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Abstract 

We have employed density functional theory calculations for determining intrinsic defect processes 

and structural, elastic, and electronic properties of recently synthesized Sn-containing 312 MAX 

phases M3SnC2 (M = Ti, Zr, Hf) including Debye temperature, Mulliken populations, theoretical 

hardness, charge density, and Fermi surface. The calculated lattice parameters justify the reliability of 

the present investigation, as they agree with the experimental values. The lattice constant a increases 

as the M-element moves from Ti to Hf in the periodic table. The mechanical stability of these 

compounds is verified with the computed single crystal elastic constants. Hf-based Hf3SnC2 is nearly 

isotropic elastically in view of the calculated parameters. The Debye temperatures decrease following 

the sequence of M-element: Ti  Zr  Hf. The investigated band structures indicate that the 

electrical conduction increases as the M-element moves down from the top of the group in the 

periodic table. A gradual decrease in electronic density of states (DOS) at EF also follows the order of 

M-element in the periodic table. The covalency of M-C bonds is calculated to be increased as M-

atoms moves from Ti to Hf via Zr. The rank of machinability for these compounds should be Zr3SnC2 

> Hf3SnC2 > Ti3SnC2. The Fermi surface topologies of the three 312 MAX phases are almost similar 

and comparable with those of 211 MAX phase counterparts. Considering defect reaction energies, it 

can be concluded that Ti3SnC2 is predicted to be the most radiation-tolerant among Sn-MAX phases 

considered. 

Keywords: MAX phases; density functional theory; physical properties; defect processes  

1. Introduction 

The MAX phases have received attention since the discovery of phase pure and dense Ti3SiC2 in 

1996 [1], though this family of ternary compounds was originally identified in 1960 [2]. Ti3SiC2 is a 

material shows a unique combination of properties usually possessed by either metals or ceramics. Its 

metal-like properties are high thermal and electrical conductivities, machinability and microscale 

ductility at room temperature. The ceramic-like properties are low density, elastic rigidity and 

excellent thermal shock and oxidation resistance. The subsequent discovery of Ti4AlN3 indicated that 

this family of compounds shares a basic structure which is responsible for their uncommon properties 

[3]. This led to the nomenclature “Mn+1AXn” (later abbreviated to MAX) phases, which also reveals 

the chemical formula for this group of compounds [4]. In this formula, M, A, and X are transition 

metal, A-group element, and carbon and/or nitrogen, respectively [1,5]. The n-values can classify the 

MAX phases into different sub-families, namely 211, 312, and 413 phases for n = 1, 2, and 3, 

respectively.  

The MAX phases crystallize in layered hexagonal structures with space group P63/mmc (no. 194). 

These compounds are composed of alternate near-close-packed layers of M6X octahedra intercalated 

with pure A-atomic layers. The M6X octahedra, close to those forming in the corresponding MX 

binary phases, are connected to each other by edge sharing [6]. The key difference in the structures of 

211, 312, and 413 MAX phases depends on the number of M-layers separating every two A-layers. 

Actually, in the 211, 312, and 413 phases, two, three, and four M-layers are present in the middle of 

every two A-layers. Due to such atomic arrangements, the MAX phases possess characteristic layered 

structures which are responsible for the unusual combination of both metallic and ceramic properties. 
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The MAX phases are sometimes termed as ‘metallic ceramics’ as they own properties of metals and 

ceramics. The MAX phases are also termed as ‘nanolaminates’ due to having effective laminated 

monolayers [7].  

Aryal et al. [8] have predicted 665 MAX phases, which are possible to exist physically. Day by 

day the list of MAX phases increases by the synthesis of new compounds [9-11]. Very recently, 

Lapauw et al. [12] have synthesized three 312 MAX phases in the M-Sn-C systems with M = Ti, Zr, 

and Hf by reactive spark plasma sintering. By adding Fe, Co or Ni to M-Sn-C mixtures, it has been 

possible to form 312 phases i.e., Ti3SnC2, Zr3SnC2 and Hf3SnC2, though their 211 counterparts are 

formed without such doping. Among these three MAX phases, Ti3SnC2 is the first Sn-containing 312 

phase, synthesized in 2007 [13]. The newly synthesized Zr3SnC2 and Hf3SnC2, were first predicted in 

2014 with a theoretical approach calculating the elastic tensors and electronic structures [8]. Many 

other physical properties of these two ternaries are still unexplored. In this study, we report a 

complete assessment on the mechanical properties, elastic Debye temperature, melting point, chemical 

bonding, theoretical hardness, charge density and Fermi surface for these three Sn-containing 312 

MAX phases.  

The studied compounds are also verified for using as thermal barrier coating (TBC) materials 

based on their calculated properties. TBC materials are two layered systems whose top coat is a 

ceramic layer and the underlying coat is a metallic bonded material layer. The ceramics with relatively 

high thermal expansion coefficient, low thermal conductivity and high thermal shock resistance are 

suitable for top-coat materials. For underlying coat, the metallic bonded materials should have low 

thermal conductivity, good oxidation resistance, high coefficient of thermal expansion, slow rate of 

growth, adhesive power to be adherent to the thermally grown oxide (TGO), stability and ability to 

match adequately with the substrate. Phonons are the main contributors to the TBC materials. The role 

of different phonon modes to TBC in different configurations is important. For example, the low 

frequency in-plane acoustic modes have the dominant contributions to the TBC in the configurations 

with low interfacial spacing between graphene and h-BN [**]. Higher phonon frequency corresponds 

to the lower thermal conductivity. So, in the present study, we have emphasized on thermal 

conductivity assessed from the calculated Debye temperature to predict the TBC materials.   

The arrangement of the rest of this paper is as follows: The computational methods are described 

briefly in Section 2. The results obtained in this study are explained and compared in Section 3. The 

concluding remarks are summarized in Section 4. 

2. Computational methods 

The first-principle plane-wave pseudopotential total energy methods based on density functional 

theory (DFT) [14,15] are carried out with the CASTEP code [16]. The interactions between electrons 

and ion cores are treated with the ultrasoft pseudopotential developed by Vanderbilt [17]. The 

generalized gradient approximation according to Perdew-Burkey-Ernzerhof (GGA-PBE) is used to 

treat the electronic exchange and correlation potential [18]. For searching the ground state of crystals, 

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is used to minimize the total energy and 

internal forces [19]. The crystal structures are fully optimized by independently modifying the lattice 

parameters and internal positions of atoms leaving core correction or spin effect. The Monkhorst-Pack 

(MP) grid with a special k-point mesh of 17172 is selected for sampling the Brillouin zone [20]. An 

energy cutoff of 550 eV is fixed for plane-wave expansion in reciprocal space. In geometry 

optimization, the stringent convergence criteria are used as 510–6 eV/atom for the difference in total 

energy, 0.01 eV/Å for the maximum ionic Hellmann-Feynman force, 510–4 Å for the maximum ionic 

displacement, and 0.02 GPa for maximum stress. 

The elastic constants are calculated using the DFT-based finite-strain method [21] as implemented 

in the CASTEP code. According to this method, the resultant stress is calculated with respect to 

optimizing the internal degrees of freedom after applying a set of finite homogeneous deformations 

(strains). Then the elastic constants are obtained by solving the equation, 𝜎𝑖𝑗 = ∑ 𝐶𝑖𝑗𝛿𝑗𝑖𝑗 , where σij is 

the stress tensor under a set of applied strains j. To calculate the elastic properties, this method has 

already become successful for many kinds of solid crystals [7,22-33]. The bulk modulus B and shear 

modulus G are calculated using Voigt-Reuss-Hill approximations [34-36]. The convergence criteria 



for elastic properties calculation are set as: the difference in total energy less than 1010–7 eV/atom, 

the maximum ionic Hellmann-Feynman force less than 210–3 eV/Å, and the maximum ionic 

displacement less than 1010–5 Å. Only for Hf3SnC2, a 16162 k-point mesh is used for elastic 

calculations. For Fermi surface calculations, a k-point mesh of 26264 for Hf3SnC2 and 24244 for 

Ti3SnC2 and Zr3SnC2 are used to obtain smooth topology. 

To perform population analysis, the CASTEP code uses a projection of the planewave states onto 

a localized (LCAO) basis via a method developed by Sanchez-Portal et al. [37]. Population analysis 

of the resultant projected states is subsequently performed with the Mulliken formalism [38]. The 

defect calculations were performed a 108-atomic site supercell under constant pressure conditions 

using a 3  3  1 MP k-point grid. To identify the potential interstitial sites we performed an intensive 

computational search considering all possible interstitial sites. The defect energies considered are 

effectively energy differences (refer to defect reactions in section 3.6) between isolated defects. The 

efficacy of the method to calculate the defect properties and the convergence as compared to 

experiment has been discussed in recent studies [39-41].  

 

3. Results and discussions 

3.1. Structural properties 

Like all other MAX phases, Ti3SnC2, Zr3SnC2 and Hf3SnC2 crystallize in the hexagonal structure with 

space group P63/mmc (No. 194). Few 312 MAX phases have been identified with two polymorphic 

structures in the same space group [42-44]. Polymorphism in this sub-family can be traced to the A-

group element residing in the different internal sites in the unit cell, with the MX-slabs remaining 

unchanged [42-45]. In the -polymorphic structure, the A-atom resides in a 2b Wyckoff site with 

fractional coordinates (0, 0, 1/4), whereas in -polymorphic structure, the A-atom resides in a 2d 

Wyckoff position with fractional coordinates (2/3, 1/3, 1/4). The first Sn-containing 312 MAX phase 

Ti3SnC2 crystallize with -polymorphic structure [13] and a theoretical study suggests that -Ti3SnC2 

is more energetically favorable than -Ti3SnC2 [46]. The newly synthesized Zr3SnC2 and Hf3SnC2 

also crystallize with an -polymorphic structure [12]. So, we restrict our calculations only for -

polymorphic structure of these three Sn-containing 312 MAX phases. 

 The calculated lattice constants a and c, hexagonal ratio c/a, internal parameters zM1 and zC and 

unit cell volume V are listed in Table 1. The experimental values of these parameters for the three 312 

phases with Fe as additive and other theoretical values are also listed to make a comparison with 

them. Fig. 1 shows the structural parameters obtained in the present study and measured in 

experiment [12] as a function of M-elements. The calculated lattice constants and unit cell volume 

agree reasonably with the experimental results with a deviation less than 1.73% for lattice constants 

and 4.61% for unit cell volume. 

    Table 1. Structural properties of M3SnC2 (M = Ti, Zr, and Hf) MAX phases.  

Phases a / Å c / Å c/a zM1 zC V / Å3 Remarks 

Ti3SnC2 3.1448 18.703 5.9472 0.1243 0.0684 160.2 This Calc. 

 3.1500 18.737 5.9483 - - - - - - - - - - 161.0 Calc. [8] 

 3.1173 18.436 5.9140 0.1266 0.0693 155.2 Calc. [46] 

 3.1341 18.641 5.9478 - - - - - - - - - - 158.6 Expt. [12] 

 3.1366 18.650 5.9459 0.1204 0.0720 158.9 Expt. [13] 

Zr3SnC2 3.3693 20.043 5.9486 0.1283 0.0699 197.0 This Calc. 

 3.3840 20.080 5.9338 - - - - - - - - - - 199.1 Calc. [8] 

 3.3585 19.876 5.9181 - - - - - - - - - - 194.2 Expt. [12] 

Hf3SnC2 3.3733 19.829 5.8783 0.1296 0.0697 195.4 This Calc. 

 3.3340 19.775 5.9313 - - - - - - - - - - 190.4 Calc. [8] 

 3.3162 19.611 5.9137 - - - - - - - - - - 186.8 Expt. [12] 



 

 

 

 

 

 

 

 

 

Fig. 1. Structural properties of M3SnC2 (M= Ti, Zr, Hf) as a function of M-element.  

3.2 Mechanical properties 

Mechanical properties are the physical properties that a material exhibits when a load is applied to it. 

Deep understanding of the mechanical properties is crucial for selecting a material to use in the 

appropriate field of application. Elastic constants are the main tools for evaluating the mechanical 

properties of solids. There are six different elastic constants Cij namely C11, C12, C13, C33, C44, and C66 

for MAX phases due to their hexagonal crystal structure. Excepting C66 [= (C11 – C12)/2], all others are 

independent. The calculated elastic constants are listed in Table 2 and shown in Fig. 2. The mechanical 

stability of hexagonal crystals depends on the conditions derived from the independent elastic 

constants: C11 > 0, C33 > 0, C44 > 0, (C11 – C12) > 0, and (C11 + C12)C33 >
2
132C  [47]. The Sn-containing 

three 312 MAX phases Ti3SnC2, Zr3SnC2 and Hf3SnC2 satisfy these conditions with their Cij and 

establish their mechanical stabilities theoretically. 

Table 2. Elastic properties of M3SnC2 (M = Ti, Zr, and Hf) MAX phases. 

Phases C11 C33 C44 C66 C12 C13 B G Y B/G v  M Remarks 

Ti3SnC2 321 304 115 110 100 79 162 114 276 1.42 0.215 1.41 This Calc. 

 331 285 108 118   96 97  180  126  307  1.43 0.216  1.67 Calc. [8] 

 346 313 123 127   92 84 169 124 300 1.36 0.205 1.37 Calc. [46] 

Zr3SnC2 280 257 110   94   92 84 148   99 243 1.49 0.227 1.35 This Calc. 

 297 268   95  103    90 87 154   98 244 1.57 0.237 1.62 Calc. [8] 

Hf3SnC2 320 300 115 113   95 96 168 112 275 1.50 0.227 1.46 This Calc. 

 326 300 107 116   96 97 170 110 272 1.55 0.233 1.59 Calc. [8] 

The pure shear elastic constants C44 for the three Sn-containing 312 MAX phases are found to be 

lower than the unidirectional elastic constants C11 and C33. This means that the shear deformation for 

the three phases is easier than linear compression along the crystallographic a- and c-axes following 

the order of M-elements: Ti > Hf > Zr. Again, the constant C11 is greater than C33, indicating that the 

three crystals are more compressible along the c-axis compared to along the a-axis. It also implies that 

the atomic bonding between nearest atoms in the (001) planes is somewhat weaker than that in the 

(100) planes. Among the three MAX phases, the Zr3SnC2 is most compressible and Ti3SnC2 most 

incompressible along the c-axis. The difference of these two unidirectional elastic constants can 

quantify the elastic anisotropy in crystals. Regarding this, the Sn-containing three 312 MAX phases 

are elastically anisotropic. 

  The direction within the lattice is the main difference between the elastic constants C12 and C44: 

the C12 governs the response to stress in the (110) plane and <100> direction, whereas the stress at the 

(010) plane in the <001> direction is affected by C44. It is evident from Table 2 that Zr3SnC2 is 
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deformed easily compared to other Sn-containing 312 phases. The combination of C12 and C13 leads 

to a functional stress along the crystallographic a-axis when a uniaxial strain exists in both the b- and 

c-axes. The low values of these constants imply that the M3SnC2 phases will accept shear deformation 

along the b- and c-axis, when an adequate stress is applied to the a-axis of the crystals. 

We have also calculated the bulk elastic properties, namely bulk modulus, shear modulus, 

Young’s modulus, etc. The bulk modulus B evaluates the resistance of solids under compression and 

can be related to the chemical bonding. With the lowest B value, Zr3SnC2 should be easily 

compressed and weak in chemical bonding compared to other two Sn-containing 312 MAX phases. 

The shear modulus G measures the materials’ resistance to shape change. The Zr-based Zr3SnC2 has 

also lowest G value and as a result, its shape change should be easier than Ti- and Hf-based MAX 

phases considered here. The Young’s modulus E reflects the stiffness of materials and has influence 

on the thermal shock resistance. A large E value makes a material stiffer and a low E value 

corresponds to a less-stiff material. It is evident from Table 2 that the Zr-based phase Zr3SnC2 is less 

stiff, and the Ti-based phase Ti3SnC2 is stiffer among the three MAX compounds studied here. The 

critical thermal shock resistance R varies inversely proportional to E [48]. A low E value corresponds 

to a high R value and better thermal shock resistance. A material will be selected as a thermal barrier 

coating (TBC) material if it has high thermal shock resistance. In the M3SnC2 system, the replacement 

of M-element with Zr causes a significant decrease in Young’s modulus and as a result Zr3SnC2 

should be a better TBC material than the other two MAX phases. 

 

 

                                                                         

                                                               

 

 

 

 

 

 

 

 
Fig. 2. Elastic constants and moduli of M3SnC2 (M= Ti, Zr, Hf) as a function of M-element. 

 

  

                                                                                      

                                                                                                                                                                               

                                                                               

 

 

 

 

 

 

 

Fig. 3. Failure mode and Machinability indices of M3SnC2 (M= Ti, Zr, Hf) as a function of M-element. 
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Fig. 4. Elastic anisotropy factors of M3SnC2 (M= Ti, Zr, Hf) as a function of M-element. 

MAX phases are used in a wide range of industrial applications such as disk drive [4], Kiln 

furniture [4],  etc. due to their good machinability, which is quantified with machinability index μM = 

B/C44. The calculated values of this parameter for the three Sn-containing 312 MAX phases are listed 

in Table 2 and shown in Fig. 3 as a function of M-element.   

Using the bulk to shear modulus ratio (B/G), Pugh successfully predicted the brittle/ductile failure 

mode of solids [49]. According to Pugh’s prediction, a material exhibits ductile nature when its B/G 

ratio exceeds a critical value of 1.75, or is brittle in nature below 1.75. Under this criterion, the 

studied three MAX phases should behave as brittle materials. 

Poisson’s ratio v is used in engineering science for assessing the ductile/brittle failure mode of 

solids. A critical value of v = 0.26 can separate solids as ductile or brittle [50,51]. A solid, whose v > 

0.26, behaves as a ductile material and that with v < 0.26 as a brittle one. Again, the studied three 312 

MAX phases are identified as brittle materials under this factor. Poisson’s ratio can also shed light on 

the nature of stabilizing force in solids [52]. The structure of a crystal will be stabilized with central 

force if its Poisson’s ratio lies within 0.25-0.50. When the value of v lies outside this range, the solids 

achieve structural stability due to non-central force. In this respect, the Sn-containing Ti3SnC2, 

Zr3SnC2 and Hf3SnC2 maintain their structural stability under non-central force. 

It is crucial to quantify the elastic anisotropy of crystals for many physical processes including 

development of plastic deformation in crystals, microscale cracking in ceramics, focusing of phonons 

in crystallites, etc. There are three shear anisotropy factors for hexagonal crystals due to their three 

independent shear elastic constants. The shear anisotropy factors associated with the shear planes 

{100}, {010} and {001} can be defined sequentially as [53]: 

𝐴1 =
(𝐶11 + 𝐶12 + 2𝐶33 − 4𝐶13)

6𝐶44
, (1) 

       

𝐴2 =
2𝐶44

𝐶11 − 𝐶12
, (2) 

   

𝐴3 =
(𝐶11 + 𝐶12 + 2𝐶33 − 4𝐶13)

3(𝐶11 − 𝐶12)
 (3) 

The calculated shear anisotropy factors are listed in Table 3 and shown in Fig. 4. The unit value of 

these indexes signifies the complete isotropic nature of crystals. Elastic anisotropy can be quantified 

with the deviation of these factors from unit value. The present values indicate that the Ti-based 

Ti3SnC2 is nearly isotropic and Zr-based Zr3SnC2 is rather anisotropic in view of shear stress.   

 
Table 3. Calculated elastic anisotropy factors of M3SnC2 (M = Ti, Zr, and Hf) MAX phases. 

Phases A1 A2 A3 kc/ka AB AG AU Remarks 

Ti3SnC2 1.0333 1.0407 1.0754 1.2892 0.1417 0.0648 0.0093 This Calc. 

 0.8398 0.9191 0.8638 1.2394    Calc. [8]* 

 0.9864 0.9398 0.9554 1.0305    Calc. [46]* 

Zr3SnC2 0.8333 1.1702 0.9752 1.1792 0.1343 0.3512 0.0378 This Calc. 

 1.0088 0.9179 0.9259 1.1768    Calc. [8]* 

Hf3SnC2 0.9145 1.0222 0.9348 1.0931 0.0430 0.0590 0.0068 This Calc. 

 0.9875 0.9304 0.9188 0.9956    Calc. [8]* 
*Calculated with published data. 

We have also calculated another important anisotropy factor defined as the ratio of linear 

compressibility coefficient along the c-axis to that along the a-axis: kc/ka = (C11 + C12 – 2C13)/(C33 – 

C13). For isotropic crystals, this ratio is found to be unit value. Any value other than unity indicates 



the degree of elastic anisotropy in axial compression. The obtained values signify that the axial 

compression response along the c-axis is greater than that along the a-axis for Ti3SnC2 and for 

Hf3SnC2 the linear compression along both axes is almost the same.   
Percentage anisotropy in compressibility and shear are assumed to be more expedient measures of 

elastic anisotropy in polycrystalline solids. These two indices are expressed successively as follows 

[54]: 

𝐴𝐵 =
𝐵𝑉 − 𝐵𝑅

𝐵𝑉 + 𝐵𝑅
 100% (4) 

and 

𝐴𝐺 =
𝐺𝑉 − 𝐺𝑅

𝐺𝑉 + 𝐺𝑅
 100% (5) 

In these formulae, B and G are the bulk and shear moduli and their subscripts V and R stand for the 

Voigt and Reuss limits, respectively. For completely isotropic materials, AB and AG are found to be 

zero and values greater than zero indicate the increasing level of anisotropy associated with the 

crystals. A value of 100% for both AB and AG suggests the highest achievable anisotropy for a crystal. 

The listed values in Table 3 signify that the anisotropy in compression is slightly significant in 

Ti3SnC2 and anisotropy in shear is prominent in Zr3SnC2. 

 The above-mentioned anisotropy factors lack universality in the sense of uniqueness and pay no 

attention to the contributions from the bulk part of the elastic stiffness tensor. To overcome these 

limitations, Shivakumar et al. [55] proposed a new index named universal elastic anisotropy. The new 

anisotropy factor is applicable to all types of crystals from cubic to triclinic. This factor is defined as: 

𝐴𝑈 = 5
𝐺𝑉

𝐺𝑅
+

𝐵𝑉

𝐵𝑅
− 6 ≥ 0 (6) 

Like AB and AG factors, AU also signifies the isotropic nature of crystals with AU = 0 and quantifies the 

degree of anisotropy with a value greater than zero. Though the Sn-containing three 312 MAX phases, 

have low elastic anisotropy, the Zr-based Zr3SnC2 is 4 and 5.5 times more anisotropic compared to Ti 

and Hf-based Ti3SnC2 and Hf3SnC2, respectively.  

Melting and Debye temperatures 

To determine the melting temperature of a compound, Fine et al. [56] developed an empirical formula: 

𝑇𝑚 = 354 + 1.5(2𝐶11 + 𝐶33) (7) 

The estimated melting temperature is also listed in Table 4 and shown in Fig. 5. It is observed that the 

melting temperature decreases drastically if Ti is replaced with Zr. While Ti is substituted by Hf it is 

remains almost unchanged.  

Anderson developed a sophisticated method for calculating the Debye temperature from elastic 

moduli with high precision [57]. This method is valid for all crystal classes and it requires no 

intensive computing. According to this method, the Debye temperature of a solid is directly 

proportional to the average sound velocity, with which sound waves travel through the material. For 

polycrystalline materials, where the transverse and longitudinal sound velocities remain invariant with 

direction, the average sound velocity can be expressed as: 

𝑣𝑚 =  [
1

3
(

1

𝑣𝑙
3 +

2

𝑣𝑡
3)]

−1/3

 (8) 

The longitudinal sound velocity, vl and transverse sound velocity vt are computed from the bulk and 

shear moduli B, G and mass density  of the material as follows: 

𝑣𝑡 = [
𝐺

𝜌
]

1/2

 and 𝑣𝑙 = [
(3𝐵 + 4𝐺)

3𝜌
]

1/2

 (9) 



The Debye temperature, D is then easily computed by the simple equation:  

𝜃𝐷 =
ℎ

𝑘𝐵
[
3𝑛𝑁𝐴𝜌

4𝜋𝑀
]

1/3

𝑣𝑚 (10) 

The calculated sound wave velocities and Debye temperature are listed in Table 4 and presented in 

Fig. 5. A gradual decrease in sound velocities is observed when the M-element moves from Ti to Hf. 

The Debye temperature decreases significantly when the Ti-atom is replaced with Zr-atom. The 

decrease in Debye temperature will be one-third if the Zr-atom is then substituted by the Hf-atom.  
 

Table 4. Calculated density ( in gm/cm3), longitudinal, transverse and average sound velocities (vl, vt, vm in 

km/s), Debye temperature (D in K) and melting temperature of M3SnC2 (M = Ti, Zr, and Hf) MAX phases.  

Phases  vt  vl vm D Tm Remarks 

Ti3SnC2   5.9354 4.3826 7.2734 5.6006 703 1764 This Calc. 

   5.9059 4.6189 7.6762 5.9050 740 1766 Calc. [8]* 

   6.1266 4.4988 7.3872 5.7303 727 1853 Calc. [46]* 

Zr3SnC2   7.0192 3.7556 6.3159 4.8184 480 1571 This Calc. 

   6.9452 3.7564 6.4022 4.8383 531 1638 Calc. [8]* 

Hf3SnC2 11.5259 3.1172 5.2471 3.4517 405 1755 This Calc. 

 11.8286 3.0495 5.1741 3.9227 465 1773 Calc. [8]* 
*Calculated with published data. 

  

                                                                                

 

 

 

 

Fig. 5. Melting and Debye temperatures with sound wave velocities as a function of M-element. 

3.3. Electronic structures 

The electronic band structures for the three Sn-based 312 MAX phases calculated along the high-

symmetry directions are shown in Fig. 6. The Fermi levels are set at zero of the energy scale defined 

with E – EF. The Fermi surfaces lie below the valence band maximum near the -point. A number of 

valence bands go across the Fermi level and overlap with the conduction bands. Consequently, no 

band gap appears at the Fermi level and the compounds Ti3SnC2, Zr3SnC2 and Hf3SnC2 should exhibit 

metallic conductivity. The -points, where the maximum valence bands accumulate, shift away from 

the Fermi surface as the M-element moves from Ti to Hf across the periodic table. The width of the 

conduction bands increases as the M-element goes down from top of the group in the periodic table, 

indicating the increasing level of electrical conductivity. As the broadening of the conduction band 

indicates strengthen electron delocalization and the delocalized electrons are responsible for the 

electrical conductivity [**-**]. In the Ti3SnC2, Zr3SnC2 and Hf3SnC2 phases, 2.2, 4.0 and 4.2 eV above 

the Fermi level are found to be involved in electrical conduction. M d-electrons with covalent bond to 

C have the dominant contribution in the conductivity [**]. Other features and shapes of the band 

profiles are almost similar in the three MAX phase carbides.  
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Fig. 6. Band structures of M3SnC2 (M = Ti, Zr, and Hf) MAX phases. 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Electronic density of states of M3SnC2 (M = Ti, Zr, and Hf) MAX phases. 

The calculated total and partial density of states (DOS) for the three Sn-containing 312 MAX phases 

are shown in Fig. 7. In the DOS, the peak structures and their relative heights are almost the same. 

The main differences are found in the structure of conduction bands as well as in the shape of the 

lowest valence bands due to the Sn 5s electrons. The presence of a pseudogap at the left of the Fermi 

level EF in the DOS is a sign of the structural stability of these compounds. The finite value of DOS at 

EF indicates the metallic nature of M3SnC2. As a trend of MAX phases [23,28,31,33,58,59], the d-

orbitals of transition metals (here Ti 3d, Zr 4d and Hf 5d) mainly contribute to the DOS at EF and no 

contribution comes from carbon. The obtained DOS at EF are found to be 3.925, 3.448 and 3.217 

states per eV per unit cell for Ti3SnC2, Zr3SnC2 and Hf3SnC2, respectively, indicating a gradual 

decrease in DOS at EF following the order of M-element in the periodic table. 

 The lower valence bands centered around –10 eV arise in the three Sn-containing MAX phases 

due to hybridization between C s electrons and transition metal M d electrons, which lead to strong 

covalent M-C bonds. A low flat-type valence band exists between the lower and higher valence bands 

due to s-orbital electrons of the Sn-atoms. The highest peak in the higher valence band originates as a 

result of strong hybridization of C p and M d orbitals, which also indicates another M-C covalent 

bond. The M-C bond mentioned early will be strongest as it corresponds to the lowest valence states 

situated at a deeper energy region. The lowest peak in the higher valence band is mainly composed of 

Sn p and M d electrons, which indicates weaker M-Sn bonds due to proximity to the Fermi level of 

the peak. It is the common feature of the MAX phases [23,28]. On the whole, the bonding nature in 

the three Sn-containing MAX phases in the 312 sub-family can be described as a combination of 

metallic, covalent, and, due to the difference in electronegativity between the comprising elements, 

ionic contributions.   

Mulliken population analysis 

Energy, E - E
F
 (eV)

-12 -10 -8 -6 -4 -2 0 2 4

0

2

4

6

E
le

ct
ro

n
ic

 d
en

si
ty

 o
f 

st
at

es
 (

D
O

S
) 

in
 e

le
ct

ro
n

s/
eV

/U
n

it
 c

el
l

0

1

2

3

0

3

6

9

0

4

8

12

16

Ti
3
SnC

2
E

F

Ti-4s 

Ti-3p 

Ti-3d 

Sn-5s 

Sn-5p 

C-2s 

C-2p 

Energy, E - E
F
 (eV)

-12 -10 -8 -6 -4 -2 0 2 4

0

2

4

6

0

1

2

3

0

2

4

6

0

5

10

15

20

Zr
3
SnC

2
E

F

Sn-5s 

Sn-5p 

C-2s 

C-2p 

Zr-5s 

Zr-5p 

Zr-4d 

Energy, E - E
F
 (eV)

-12 -10 -8 -6 -4 -2 0 2 4

0

2

4

6

0

1

2

3

0

2

4

6

0

5

10

15

20

Hf
3
SnC

2
E

F

Sn-5s 

Sn-5p 

C-2s 

C-2p 

Hf-6s 

Hf-5p 

Hf-5d 



Mulliken population analysis performed with LCAO basis sets provides a natural way to quantify the 

atomic charge, effective valence, bond population and charge transfer [60,61]. The charge assigned 

with a particular atom A can be calculated by: 

𝑄(𝐴) = ∑ 𝑤𝑘 ∑ ∑ 𝑃𝜇𝜈(𝑘)𝑆𝜇𝜈(𝑘)

𝜈

𝑜𝑛 𝐴

𝜇𝑘

 
 

and the overlap population between two atomic species A and B, is  

𝑃(𝐴𝐵) = ∑ 𝑤𝑘 ∑ ∑ 2𝑃𝜇𝜈(𝑘)𝑆𝜇𝜈(𝑘)

𝑜𝑛 𝐵

𝜈

𝑜𝑛 𝐴

𝜇𝑘

 
 

where P is the density matrix element and S is the overlap matrix. The Mulliken atomic charge on 

the anion species initiates to evaluate the effective valence from the formal ionic charge. The 

difference of these two characteristic charges evaluates the effective valence of an atomic species. The 

effective valence quantifies the strength of a chemical bond identifying with covalency or ionicity. A 

zero-value effective valence is observed to be assigned with a bond of type purely ionic and a non-

zero effective valence leads to form a bond of covalent nature. The increasing level of covalency of a 

chemical bond can be evaluated with the value of a positive effective valence. The effective valence 

calculated for the Sn-based three 312 MAX phases is presented in Table 5. The data presented in 

Table 5 indicate the dominant covalency in chemical bonding between constituent atoms in Ti3SnC2, 

Zr3SnC2 and Hf3SnC2. The charge transfer from one atom to another can be estimated from the 

analysis of the atomic populations. In Ti3SnC2 the charge transfer from Ti to C and Sn is 0.72 and 

0.11e, respectively. Similarly, 0.79 and 0.09e charges are transferred from Ti atom to C and Sn atoms, 

respectively. Conversely, in Hf3SnC2, instead of charge receiving Sn atom takes part in charge 

transferring. The carbon atom receives 0.87e charge from Sn and Ti atoms. The charge transfer 

between to atoms indicates their ionic bonding. 

Table 5. Mulliken atomic populations, Mulliken charge and effective valence of M3SnC2. 

Compounds Mulliken atomic populations Effective 

valence / e Species s p d Total Charge / e 

Ti3SnC2 C 1.48 3.24 0.00  4.72 –0.72 - - - - 

 Sn 1.53 2.57 0.00  4.11 –0.11 3.89 

 Ti1 2.13 6.60 2.61 11.33 -0.67 3.33 

 Ti2 2.19 6.67 2.70 11.56 -0.44 3.56 

Zr3SnC2 C 1.50 3.29 0.00  4.79 –0.79 - - - - 

 Sn 1.53 2.56 0.00  4.09 –0.09 3.91 

 Zr1 2.17 6.46 2.60 11.23 -0.77 3.23 

 Zr2 2.26 6.56 2.74 11.55 -0.45 3.55 

Hf3SnC2 C 1.55 3.32 0.00  4.87 –0.87 - - - - 

 Sn 1.05 2.65 0.00  3.69 -0.31 3.69 

 Hf1 0.41 0.05 2.74  3.21 -0.79 3.21 

 Hf2 0.47 0.37 2.83  3.67 -0.33  3.67 

The bond overlap population plays an important role to predict the bonding nature in crystalline solids. 

Weak interactions of electronic populations between two atoms give rise to an overlap population of 

zero value. As bond population approaches a zero value, the ionic nature of the chemical bonding 

increases. Conversely, a higher positive population indicates higher covalent nature in the chemical 

bonding. A negative value of overlap population is responsible for the antibonding states in the 

chemical bonding. The bond overlap population for the studied MAX phases is listed in Table 6. 

 The covalency of both M-C bonds is found to be increased as the M-atom moves from Ti to Hf 

via Zr. The antibonding states due to M-Sn bonding weaken as Ti is replaced with Zr and alter into 

bonding state when M-atom is Hf. The M-M bonding gives rise to the antibonding states in the three 

Sn-containing 312 MAX phases.  



Table 6. Mulliken bond number n, bond length d, and bond overlap population P of -type bond of M3SnC2.  

Ti3SnC2  Zr3SnC2  Hf3SnC2  

Bond n d/ Å P Bond n d/ Å P Bond n d/ Å P 

Ti1-C 4 2.0954 -1.21 Zr1-C 4 2.2697 -1.24 Hf1-C 4 2.2811 -1.57 

Ti2-C 4 2.2209 -0.87 Zr2-C 4 2.3973 -0.88 Hf2-C 4 2.3884 -1.07 

Ti1-Sn 4 2.9701 –0.66 Zr1-Sn 4 3.1205 –0.22 Hf1-Sn 4 3.0807 -0.03 

Ti1-Ti2 4 2.9500 –0.50 Zr1-Zr2 4 3.2237 –0.27 Hf1-Hf2 4 3.2248 –0.37 

3.4. Theoretical hardness 

Hardness is one of the most important mechanical properties of solid materials, depending on which a 

material is selected for engineering usages. Theoretical Vickers hardness calculation has an increasing 

interest in recent time after reformulation of the Gao [62] formalism for partially metallic compounds 

[63]. The bond hardness due to this reformulation is as follows:  

𝐻𝑣
𝜇

= 740 (𝑃𝜇 − 𝑃𝜇′
) (𝑣𝑏

𝜇
)−5/3  (13) 

where the Mulliken population for a bond of type  is denoted by P, 𝑃𝜇′
 refers to the metallic 

population, and 𝑣𝑏
𝜇

 represents the volume of a -type bond. Again, the metallic population is defined 

as the number of free electrons confined in a cell per unit volume and can be calculated as: 

𝑃𝜇′
= (1/𝑉)𝑛𝑓𝑟𝑒𝑒 = (1/𝑉) ∫ 𝑁(𝐸)𝑑𝐸

𝐸𝐹

𝐸𝑃

 (14) 

where, EP and EF are the energy at the pseudogap and Fermi level, respectively. The bond volume of a 

-type bond 𝑣𝑏
𝜇

 can be determined from the bond length 𝑑𝜇of type  and the number of -type bonds 

𝑁𝑏
𝜐 per unit volume using the equation: 

𝑣𝑏
𝜇

= (𝑑𝜇)3/ ∑[(𝑑𝜇)3𝑁𝑏
𝜈]

𝜈

 (15) 

The hardness of a complex multiband crystal can be determined from the geometric average of all 

bond hardness values as follows [64,65]:    




nn

vV HH  /1])([=  
(16) 

where n refers to the number of -type bonds of a multiband crystal. The calculated Vickers hardness 

and relevant parameters are listed in Table 7.  

Table 7. Calculated Vickers hardness Hv of M3SnC2,(M = Ti, Zr, Hf) MAX phases with the relevant 

quantities such as metallic population P, bond volume 
bv  and bond hardness 

vH .   

Phases Bond n d/ Å P P 

bv  / Å3 

vH  / GPa Hv / GPa 

Ti3SnC2 Ti1-C 4 2.0954 1.21 0.01285 18.28 6.98 5.1 

 Ti2-C 4 2.2209 0.87 0.01285 21.77 3.74  

Zr3SnC2 Zr1-C 4 2.2697 1.24 0.00935 22.61 5.04 4.2 

 Zr2-C 4 2.3973 0.88 0.00935 26.64 3.56  

Hf3SnC2 Hf1-C 4 2.2811 1.57 0.01663 22.74 6.30 4.7 

 Hf2-C 4 2.3884 1.07 0.01663 25.87 3.44  

The obtained values for Vickers hardness of Ti3SnC2, Zr3SnC2 and Hf3SnC2 are 5.1, 4.2 and 4.7 GPa, 

respectively. These values lie within the range 2-8 GPa for MAX phases [7,22,58,66], indicating the 

reliability of the present calculations as well as signifying that the three studied compounds are likely 

to be soft and easily machinable. The rank of machinability for these compounds should be Zr3SnC2 > 

Hf3SnC2 > Ti3SnC2.     



3.5 Charge density maps and Fermi surfaces 

To understand the chemical bonding in the three Sn-containing 312 MAX phases, the contour maps of 

electron charge density are investigated and presented in Fig. 8. The contour maps of Ti3SnC2 and 

Zr3SnC2 are almost identical, indicating the similar charge distribution and chemical bonding in the 

two nanolaminates. In these two compounds, the charge density distributions around M and Sn atoms 

are fairly spherical and around the C atom, it is distorted towards M atoms, indicating the strong M-C 

(Ti-C and Zr-C) covalent bonding. The charge distribution around the Hf atom in Hf3SnC2 is also 

spherical, but it indicates low density and encompasses a small area. The reason may be its smaller 

atomic populations compared to those of Ti and Zr (see Table 5). The charge distribution around C 

atoms in Hf3SnC2 is nearly spherical with a noticeable deformation in the direction of the Hf atoms, 

which also indicates strong Hf-C covalent bonding. In the three studied MAX phases, the charge 

distribution of C towards Sn is almost spherical, indicating the ionic nature of the Sn-C bonding.  

     

 

 

 

 

 

 

 

 

Fig. 8. Calculated charge density maps of M3SnC2,(M = Ti, Zr, Hf) MAX phases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Fermi surfaces of M3SnC2,(M = Ti, Zr, Hf) MAX phases. 
 
 

The Fermi surface is a conceptual geometrical demonstration of all the accessible electronic states in a 

material, which leads to characterize a material with its electrical, thermal and magnetic properties. 

With the knowledge of Fermi surface one can predict the materials’ electrical properties and aspire to 

develop materials with preferred functionality. The calculated Fermi surfaces of the three Sn-

C 

C 

C 

C 

Sn 

M 

M 

Sn 

M 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

Ti3SnC2       Zr3SnC2       Hf3SnC2 

Ti3SnC2 Zr3SnC2 

Hf3SnC2 



containing 312 MAX phases are shown in Fig. 9. The Fermi surface topologies of the three 312 MAX 

phases are almost similar and comparable with those of their 211 MAX phase counterparts [67]. 

These topologies consist of different sheets. Four electron-like sheets are seen to be centered along the 

–A direction. The first sheet is purely cylindrical and the other three sheets are prismatic-like with 

hexagonal cross sections. Two hole-like sheets with complex topology appear at the corners of the 

Brillouin zone around the H–K directions.  

 

3.6 Defect processes 

In essence the point defect processes can impact properties such as the radiation performance of 

materials. This will depend on the propensity of the material to form and accommodate point defects, 

as a high content of defects may lead to the destabilization of the system and even microcracking 

[68,69]. It has been determined that displacive radiation can lead to an athermal concentration of 

Frenkel pairs. In essence the radiation tolerance of a material can depend upon its resistance to form 

high populations of Frenkel (and antisite) defects and therefore high defect energies indicate radiation 

tolerance [70]. Table 8 reports the calculated defect reaction energies (in Kröger–Vink notation: i.e., 

VA and Ai will denote a vacant A site and an A interstitial defect respectively) and the corresponding 

defect for the Ti3SnC2 MAX phases (M = Ti, Zr, Hf), whereas Table 9 shows the corresponding 

lowest energy interstitial sites.  

Table 8. The calculated defect reaction energies (in eV, for relations 1-18) 

for the M3SnC2 MAX phases (M = Ti, Zr, Hf). 

Reaction Ti3SnC2 Zr3SnC2 Hf3SnC2 

 1) MM → VM + Mi 9.40 8.74 9.20 

 2) SnSn → VSn+ Sni 9.41 6.48 7.29 

 3) CC → VC + Ci 5.50 4.97 5.31 

 4) MM + SnSn → MSn + SnM 5.38 5.15 5.21 

 5) MM + CC → MC + CM 12.13 15.92 15.10 

 6) SnSn + CC → SnC + CSn 10.18 10.09 10.63 

 7) Sni + VM → SnM –7.36 –4.44 –4.86 

 8) Ci + VM → CM –1.75 –0.58 –0.13 

 9) Mi + VSn → MSn –6.07 –5.63 –6.42 

 10) Ci + VSn → CSn –0.07 0.31 0.12 

 11) Mi + VC → MiC –1.02 1.79 0.72 

 12) Sni + VC → SnC –4.65 –1.67 –2.10 

 13) Mi + SnSn → MSn + Sni 3.34 0.85 0.88 

 14) Mi + CC → MC + C i   4.48 6.76 6.04 

 15) Sni + MM → SnM + Mi 2.05 4.30 4.33 

 16) Sni + CC → SnC + Ci 0.85 3.30 3.22 

 17) Ci + MM → CM + Mi   7.65 8.16 9.07 

 18) Ci + SnSn → CSn + Sni 9.34 6.79 7.41 

 
Table 9. The lowest energy interstitial sites for the M3SnC2 MAX phases (M = Ti, Zr, Hf). 

Phases Mi Sni Ci 

Ti3SnC2 1/3, 2/3, 0.698 0.520, 0.488, 0.295 1/3, 2/3, 0.652 



Zr3SnC2 0.735, 0.689, 1/4 -0.084, 0.689, 1/4 1/3, 2/3, 1/4 

Hf3SnC2 0.771, 0.673, 1/4 2/3, 1/3, 1/4 1/3, 2/3, 1/4 

Considering the intrinsic defect processes investigated here (relations 1-6 in Table 8) it can be inferred 

that Ti3SnC2 will be more radiation tolerant than Zr3SnC2 and Hf3SnC2. This is due to the lowest 

energy intrinsic disorder mechanism (5.38 eV, relation 4 in Table 8) in Ti3SnC2 being higher in 

energy compared to the lowest energy intrinsic disorder mechanisms in Zr3SnC2 and Hf3SnC2 (4.97 

eV and 5.21 eV respectively, Table 8). Additionally, all the Frenkel energies of Ti3SnC2 are higher as 

compared to Zr3SnC2 and Hf3SnC2 (relations 1-3, Table 8). Therefore, there will be a lower 

concentration of antisite and Frenkel defects in Ti3SnC2 as compared to Zr3SnC2 and Hf3SnC2. 

Focusing on Ti3SnC2, given that relations 3 and 4 are the most favourable it is expected that there will 

be a higher concentration of Ci, VC, TiSn and SnTi defects when the material will be irradiated. The 

other intrinsic defect processes (relations 1,2,5,6 of Table 8) are far higher in energy and never of 

importance. A trend that was identified in all Sn-MAX phases considered is that interstitial defects 

readily recombine with vacancies to form antisite defects (relations 7-9, 12 of Table 8), whereas the 

interactions of interstitials with lattice atoms to produce antisites is always energetically unfavourable 

(relations 13-18 of Table 8). It should be stressed that although defect reactions can provide important 

information on the radiation tolerance of MAX phases, they should be verified by experiments and/or 

theoretical calculations of diffusion barriers and cascade processes. 

4. Conclusions 

1. First-principles calculations were performed for investigation of intrinsic defect process and 

structural, elastic, and electronic properties of recently synthesized Sn-containing M3SnC2 (M = Ti, 

Zr, Hf) MAX phases. 

2. The calculated lattice constants agree well with the experimental values. The lattice constant a is 

observed to increase as the M-element moves from Ti to Hf in the periodic table. 

3. The computed single crystal elastic constants verify the mechanical stability of these compounds. 

The calculations show that the Hf-based Hf3SnC2 is nearly isotropic elastically. 

4. The Debye temperatures are found to be dependent on M-element and decrease as the M-element 

moves from Ti to Hf. The machinability of these compounds should follow the order Zr3SnC2 > 

Hf3SnC2 > Ti3SnC2. 

5. The covalency of M-C bonds is found to be increased as M-atoms moves from Ti to Hf via Zr. The 

Fermi surface topologies of Ti3SnC2, Zr3SnC2 and Hf3SnC2 are similar and comparable with those of 

211 MAX phases’ counterparts. Ti3SnC2 is the most radiation-tolerant Sn-MAX phase based on the 

defect reaction energies.  
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