machine Mi. 

𝑇𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔(𝑀𝑖) and 𝑇𝑤𝑎𝑖𝑡𝑖𝑛𝑔(𝑀𝑖) represent the time demand of this machine during all the machining 

and waiting phases, respectively. 

 

To calculate the time used during the whole machining time: makespan, which is the maximum 

machining time for all the components in all the machines, can be computed below:  

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 =
𝑛

𝑀𝑎𝑥
𝑗 = 1

(𝑇𝑡𝑜𝑡𝑎𝑙(𝑀𝑖)) (13) 

The balanced utilisation of machines in a shop floor is defined below: 

µ =
∑ 𝑇𝑡𝑜𝑡𝑎𝑙(𝑀𝑖)𝑛

𝑖=1

𝑛
 (14) 

𝑈𝑡𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛_𝑙𝑒𝑣𝑒𝑙 = √∑ (𝑇𝑡𝑜𝑡𝑎𝑙(𝑀𝑖) − µ)2𝑛
𝑖=1  (15) 

 

5.2 Scheduling optimisation modelling and normalisation 

In this research, the optimisation objectives are to achieve the minimised energy consumption, 

makespan and the most balanced utilisation level of machines. As the three objectives have very 

different value range, a normalisation process of the objective is required prior to optimisation. Since 

the maximum and minimum values of these three objectives are unknown before optimisation, a 

suitable normalisation schema that normalises the objectives in the Nadir and Utopia points is 



employed (Mausser, 2006). The Utopia point 𝑧𝑖
𝑈 provides the lower bound of the 𝑖𝑡ℎ objective and 

can be obtained by minimising the 𝑖𝑡ℎ  objective individually, i.e., 

𝑧𝑖
𝑈 = 𝑓𝑖(𝑥𝑖) = 𝑚𝑖𝑛{𝑓𝑖(𝑥)} (16) 

 

The upper bound is then obtained from the Nadir point𝑧𝑖
𝑁 , which is defined as: 

𝑧𝑖
𝑁 = 𝑓𝑖(𝑥𝑘) = 𝑚𝑎𝑥

1≪𝑗≤𝐼
{𝑓𝑖(𝑥𝑗)} (17) 

where 𝐼 is the total number of objectives. 

 

According to Equation 16 and 17, the energy consumption, makespan and machine utilisation level 

can be expressed in Equation 18.   

{

𝑁𝐸 = (𝐸𝑡𝑜𝑡𝑎𝑙 − 𝑧1
𝑈) (𝑧1

𝑁 − 𝑧1
𝑈)⁄

𝑁𝑇 = (𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 − 𝑧2
𝑈) (𝑧2

𝑁 − 𝑧2
𝑈)⁄

𝑁𝑈 = (𝑈𝑡𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 − 𝑧3
𝑈) (𝑧3

𝑁 − 𝑧3
𝑈)⁄

 (18) 

 

The fitness function is calculated as weighted sum of the three objectives below. According to 

research by Mausser (2006), weights of each objective are decided by decision maker based on the 

intrinsic knowledge of the problem. The weights will be decided in Section 6.3 for this case. 

Fitness: min(𝑤1 ∙ 𝑁𝐸 + 𝑤2 ∙ 𝑁𝑇 + 𝑤3 · 𝑁𝑈), 𝑤1 + 𝑤2 + 𝑤3 = 1 (19) 

 

5.3 Optimisation algorithm 

In this paper, a latest evolutional optimisation algorithm, i.e., FFO (Fruit Fly Optimisation), has 

been developed and improved for scheduling optimisation. FFO is a relatively new optimisation 

algorithm (Pan, 2012). It provides multiple fruit fly groups for parallel search during the evolution 

process. It is competitive compared to evolutional and other main-stream optimisation algorithms due 

to the local optima avoidance. The algorithm mimics the search behaviour of fruit flies with two main 

steps: 1) searching the locations of food sources based on smell concentration as a smell-based search, 

and 2) flying close to food source locations based on the highest smell concentration as a vision-based 

search (Zheng et al., 2014). Meanwhile, multiple groups are used for parallel and global search to 

achieve optimum results quickly. Based on the benchmarking analysis with other algorithms, it can be 

proved that this algorithm is simpler but more robust due to the advantage of a stable search route and 

quick convergence speed (Pan, 2012). In this research, this algorithm has been applied for schedule 

optimisation. Meanwhile, a mutation operation has been added into the algorithm for rescheduling 

optimisation. 

 

Scheduling optimisation 



During the search process, the initial group of fruit flies are swarm centres and a sub-population of 

fruit flies generated around the location of each swarm centre are employed for simulating the 

leadership hierarchy. In addition, two main steps of searching, i.e., smell-based search and vision-

based search are implemented: 

 Smell-based search: Sub-population of fruit flies are randomly generated around location of each 

swarm centre, and the smell concentration (fitness) of each fruit fly is calculated. Since the food 

source location is unknown, neighbourhood based search aims to implement smell-based search to 

approach the location of food (solution). The multi-swarm approach can avoid being trapped into 

local optima (Wang and Zheng 2018). 

 Vision-based search: The fruit fly in sub-population with better fitness than swarm centre can 

replace the original swarm centre, which keeps the best smell concentration (fitness) by flying 

towards the food location using visions. Therefore, the food source will be approached quickly 

through iterations (Pan 2012). 

 

In the conventional FFO, the initial swarm centres are generated randomly. Sub-populations of 

fruit flies are generated randomly around the locations of each swarm centre. However, the initial 

swarm centres could be far from the target, which will waste computing resources and potentially 

miss the best solution. In order to improve the quality of the initial swarm centres, a larger population 

of M initial fruit flies will be randomly generated and the m fruit flies (M>m) will be selected as the 

initial swarm centres. In Section 6.3, the optimisation results show that the improved FFO can achieve 

convergence quicker with better results than the conventional FFO. The process of applying the 

algorithm for scheduling optimisation is depicted below: 

1.  Initialisation: Randomly create big initial population of M fruit flies to be potential swarm centres, 

each fruit fly is composed of a matrix containing the information of components and 

corresponding CNC machines for machining. The matrix below illustrates an example to establish 

a fly (the matrix below is an example of 1 fruit fly, assuming there are 3 CNC machines to 

machine 9 components of 4 types for a production cycle): 

[
1 2 2
1 1 2

     
1 2 4
2 2 3

     
1 3 3
3 3 3

]          
Components   

CNC machines
 

2. Swarm centres selection: Calculate the fitness of the initial M fruit flies. Select the m fruit flies with 

best fitness as initial swarm centres, then set the maximum iterations (𝑇𝑚𝑎𝑥) for the optimisation 

computation.  

3. Smell-based search: Generate 1 sub-population of n fruit flies around each swarm centre. The value 

of 𝑇𝑚𝑎𝑥, M, m and n are decided in Section 6.3. For the purpose of generating a fruit fly in the sub-

population, crossover and mutation processes are applied based on the location of the swarm 

centre: Two components are randomly exchanged and one CNC machine type is randomly 



switched to another CNC machine type. The fitness of each fly will be then calculated for the 

following vision-based search. The matrix below illustrates an example to establish a fly in a sub-

population: 

 

Swarm centre:      [
1 2 𝟐
1 1 2

    
1 2 4
2 2 𝟑

     
1 𝟑 3
3 3 3

]       
Components   

 CNC machines
 

1 fly in Sub-population: [
1 2 𝟑
1 1 2

     
1 2 4
2 2 𝟐

     
1 𝟐 3
3 3 3

]      
Components   

 CNC machines
 

4. Vision-based search: If the fitness of the fly in sub-population is better than the fitness of the swarm 

centre, replace the current swarm centre with the fruit fly in the sub-population. In order to avoid 

being trapped into a local optimal result, the probability of accepting a worse result is adopted to 

achieve a global optimal result when Equation 20 is satisfied (Li et al. 2015):  

𝑒 > 𝑟𝑎𝑛𝑑 (20) 

𝑒 = 𝑒𝑥𝑝 (−|𝑑𝐶|)/𝑇𝑖𝑚𝑒 (21) 

𝑑𝐶 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠2 − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠1 (22) 

where e represents a coefficient to determine whether the new result is accepted and can be calculated 

from Equations 21 and 22; rand is the random number between 0 and 1; dC represents the difference 

between the best fitness in the current iteration and the previous one; Time is the index of current 

iteration. 

5. Repeat the above Steps 3-4 until reaching the maximum iterations. The best solution in the fly 

population is selected. 

 

Rescheduling optimisation during manufacturing lifecycles 

During manufacturing lifecycles in Stage B shown in Figure 2, energy data are continuously 

collected. If the difference between the predicted results of energy models and real energy model 

exceed the pre-defined threshold, the energy model will be updated. The FFO algorithm is also 

triggered to generate an optimised reschedule based on the new energy model. Inaccurate energy 

models could lead to faulty scheduling. According to the literature review of Soualhia et al. (2017), 

there is a lack of research on evaluation on deciding how accurate an energy model is required for 

energy efficient scheduling. In this case, the threshold is set as 5% to ensure high accurate models. In 

future work, an adaptive fault-tolerance-aware approach to decide the threshold will be researched. 

During manufacturing lifecycles in Stage C shown in Figure 3, the energy monitoring-ANN is 

used for monitoring and identifying significant energy pattern change (more details of the diagnosis 

and prognosis processes based on the energy monitoring-ANN are presented by researchers from the 

same research group (Wang et al., 2018)). If the change of an energy pattern exceeds  ơmax (∆> ơmax ) 

and it is confirmed that there is a tool/machine problem for maintenance, the machine will be removed 



from the schedule plan. The FFO algorithm is triggered to generate an optimised reschedule with 

other available machines.  

 

6. Industrial Applications 

6.1 Design of CPS and energy Big Data infrastructure 

For I2S, a WSN has been developed based on IPv6 Over Low Power Wireless Personal Area 

Network (6LoWPAN) protocol, as illustrated in Figure 10. This wireless data acquisition system is 

treated as a backbone of CPS system to collect energy consumption data from a shop floor. Measured 

data is transmitted through the 2.4 GHz Wi-Fi to an Internet-router. Monitored energy data can be 

defined as Big Data, which are characterised by high volume (e.g., more than 10G volume for six-

month monitoring), variability (e.g., time, machine IDs and current readings) and velocity (e.g., 9 

current data samples in a second for 3-machine monitoring) (Mayer-Schonberger and Cukier, 2013). 

For I2S, the Hadoop Hive system, a powerful Big Data storage tool, is used as the Big Data cannot be 

handled by traditional data platform such as MySQL. Data partition is used to split the data on 

component-, daily-, weekly- or monthly-basis through Map-Reduce for parallel processing of data. 

With the parallel storage and data processing functions, the Big Data can be processed efficiently. 

Due to the huge amount of data accumulation, there might be issues when importing data into Hadoop 

for processing: 1) data duplication due to data accumulation in sensor nodes; 2) data missing due to 

Wi-Fi signal interference in the shop floor. If there is data duplication or data missing, it is necessary 

to carry out data cleaning to remove duplicated data and make sure that data sets have the same length 

to train the ANNs and process data using the ANNs. The relevant process is illustrated in Figure 11. 

 

 

Figure 10: CPS for collecting and monitoring energy Big Data. 

 

  

  

  

  

Machine Machine 

Cyber-Physical Systems 

Router 

Coordinator 

Internet-Router 

Internet 

 Data server  

 Cloud server 

 Monitoring Services 

 Web browser 

 Applications 

Application Level 

Network Level 

(6LoWPAN, etc.) 

Physical Level (IEEE 
802.15.4) 

 

Communications 

Application Level 

 

  

IPv6 

packages 

  

  

Sensor 
with 

IPv6 

Machine Machine   



 

Figure 11: Design of the Big Data infrastructure. 

 

6.2 Industrial deployment, case studies and monitored data 

Sponsored by the EU Smarter and Cloudflow projects, I2S has been deployed for trial in several 

machining companies in Europe for over 6 months respectively. An industrial deployment in the UK 

is described for illustration. The company specialises on machining high-precision components for 

automotive, aerospace and tooling applications. A production line, consisting of 3 CNC machines 

(MX520, MAZAK and HAAS) and accessory equipment, has been monitored, analysed and 

scheduling/rescheduling optimisation using I2S. A part of the production line is illustrated in Figure 

12. Its specifications are listed in Table 4. The CNC system is automated with Lang Eco Towers and 

robot arms for loading raw materials and storing completed components after machining. Electricity 

sensors are mounted on the CNC machines. Energy data are transferred to the Hadoop server through 

Wi-Fi signals in the shop floor. For each CNC machine, the collection rate of energy data is 3 

readings per second. Some components to be machined are shown in Figure 13. 

 
Figure 12: Loading/unloading towers, robot feeding and energy measurement of CNC machines. 
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Table 4: Specifications of the monitored CNC machines and accessory equipment. 

Machines and 

accessory equipment 

Specifications 

Max. travel (mm) 
Loading capacity 

(kg) 

Rapid traverse: X 

/ Y / Z (m/min) 

Spindle speed 

rev/min 

MX520 630 / 560 / 510 150 40 12,000 -20,000 

MAZAK VTC-

800/20SR 
2,000 / 800/ 720 - 50 18,000 

HAAS VF-2TR 762 / 406 / 508 36.3 25.4 8100 

 

Handling weight 

(kg) 

Max. workpiece 

size (mm)   

Lang Eco Towers 450 350 × 200 × 200 

350 × 200 × 200 
  

Robot arms 30 
  

 

 

Figure 13: Some sample components. 

 

For the monitored energy consumption data, each machine uses 3-phase electricity. The voltage is 

220V and power factor is 0.82. As shown in Figure 14, daily, weekly and longer period data plots can 

be generated and visualised. 

Figure 14: Plots of energy data and summary. 

 

6.3 Result analysis 

Energy modelling-ANN 

During each production cycle, energy data are collected, and energy models are established by the 

energy modelling-ANN. The inputs of the ANN include precision, feature quantity and machining 

volume. The outputs are the predicted energy consumption and machining time to support scheduling 

and rescheduling optimisation. Table 5 provides results of 13 types of components and relevant 

estimated energy consumption and time generated by the energy modelling-ANN. Training results 

based on the different ANNs structures are shown in Table 6. It proves that the 4-4-2 structure has the 

(a) Daily energy data plot and summary (b) Weekly energy data plot 



ability to achieve convergence quickly as well as good results. Therefore, the structure can be 

considered as the best structure.  

 

Table 5: Input/output of the energy modelling-ANN (calibrated under the condition of a fresh cutting 

tool).  

Comp-

onents 

Prec-

ision 

(μm) 

Feature 

quantity 

Machining 

volume (cm3) 

Machining time (mins) Energy consumption (KWh) 

MX520 MAZAK HAAS MX520 MAZAK HAAS 

1 2.6 7 242.3 16.5 13 27 0.405 0.443 0.565 

2 2.6 11 248.7 13.5 25 37 0.812 0.546 0.932 

3 2.6 19 486.6 33 28 38 2.122 1.472 2.886 

4 2.6 11 353.8 21.5 24 33 1.521 1.56 1.824 

5 2.6 6 462.15 33 32 43 2.203 2.533 2.912 

6 2.6 4 237.3 12 22 23 0.962 1.488 1.563 

7 2.6 5 392.45 27 23 32 2.423 2.13 2.733 

8 2.6 2 216.1 18.5 24 11 0.863 0.845 0.996 

9 2.6 9 190 10 18 17 1.135 0.729 1.765 

10 2.6 20 218.2 8 19 22 1.002 0.582 1.322 

11 2.6 14 260.1 9 13 16 2.201 1.685 2.531 

12 2.6 14 333.2 20 26 35 1.967 1.634 2.127 

13 2.6 10 295 24 23 17 2.199 2.519 2.329 

 

Table 6: comparison for ANNs structures  

Number 

of 

hidden 

layer 

Number of 

neurons 

Average 

Training 

time (s) 

Average 

iterations 
Average RMSE  

Lowest 

RMSE  

1 2 0.571 9.8 1.732 1.689 

2 2 0.607 15 1.716 1.602 

1 4 0.617 7.8 1.596 1.553 

2 4 0.669 9.2 1.697 1.561 

1 8 0.672 12.6 1.645 1.537 

2 8 0.724 12.2 1.710 1.592 

1 9 0.745 8.2 1.793 1.727 

2 9 0.789 9 1.917 1.816 

 

Tool aging model 

As stated previously, the tool aging model is used to refine the model to fit for dynamic working 

conditions. In this work, the tool aging model based on the energy data of the 52 consecutive 

machining has been developed. The cutting volume for a component is equal to 305.6cm3. The energy 

consumption for machining the component with a fresh cutting tool is 1.365Kwh (the cutting tool is 

CoroMill® Plura Optimised). As shown in Figure 15, the tool aging factor gradually increases over 

production time, which means the tool is gradually wear over machining lifecycles. Based on 

Equations 1-3 and RMSE minimisation optimisation, the tool aging model is established below:  

𝑇(𝑘) = 0.2199 × 𝑘0.1363 − 0.1952 (23) 

  



The aging model has been evaluated through more experiments by comparing with the prediction 

value to the true value. The results are depicted in Figure 15. The average of RMSE is around 0.0135 

which is demonstrated the tool aging model has high accuracy to reflect the tool aging condition. 

 

Figure 15: Tool aging model (left) and validation (right). 

 

Energy monitoring-ANN 

13 types of components with total 78 energy pattern samples have been used to train the energy 

monitoring-ANN. Some results are shown in Table 7. It indicates that the structure with 512 neurons 

and 1 middle layer has achieved the best performance in terms of average accuracy, the highest 

average accuracy and the shortest training time. Therefore, it has been selected for this ANN design. 

Meanwhile, in the previous Section 4.2, the ANN has been compared with CNN to indicate its 

effectiveness and advantage to support I2S. 

 

Table 7: Comparisons of different ANNs’ structure. 

Number 

of layer 

Number of 

neurons 

Average 

Training 

time (s) 

Average 

iterations 

Average 

accuracy (%) 

Highest 

accuracy (%) 

1 512 1.973 26.6 98.97 100 

2 512 3.244 30.2 98.69 100 

1 1024 4.018 27.6 97.69 100 

2 1024 8.475 31 96.92 100 

1 2048 6.711 26 98.46 100 

2 2048 19.964 23.6 96.92 100 

1 2049 7.703 29.2 98.97 100 

2 2049 24.169 30.6 98.20 100 

 

Scheduling/rescheduling Optimisation 

In this paper, improved FFO, conventional FFO, Genetic Algorithm (GA) and Simulated 

Annealing (SA) have been benchmarked to indicate the performance. Simulations have been run for 

10 times for each algorithm to compare the average results. Based on performance criteria, Energy 



consumption and machine utilisation level are optimised simultaneously. Therefore, 𝑤1, 𝑤2 and 𝑤3 

are 0.5, 0 and 0.5, respectively (Li et al. 2015). Figure 16 shows the optimisation results by improved 

FFO, traditional FFO, GA and SA respectively. According to recommendation of Zheng et al. (2014), 

size of sub-population is most critical parameter, number of swarm centre is not necessary to be large 

to avoid over focus. Therefore, the value for 𝑇𝑚𝑎𝑥  (maximum iterations), M (size of initial population), m 

(size of swarm centre population) and n (size of sub-population) are 500, 5, 1 and 70, respectively. Detailed 

results are shown in Table 8. 

 

Figure 16: Optimisation results of scheduling. 

 

Table 8: Comparisons of optimisation algorithms. 

    
Improved 

FFO 

Traditional 

FFO 
GA SA 

 

Iterations to achieve optimal 

result 
85 106 256 286 

Energy 

consumption 

Initial value (Kwh) 130 130 130 130 

Optimised value (Kwh) 78.86 78.99 79.78 79.69 

Optimisation percentage (%) 39.34 39.24  38.63 38.7 

Makespan 

Initial value (mins) 750 750 750 750 

Optimised value (mins) 520.17 525.32 533.27 527.99 

Optimisation percentage (%) 30.64 29.96  28.9 29.6 

Utilisation 

level 

Initial value (mins) 250.47 250.47 250.47 250.47 

Optimised value (mins) 20.33 24.97 31.64 25.77 

Optimisation percentage (%) 91.88 90.03  87.37 89.71 

 

In the company, the initial energy consumption, makespan and machine utilisation level for the 

same production are 130 Kwh, 750 mins and 250.47 mins respectively. According to the table, 

improved FFO has the best system performance by examining three indicators that are 39.34% energy 

consumption saving, 30.64% makespan reduction and 91.88% utilisation level improvement. 

The utilisation level optimised by improved FFO is less than 20.33 mins, which means all the three 

machines are relatively equally engaged in machining during the production cycle. Furthermore, it can 

be seen from the figures that the best optimised results for improved FFO can be achieved within 90 

iterations, which converges faster than GA and SA. Therefore, it can be summarised that the 

improved FFO has good robustness for solving this scheduling problem. After over 6 months of 

system deployment into the company, the company has achieved about 1926.4kwh energy saving 

(40.3%) and 29.6% productivity improvement in total. 



 

7. Conclusions 

In this research, CPS, Big Data analytics and optimisation algorithm have been effectively 

integrated for energy efficient machining optimisation. The developed system is innovated in the 

aspects of: (1) a novel process of “scheduling, monitoring and rescheduling” to enhance adaptability 

to dynamics during machining lifecycles, (2) an innovative energy model over a tooling lifecycle to 

support energy efficient optimisation, (3) an effective evolutional algorithm FFO to generate an 

energy efficient schedule, and reschedule when significantly varying working conditions are 

monitored and adjustments on the schedule are necessary, (4) successful deployment and trial of the 

system into European machining companies to achieve around 40% energy saving and 30% 

productivity improvement in the companies. The result analysis on the system applied to a UK 

company given in this paper showcases the effectiveness and potential of system applicability in 

practice. 

For future research, error processing on monitored data (data loss, data duplication) could be a 

very significant issue. Though some measures such as data cleaning has been integrated, more 

measures to eliminate the error effects need to be further investigated. In the meantime, longer-term 

experiments should be carried out to further validate the models developed in this research. 
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