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Abstract

In this paper, we describe the recent developments in the field of buoyancy-driven turbulence with a
focus on energy spectrum and flux. Scaling and numerical arguments show that the stably-stratified
turbulence with moderate stratification has kinetic energy spectrum E,, (k) ~ k~'/% and the kinetic
energy flux IT,, (k) ~ k=*/%, which is called Bolgiano-Obukhov scaling. However, for Prandtl number
near unity, the energy flux for the three-dimensional Rayleigh—Bénard convection (RBC) is
approximately constant in the inertial range that results in Kolmorogorv’s spectrum (E,, (k) ~ k=5/3)
for the kinetic energy. The phenomenology of RBC should apply to other flows where the buoyancy
feeds the kinetic energy, e.g. bubbly turbulence and fully-developed Rayleigh Taylor instability. This
paper also covers several models that predict the Reynolds and Nusselt numbers of RBC. Recent works
show that the viscous dissipation rate of RBC scales as ~Ra!~?, where Ra is the Rayleigh number.

1. Introduction

Gravity pervades the whole universe, and it plays a dominant role in the flow dynamics of the interiors and
atmospheres of planets and stars. The gravitational force also affects the engineering flow, e.g., in large turbines.
Therefore, understanding the physics of buoyancy-driven turbulence is quite crucial.

Hydrodynamic turbulence is described quite well by Kolmogorov’s theory [50] according to which the
energy spectrum (E(k)) in the inertial range is described by

E (k) = K, II%/3k5/3, (D

where K, is the Kolmogorov’s constant, and I1 is the energy flux or energy cascade rate, which is assumed to be
constant in the inertial range. In Kolmogorov’s phenomenology for hydrodynamic turbulence, the flow is forced
atlarge length scales. However in buoyancy-driven flows, the buoyancy provides forcing at all length scales,
hence the kinetic energy flux I1,, is expected to be a function of wavenumber k. Bolgiano [11] and Obukhov [81]
exploited this idea to derive energy spectrum for stably-stratified turbulence (SST); their scaling arguments yield
I1,(k) ~ k~*/5,and the kinetic energy spectrum E, (k) ~ k~'/>. Here the kinetic energy is converted to
potential energy that leads to decrease of I1 (k) with k. Procaccia and Zeitak [89], L’vov [65], L’vov and Falkovich
[66], and Rubinstein [91] argued that the scaling of Bolgiano [11] and Obukhov [81] would extend to the
thermally-driven turbulence as well. Kumar et al [53] however showed that in turbulent convection, the
buoyancy feeds the kinetic energy, hence II,, (k) cannot decrease with k, and Bolgiano-Obukhov’s arguments are
not valid for thermally-driven turbulence. Using a detailed analysis, Kumar et al [ 53] showed that turbulent
thermal convection shows Kolmogorov’s k >/ energy spectrum.

Strong gravity makes the flow anisotropic. Surprisingly the turbulent flow in Rayleigh—Bénard convection
(RBC) is nearly isotropic [75], while the SST is nearly isotropic when Richardson number is less than unity [53].
The stably-stratified flows become quasi two-dimensional for larger Richardson numbers. For RBC the large-
scale quantities like Reynolds and Nusselt numbers exhibit interesting scaling relations.

In this paper we describe the recent results of the field, with focus on spectral properties of buoyancy-driven
turbulence. Refer to the review articles [2, 8, 29, 63, 98] for more comprehensive discussion on various topics of
RBC. We introduce the governing equation and system description in section 2. We cover recent development

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Schematic diagrams for the idealized setup of stably stratified system and Rayleigh—Bénard convection (RBC): (a) In stably
stratified setup, a lighter fluid sits on top of a heavier fluid (dp/dz < 0). (b) In RBC, heavier (colder) fluid is on top of lighter (hotter)
fluid, thus dp/dz > 0.

on energy spectrum and flux in section 3, and scaling of large-scale quantities in section 4. Section 5 contains a
brief description of the dynamics of flow reversal. We conclude in section 6.

2. System description
In this section we describe the the buoyancy-driven systems and their associated equations.

2.1.Equations under Oberbeck—Boussinesq approximation
Consider fluid between two layers separated by distance d with the bottom density at p;, and the top density at p,
(see figure 1). Clearly the fluid is under the influence of an external density stratification. Under equilibrium

condition, the density profile is
, dp P — Py
2) = p, + —z=p, + +—"tz 2
p(2) = py ] Po 7 ©))

We denote p (z) as the mean density profile. With fluctuations, the local density p; (subscript I stands for local) is

P ¥, 2) = p+ p(x, ¥, 2). 3

The gravitational force on a unit volume is — p; gz, where —gZ is the acceleration due to gravity. Hence the
gravitational force density on the fluid is

B =—gpz=—g(p+pi=—V ( f p(z’)dz’) — pgs. (4)

The force pgZ occurring due to the change in density from the local value is the buoyancy. Itis along —Z
(downward) for p > 0, butalong Z (upward) for p < 0 (see figure 1).
The fluid flow is described by the Navier—Stokes equation

pl[% + (u- V)u] =-Vp+ E + uViu + £, ©)

where u, p are the velocity and pressure fields respectively, 1 is the dynamic viscosity of the fluid, and £, is the
external force in addition to the buoyancy. Substitution of equation (4) in equation (5) yields

pz[% + (u- V)u] = —Vo — pgt + pVu, (©)

where
o=p+ gf p(z)dz’ @

is the modified pressure.
The continuity equation for the density is

0
a—’;’ +V-(puw) =V (kVp), (8)

where £ is the diffusivity of the density. We assume that x is constant in space and time. We can rewrite
equation (8) as
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d
Veou= 12 1w, ©)
prde p

Now we employ Oberbeck—Boussinesq approximation according to which (dp, /dt) /p; =~ 0. Hence the relative
magnitudeof V - uis
V-u L 2 K 1

~ —krVip x — = —, 10
U/L  pU PI¥0L ™ pe (10)

where L, U are the large length and velocity scales respectively, and Pe is the Péclet number. Hence for large Pe,
which is often the case for buoyancy-driven flows, we can assume that V - u = 0. Therefore, under the
Oberbeck-Boussinesq approximation, equation (8) gets simplified. In addition, we replace p, of equation (6)
with the mean density of the fluid, p,,. Hence the governing equations for the buoyancy-driven flows are

u +@-Vu= —LVU— ig2—|—uV2u—i—fu, (11)
ot Prm Prm
9 +@-V)p= —d—puz + KV?p, (12)
ot dz

where v = p1/p,, is the kinematic viscosity. The assumption that v, « are constants in space and time is also
considered to be a part of the Oberbeck—Boussinesq approximation. Also note that the buoyancy term, which is
a function of variable density, is retained in the Navier—Stokes equation since it is comparable to the other terms
of the momentum equation (see section 2.9). In the SST, the total energy decays without f,, hence £, is employed
to maintain a steady state.

Note that the system is stable when heavy fluid is below the lighter fluid, or dp/dz < 0 (see figure 1(a)). Such
systems yield wave solution in the linear limit. On the contrary, when heavy fluid is above the lighter fluid,
dp/dz > 0and the flow becomes unstable and convective (see figure 1(b)).

Temperature field T'induces density variation in the following manner:

pr= ppll — (T — Tp)], (13)

where v is the thermal expansion coefficient, which is assumed to be constant in space and time. Hence we can
rewrite equations (11), (12) in terms of the temperature field. Let us consider a fluid confined between two
thermally-conducting horizontal plates kept at constant temperatures, as shown in figure 1(b). We denote the
temperatures of the bottom and top plates to be Ty, and T, respectively,and A = T, — T,.

Thermal convection is absent for small A. Under this condition, the temperature profile is linear as

L — T

T =T+ o7
dz

z, (14)

and the heat is transported by conduction. This configuration has no fluctuation, i.e., u = 0 and p = 0. The
flow however becomes unstable and convective when A exceeds a certain critical value. For such flows it is
customary to write the temperature as

T(x, y,2)=T(2) + 0y, 2), (15)

where 0 is the temperature fluctuation over the background conduction profile T The equations (3), (13), (15)
yield

dp 4T

=—p al; L =—a—, 16
P =—Pn e e (16)
substitution of which in equations (11), (12) yields the following set of governing equations:
Ou 1 . )
— + (u-V)yu=——Vo + agfz + vV-<u, 17)
ot »
D s w-vo =L 4 kv, ()
ot dz
V-u=0. (19)

The above fluid configuration under Oberbeck—Boussinesq approximation is called RBC. The flow dynamics of
RBC s described by equations (17)—(19).

2.2. Nondimensionalized equations

Fluid flows are conveniently described by nondimensional equations since they capture relative strengths of
various terms of the equations. Also, they help reduce the number of parameters of the system, which is quite
useful for analysis, as well as for the numerical simulations and experiments. Equations (11), (12) have been
nondimensionalized in various ways. Here, we present two such schemes. When we use d as the length scale,

3
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r/d as the velocity scale, d/k as the time scale,and Ap = |p, — p,| as the density scale, we obtain the following
nondimensional equations:

% + (u-V)u= —Vo — RaPrpz + PrVu, (20)
9p 2
o F s Vip = —Su: + Vip, 21)
where p — p/(Ap),and
Prandtl number Pr = Z, (22)
K
3
Rayleigh number Ra = w, (23)
VK Py
. . . d dp
Normalized density gradient S = ———. (24)
Ap dz

For the stably-stratified flows, S = —1,butS = 1 for RBC. Using equation (16) we can write the above equation
in terms of temperature field as follows:

% + (u- V)u= —Vo + RaPréz + PrVZu (25)
% + (- V)0 = Su, + V20, (26)
for which
Ra — 2884 27)
VK

where A is the temperature difference between the bottom and top plates, as defined earlier. Note however that
for large Ra, the aforementioned nondimensional velocity becomes very large (~+/Ra Pr)[38, 116] that
becomes an obstacle for numerical simulations due to very small time-steps. Hence, in numerical simulations, it
is customary to employ ./ agAd as the velocity scale, which yields the following set of equations:

@+(u~V)u:—VU+92+ /Evzu, (28)
ot Ra

00 1
— + (u- V)0 =Su, +
ot vRa Pr
For stably-stratified flows, researchers often employ dimensional equations, but with density converted to
units of velocity by a transformation [61]

V2. (29

b= iﬁ) (30)
Nop,,
where
N_ |8 |9 (1)
P | dz
is the Brunt-Viisild frequency. In terms of the above variables, the equations become
g—u + (u-V)u= —-Vo — Nbz + vV?u, (32)
t
0b 5
a—+(u-V)b:NuZ+mV b. (33)
t
The other important nondimensional parameters used for describing the buoyancy-driven flows are
Reynolds number Re :M, (34)
v
Froude number Fr = 2™ (35)
dN
|

Richardson number Ri =

ul /d  Fr? (36)

where U;ms, brms are respectively the rms velocity and the rms value of b. Note that the Richardson number is the
ratio of the buoyancy and the nonlinearity (u - V)u. Another important nondimensional parameter for RBC is

4
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the Nusselt number Nu, which is the ratio of the total heat flux (convective plus conductive) and the conductive
heat flux, and is computed using the following formula:

Ny = FA/d + (u:b) 37)
kA/d

2.3.Boundary conditions
For the velocity field we employ the following set of boundary conditions:
(i) No-slip: All the components of the velocity field vanish at the walls, i.e., u = 0.

(ii) Free-slip: At a wall, the normal component of the velocity field vanishes, i.e., u - 7i = 0, and the gradient of
the parallel components of the velocity vanishes, i.e., Ouj /On = 0.

(iii) Periodic: The velocity is periodic, i.e., u(x + IL X 4+ mL,y + nL,Z) = u(x), where I, m, n are integers,
and the boxis of thesize Ly x L, X L,.

For the temperature field, the typical boundary condition used are

(i) Conducting: Uniform temperature field at the walls, i.e., § = 0.
(ii) Insulating: The temperature flux at the wall is zero, i.e., 06/9n = 0.
(iii) Periodic: The temperature fluctuation is periodic, i.e., 6 (x + IL,X + mL,y + nL;Z) = 0 (x).
2.4. Exact relations
Equations (11), (12) are nonlinear, and hence researchers have not been able to write down general analytic

solutions for them. However, Shraiman and Siggia [97] derived the following exact relations of the viscous
dissipation rate (¢,) and the thermal dissipation rate (¢1) for RBC flows:

3
9 v> (Nu — 1)Ra
6 =v{w?) = —— 38
(W d* Pr? (%8)
A2
er = k{(VT)?) = /@ENu, (39)
where w = V X u.Also, in the idealized limit of ¥ = k = 0, using equations (32), (33), we deduce that the
total energy
E— % f (u? + b?)dr (40)

is conserved for periodic and vanishing boundary conditions. In the above, the positive sign is for the stably-
stratified flow, while the negative sign for the RBC. A stably-stratified flow is stable, for which the 4?/2 and b?/2
terms are the the kinetic and potential energies respectively, analogous to a harmonic oscillator. In RBC, the
conserved quantity is also written as f [u? — agh?/(dT / dz)]/2dr, where 62/2 is called entropy. Note that 62 /2
is not the thermodynamic entropy that quantifies the degree of disorder at the microscopic scales.

It is convenient to describe behaviour of turbulent flows in spectral or Fourier space since it captures the
scale-by-scale energy and interactions quite well. In the next subsection, we describe the definitions used for
such descriptions.

2.5. Equations in Fourier space
We rewrite equations (17)—(19) in the Fourier space as

(i + sz)ui(k, t) = —ik; oot _ ik > uj(q, Hui(p, t)
dr Prm k=p+q
+ agh(k, 12, (41)
(i 4 nkz)e(k, n=-Taan—ik  uignie o, (42)
dt dZ k=p+q
k,'u,'(k, t) = 0. (43)

In the above equations, i represents two things: /—1 in frontofthe k;o (k, t) /p, term,and i = x, y, zin u;.
Note that u(k), o (k), and 6 (k) are the Fourier transforms of u, o, and 6, respectively. The above equations are
in terms of #, but we can easily convert them as a function of p.

5
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In the Fourier space, E, (k) denotes the kinetic energy spectrum, which is the sum of the kinetic energies of all
the modesinagiven shell (k — 1, k]. Similarly we define the spectra for the entropy and potential energy, which
are denoted by Ey (k) and E,(k) respectively. They are computed using the following formulas:

E®M= 3 Luap (44)
k—1<k'<k

Ek= 3 Lewp (45)
k—1<k'<k

EBhk= Y lpa)p. (46)
k—1<k'<k

2.6. Linear and nonlinear regimes
The behavior of buoyancy driven flows depends on the parameters and dimensionality. Here we present a bird’s-
eye view of the observed states of RBC and stably-stratified flows.

2.6.1.RBC

It can be easily shown that equations (25), (26) yield a unstable solution at Ra = Ra,, with Ra, = 277*/4 for the
free-slip boundary condition, and Ra, ~ 1708 for the no-slip boundary condition [23]. The unstable solutions
are the convective rolls. For Ra just above the onset, the instability saturates due to nonlinearity leading to the
roll solutions. Atlarger Ra, the nonlinearity yields patterns and chaos [5, 17, 23, 67, 73, 83]. For even larger
nonlinearity, spatio-temporal chaos, weak turbulence, and strong turbulence emerge [67]. In this paper we will
focus on only the strong turbulence regime.

2.6.2. Stably-stratified flow

For S = —1, thelinearised version of equations (20), (21) yields internal gravity waves whose dispersion relation
is
w = %N , 47)

where k, = ,[k2 + kf is the wavenumber component perpendicular to the buoyancy direction. Clearly w = N
for k| = 0. These internal gravity waves persist for weak nonlinearity and inviscid case (v = x = 0). Strong
nonlinearity has two kinds of generic behaviour: Strong stratification (Fr < 1) suppresses the flow along the
buoyancy direction and yields a quasi two-dimensional (2D) stratified flow; on the other hand, moderate and
weak stratification (Fr % 1) yields near isotropic turbulent flows. For Fr ~ 1, Kumar et al [53] obtained
Bolgiano-Obukhov[11, 81] scaling as predicted (to be described in section 3.3.1). In this paper we focus on the
Fr 2 1regime.

2.7. Temperature profile and related equations
In this subsection we derive the properties of temperature fluctuations of RBC. For convenience we work with
nondimensional variables.

Experiments and numerical simulations of RBC reveal that the horizontally averaged temperature T,,,(z)
remains approximately a constant (=~1,/2) in the bulk, and its value drops sharply in the thermal boundary layers
[34, 95], as shown in figure 2. The quantitative expression for T, (z) = (T),, can be approximated as

1—i for 0 < z < ér,
267

T,(z) =11/2 forr <z <1 - 6y, (48)
1—2z

forl —é6r<z<1l1,
267

where 67 is the thickness of the thermal boundary layer, and (),, represents averaging over the xy planes. A
horizontal averaging of equation (15) yields 6,,(z) = T,,(z) + z — 1,and hence 0,,(z) is

6
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Figure 2. A schematic diagram of the planar-averaged temperature as a function of the vertical coordinate. The temperature drops
sharply to 1/2 in the boundary layers. From Pandey and Verma [85]. Reprinted with permission from AIP.

z(lL) for0 < z < 67
26T

0n(z) =3z—1/2 foror<z<1-— 67 (49)

1
— D1l — —| forl —ér<z<1
(z )( 26T) or r<z

as exhibited in figure 2. For thin thermal boundary layers, 6,,(0, 0, k), which is the Fourier transform of 6, (z),
is dominated by the contributions from the bulk. Hence

1
6,,(0, 0, k.) = f 0, (2)sin (k,72)dz
0
gv,fl (z — 1/2)sin(k,mz)dz
0

b for even k,
~ mk, (50)

0 otherwise.

The corresponding velocity mode, u, (0, 0, k,) = 0 because of the incompressibility condition
k- u(0, 0, k;) = k,u,(0, 0, k;) = 0. Also, u, (0, 0, k;) = u, (0, 0, k;) = 0intheabsence of a mean flow
along the horizontal direction. Hence for the k = (0, 0, k,) modes, the momentum equation yields
0=k o ez (51)
Po

or doy, (z) /dz = p,agh,, and the dynamics of the remaining set of Fourier modes is governed by the
momentum equation as

k . ikoyes (k ~
00 i T ke u@lug) = 2= 4 e oz - vkaao, (52)
at p+q=k Po
where
0= gres + am; 0 = Ores + O (53)

Hence, the modes 6,,(0, 0, k,) and 0,,(0, 0, k,) do not couple with the velocity modes in the momentum
equation, but s and o, do.

Equation (52) has strong implications on the scaling of the Reynolds and Nusselt numbers, which will be
discussed in section 4. In addition, the set of Fourier modes 6 (0, 0, k,) of equation (50) yields Ey (k) ~ k=2. This
issue will be discussed in section 3.

2.8. Other related systems
Several buoyancy-driven systems can be related to RBC. Here we list some of these systems.

7
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2.8.1. Rayleigh—Taylor instability (RTI)

A fluid configuration with a denser fluid above a lighter fluid is unstable. The heavier fluid falls and the lighter
fluid rises. After an initial stage of RTI, the flow develops significant nonlinearity and becomes turbulent [24].
We will discuss later that the turbulence phenomenology of RT1 is similar to that of RBC.

2.8.2. Taylor—Couette flow
Two coaxial rotating cylinders create random flow at large Taylor number. This flow has been related to RBC
with significant similarities in their phenomenology. See Grossmann et al [43] for a review of such flows.

2.8.3. Turbulent exchange flow in a vertical pipe

Arakeri and coworkers [3] performed experiments in which a flow in a vertical tube is driven by an unstable
density difference across the tube. They placed a brine solution at the top and distilled water at the bottom. This
system has significant similarities with RBC [3]. Note however that the above system does not have walls or
boundary layers at the top and bottom; this feature helps us study the ultimate regime quite conveniently.
Exchanging the top and bottom containers will lead to behaviour similar to stably-stratified flows.

2.8.4. Bubbly flow
Bubbles are introduced in a tank in which turbulence is generated by an active grid [88]. Naturally this system
has certain similarities with RBC.

2.9.Non-Boussinesq flows

The Oberbeck—Boussinesq approximation provides a useful simplification for the analysis of fluid flows with
small temperature difference between the two plates. For example, for water at normal temperature and
pressure, the thermal expansion coefficient v ~ 2 x 1074, Therefore, for a temperature difference A ~ 30K,
(6p)/p ~ al =~ 1072, which is small, thus justifying the imcompressible equation V - u = 0. Also, the
variation of vand « for temperature interval of ~10 K is quite negligible. Note however that in equation (25), the
buoyancy term Ra Pr@ is comparable to the viscous term PrV2u. To illustrate, we estimate the ratio of the two
terms near the onset of Rayleigh—Bénard instability for free-slip boundary condition as

RaPrbims  Ra b  277% 1
PrV2umms k% thrms 4k k2

(54)

Here k = \/ kX4 w2 = \/ (w2/2) + w? is the magnitude of the wavenumber associated with the convective role
[23], and #;ys /Orns ~ k? along the unstable eigenvector of the stability matrix. We expect the above trend to
continue for large Ra as well, but this issue needs to be investigated in detail. These arguments show that the
Oberbeck-Boussinesq approximation holds good for fluid like water at normal pressure and temperature for a
temperature difference of order 10°.

Without Oberbeck—Boussinesq approximation, we would need to solve the equations for the velocity,
density, and temperature fields. For further discussion, refer to Ahlers et al [1], Horn et al [46], and Sameen et al
[92]. The above description, called non-Boussinesq convection, is useful in stellar convection where the
temperature difference is too large for the Oberbeck—Boussinesq approximation to be valid. This topic, however,
is beyond the scope of this paper.

In the next section, we will relate the turbulence behaviour of the above systems.

3. Spectra and fluxes of buoyancy-driven turbulence

3.1. Definitions
We can derive the time-evolution equation for E, (k) using equation (11) as [58, 112]

aE(;t(k_) = T,(k) + Fs (k) + Ex (k) — D(k), 2

where T,(k) is the energy transfer rate to the shell k due to nonlinear interaction, and Fp(k) and E. (k) are the
energy supply rates to the shell from the buoyancy and external forcing £, respectively, i.e.,

Fg(k) = = > gR(u. (k) p¥(k)), (56)
|k|=k

(k) = > R(u) - £,5K)). (57)
|k|=k
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For brevitywesset p,, = 1.In equation (55), D(k) is the viscous dissipation rate defined by

D(k) = > 2vk?E, (k). (58)
|k|=k

The kinetic energy (KE) flux IT,, (kg), which is defined as the kinetic energy leaving a wavenumber sphere of
radius k, due to nonlinear interactions, is related to the nonlinear interaction term T,,(k) as

k
I, (k) = — f T, (k) dk. (59)
0
Under a steady state (OE, (k) /0t = 0), using equations (55) and (59), we deduce that
d
aﬂu(k) = Fg(k) + Exc (k) — D(k) (60)
or
I, (k + Ak) = 1, (k) + [Fp(k) + Fx (k) — D(k)]Ak. (61)
In computer simulations, the KE flux, IT,, (k¢), is computed using the following formula [32, 111],
(ko) = > > bkprqI([k - u(@][u¥(k) - u(p)). (62)
k>ko p<ko

Similarly, the potential energy (PE) flux IL, (ko) is the potential energy leaving a wavenumber sphere of radius kq,
which is computed using

(ko) = > D OkprqI (k- u(@IE* Wb (P, (63)
k>ko p<ko
where b is defined in equation (30). For RBC, we replace u and b by nondimensional u and 6 respectively.

For a more detailed description of the energy transfers, we divide the wavenumber space into a set of
wavenumber shells. The energy contents of a wavenumber shell of radius k and of unit width is denoted by E(k).
The shell-to-shell energy transfer rate from the velocity field of the mth shell to the velocity field of the nth shell is
defined as

T =33 brprqI([k - u(@][u*k) - u(p)]). (64)

ken pem

One of the most interesting problems in the field of buoyancy driven turbulence is the scaling of energy
spectrum and flux [63, 90]. In the next section, we will review some of the theoretical results obtained for the
aforementioned topic.

3.2. Turbulence phenomenology
3.2.1. Classical Bolgiano-Obukhov scaling for SST
For the inertial range of isotropic hydrodynamic turbulence, Kolmogorov [50] first proposed a phenomenology
according to which the energy spectrum in the inertial range is independent of the fluid properties and nature of
large-scale forcing. He showed that the one-dimensional energy spectrum E (k) = Ky, I1>/°k~%/3 in the inertial
range of wavenumbers, where IT, (k) is the constant energy flux, and K, is the Kolmogorov’s constant.
Buoyancy (forcing) act at all scales, hence Kolmogorov’s theory may not work for the buoyancy-driven
turbulence. In this section we will describe how the buoyancy affects the energy spectra and fluxes of the
buoyancy-driven flows. For stable stratification, Bolgiano [11] and Obukhov [81] argued that the KE flux II,, (k)
is depleted at different length scales due to the conversion of KE to PE via buoyancy (u, pg). Subsequently, I1,, (k)
decreases with k, and E, (k) is steeper than that predicted by Kolmogorov’s theory; we refer to the above as BO
phenomenology or scaling. According to this phenomenology, for Ly < | < L, buoyancy isimportant and the
buoyancy term is balanced by the nonlinear term [pg = (u - V)u]. Here Ly s the Bolgiano scale [11] and Lis the
large length scale or the box size. The force balance at wavenumber k = 1/]yields

P8 = kug. (65)
According to BO phenomenology, PE has a constant flux, i.e., II, ~ kuy pi ~ ¢,. Hence,
Up & flp/sgz/sk*3/5, (66)
Py & 6i/sg’l/5k’1/5. (67)
Therefore, the KE spectrum E,, (k) ~ u} /k, PE spectrum E,(k) = pi /k, and IT,, (k) ~ uj k are
E, (k) = clfi/5g4/5k’11/5, (68)
Ep &) = o E;/Sg—z/skﬁ/s) (69)
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IL(k) = cse;/ g%k 475, (70)
IL,(k) = €, (71)

where ¢;’s are constants. At smaller length scales (k > kg), where kg = 27 /Ly is the Bolgiano wavenumber,
Bolgiano [11] and Obukhov [81] argued that the buoyancy is relatively weak, hence Kolmogorov-Obukhov (KO)
scaling is valid in this regime, i.e.,

E, (k) = Kgo€2/?k57/3, (72)
E, (k) = Kgae,'/? k>3, (73)
1, (k) = €, (74)

I, (k) = €, (75)

where K3, is the Batchelor’s constant. A comparison of IT,, (k) of equation (70) with that of equation (74) yields
the crossover wavenumber kjz as

kg ~ g3/26;5/462/4. (76)

The associated length, the Bolgiano length, is Ly = (27) /kg.
The scaling relations are also presented using the variables 6u(/) and 66 (1), which are defined as

ouh) = [ux+1) —u®] - % (77)
0D =0x+1) —0(x), (78)
and the structure function for the velocity and temperature fluctuations, which are defined as
S = ([ouy(D19), (79)
Ss(h = ([60(D11), (80)

where (.) represent the ensemble average. Using scaling analysis similar to that given above, it can be derived that
[29]

S;(l) = <€p>q/5g2q/513q/5) (81)
Sq(D) = {e,)*1/°g9/%19/5 (82)
forl > Lg,and
Sq (D) = (e)1/?1973, (83)
SV = (e /6 (e,)1/219/ (84)

for I < Lg.Note that I correspond to 1/k,and du(l) — uy.

The BO phenomenology implicitly assumes isotropy in Fourier space, which is a tricky assumption. For BO
scaling, the gravity must be strong enough to compete with the nonlinear term u - Vu, but not too strong to
make the flow quasi two-dimensional (quasi-2D). This corresponds to Fr &~ 1regime. A large number of earlier
explorations in SST have been for Fr < 1regime, see for example, Lindborg [60], Brethouwer et al[14], and
Bartello and Tobias [4]. SST can be broadly classified in three regimes. Note that nonlinearity is strong (Re > 1)
for turbulent flows.

(i) Weak gravity (Ri < 1): Strong nonlinearity yields behaviour similar to hydrodynamic turbu-
lence (E, (k) ~ k=3/3).

(ii) Moderate gravity (Ri ~ 1): Comparable strengths of gravity and nonlinearity yields nearly isotropic
turbulence with BO scaling, as described earlier.

(iii) Strong gravity (Ri > 1): Strong gravity makes the flow quasi-2D. Hence the behaviour has similarities with
2D hydrodynamic turbulence (e.g., inverse cascade of energy). Refer to Lindborg [60], Brethouwer et al [ 14],
and Bartello and Tobias [4] for further details.

3.2.2. Generalization of Bolgiano-Obukhov scaling to RBC

Using mean field theory approximation, Procaccia and Zeitak [89] argued that the Bolgiano-Obukhov scaling is
applicable to convective turbulence. Later, L’vov [65] assumed that in convective turbulence, the kinetic energy
is converted to the potential energy and therefore, favored BO scaling. L’vov and Falkovich [66] employed a
differential model for energy and entropy fluxes in k-space and found that the BO scaling is valid for convective
turbulence. Rubinstein [91] employed renormalization group analysis to RBC and observed that the
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Figure 3. Schematic diagrams of the kinetic energy flux II,, (k) for the stably stratified system and convective system. (a) In stably
stratified flows, I, (k) decreases with k due to the negative energy supply rate Fy(k). (b) In convective system, Fz (k) > 0, hence II, (k)
first increases for k < k; where Fg(k) > D (k), then I, (k) =~ constant for k; < k < ks where Fz(k) ~ D (k); I1,,(k) decreases for
k > k, where Fg(k) < D (k). From Kumar et al[53]. Reprinted with permission from APS.

renormalized viscosity v (k) ~ k%%, E, (k) ~ k~'1/%,and E, (k) ~ k=7/°. Based on these observations
Rubinstein claimed BO scaling for RBC. Ching [27, 29] and Ching et al [28] studied the structure functions for
the velocity and temperature fluctuations of turbulent convection, and claimed consistency with Bolgiano-
Obukhov scaling. Ching et al [28] computed the anomalous scaling for the turbulent RBC.

The aforementioned theories had a profound influence in the field, and a large number of analytical,
experimental, and numerical works have been attempted to verify these ideas. Lohse and Xia [63] reviewed
critically if BO scaling is indeed present in RBC; they studied the experimental, theoretical, and numerical results
and argued that it is difficult to conclude the applicability of BO scaling in RBC. Recently Kumar et al [53]
showed that the BO scaling does not describe RBC turbulence since the energy supply by buoyancy in RBC is
very different from that in stably stratified flow. We will provide these arguments below.

3.2.3. A phenomenological argument based on kinetic energy flux

Kumar etal[53] and Vermaetal [114, 115] presented a phenomenological argument based on the KE flux to
derive a spectral theory of buoyancy-driven turbulence. Equation (61) provides important clues on the energy
spectrum and flux of the buoyancy-driven flows. Here we list three possibilities for the inertial range

(kr < k < kg), where kg is the forcing wavenumber, and k, is the dissipation wavenumber:

(i) For the inertial range of hydrodynamic turbulence, Fz(k) =0 and D(k) — 0, therefore
II,(k + Ak) ~ II,(k) and E, (k) ~ k~3/3, which is a prediction of the Kolmogorov’s theory [50]. Note
that F (k) = 0in theinertial range.

(ii) For the stably stratified flows, as argued by Bolgiano [11] and Obukhov [81], in the kf < k < kg
wavenumber band, buoyancy converts the kinetic energy of the flow to the potential energy, i.e., Fz (k) < 0.
Hence, equation (61) predicts that IT,, (k) will decrease with k in this wavenumber range, as shown in
figure 3(a). In the wavenumber range, kg < k < k4, buoyancy becomes weaker, hence I1,, (k) ~ constant.

(iii) For RBC in three dimensions, buoyancy feeds the kinetic energy, hence Fz(k) > 0. Therefore we expect the
KE flux IT,, (k) to increase. Numerical simulation of Kumar et al [53] for Pr = 1and large Ra show that the
energy supplied by buoyancy is dissipated by the viscous force, i.e., Fg (k) ~ D (k). HenceIl,(k) ~ constant
in the inertial range, and they recovered Kolmogorov’s spectrum for RBC for Pr = 1in 3D. Note that L’vov
[65] argued that Fy (k) < 0, which is not the case in 3D RBC with Pr a 1. Note that the nature of energy
flux depends on the space dimensionality and Prandtl number, some of which will be discussed in
subsequent section.
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The above arguments indicate that the structure functions for the fluctuations of RBC in 3D for Pr ~ 1 may
follow the following scaling relations:

Sy (D) = (e,)¥31473, (85)
ST = (eu) /0 (e,)¥/219/, (86)
The above relations need to be tested using numerical simulation and experiments.

3.2.4. Modeling and field theory

Researchers [33,51,59, 68, 69, 121] employed field-theoretic techniques to understand the physics of turbulent
fluid. In field theory, the nonlinear terms of the equations are expanded perturbatively. Some of the popular
field-theoretic techniques are direct interaction approximation (DIA) [51, 59], renormalization group analysis
[33,51,68,69,121], mean field approximation [89], etc. Field theory has been applied to buoyancy-driven flows
aswell.

As described in section 3.2.2, Procaccia and Zeitak [89] employed mean field approximation to convective
turbulence and obtained BO scaling. Rubinstein [91] used Yakhot-Orszag’s [121] renormalization group
procedure and proposed an isotropic model for convective turbulence. His results are consistent with that of
Procaccia and Zeitak [89]. Recently, using self-consistent field theory, Bhattacharjee [7] obtained
E, (k) ~ k~'3/3 for RBCin the infinite Prandtl number limit. Bhattacharjee [6] used the global energy balance
for the stratified fluid and argued that the BO scaling could be observed in stably stratified flow at high
Richardson number. In addition, he also added the possibility of BO scaling for RBC in some range of Prandtl
numbers.

In the next section, we will present numerical results for the stably stratified turbulence and RBC.

3.3. Numerical analysis of buoyancy-driven turbulence

3.3.1. Stably stratified turbulence

Researchers simulated the SST for the three regimes described in section 3.2.1. First we discuss the results for
strong gravity that corresponds to Ri > 1or Fr < 1. Such configurations are observed in some regimes of
planetary and stellar atmospheres. Strong gravity makes such flows quasi-2D with dual scaling, k> and k=/3.In
this regime, Lindborg [60], Brethouwer et al[14], and Bartello and Tobias [4] showed that the spectra of the
horizontal KE and PE follow k[*/? scaling, while the energy spectrum of the vertical velocity follows kH’3 .

Vallgren et al [109] included rotation in their simulation and obtained KE spectrum as k> and k33 for two
different wavenumber bands.

For weak stratification (Ri < 1), Kumar et al [53] performed a 3D SST simulation and reported
Kolmogorov’s spectrum for the kinetic energy as expected. Kumar et al also studied the moderate stratification
regime and reported BO scaling, which will be described below. In this paper we focus on the results for Fr ~ 1
since they have been observed recently.

Kumar et al [53] simulated stably stratified flows in a cubical box of size (27)? with periodic boundary
conditions at all the walls. They forced the small wavenumber modes randomly to achieve a steady state. The
parameters of their simulations are Ra = 5 x 10°and Pr = 1thatyields Ri = 0.01and Fr = 10. Figure 4(a)
exhibits the normalized KE spectra— E,, (k) k'1/° for the BO scaling, and E,, (k) k/> for the KO scaling. The
numerical data fits better with the BO scaling than the KO scaling, thus confirming the BO phenomenology for
the SST when Fr ~ 1. This is also verified by the PE spectrum as shown in figure 4(b) in which E,, (k) k7/5
provides a better fit to the data than E, (k) k>/3.

Further, Kumar et al [53] computed the KE and PE fluxes which are exhibited in figure 5. They observed that
IT, (k) > 0and it decreases with k (equation (70)), while the PE flux I1, is a constant in the inertial range
(equation (71)); thus the flux results are consistent with the BO predictions. Kumar et al [53] also computed the
energy supply rate by buoyancy, Fp(k), and the viscous dissipation spectrum, D(k), which are illustrated in
figure 6. Note that Fz (k) < 0, as argued in BO phenomenology. The Bolgiano wavenumber kg of equation (76)
is approximately 8.5, which is only 3—4 times smaller than k,, the wavenumber where the dissipation range
starts. Therefore Kumar e al [53] did not observe a definitive crossover from k=115 to k=3/3 in their
simulations.

The aforementioned observations demonstrate applicability of the BO scaling for SST with a moderate
stratification.

3.3.2. Rayleigh—Bénard convection

Alarge number of numerical simulations have been performed with an aim to identify which among the two,
BO or KO, scaling is applicable to RBC [63]. Grossmann and Lohse [37] simulated RBC for Pr = 1under
Fourier—Weierstrass approximation and reported Kolmogorov’s scaling. For on periodic boundary condition,
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Figure 4. For the stably-stratified turbulence with Pr = 1, Ra = 5 x 10%,and Fr = 10, plots of (a) normalized KE and (b) PE spectra
for Bolgiano-Obukhov (BO) and Kolmogorov-Obukhov (KO) scaling. BO scaling fits better with the data than KO scaling. From
Kumar et al [53]. Reprinted with permission from APS.
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Figure 5. For the stably-stratified turbulence with Pr = 1, Ra = 5 x 10%>and Fr = 10 on 1024 grid, plots of KE flux IT, (k),
normalized KE flux IT, (k) k*/3, and potential energy flux IL, (k). The energy fluxes are also consistent with the BO phenomenology.
From Kumar et al [53]. Reprinted with permission from APS.
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Figure 6. For the stably-stratified turbulence with Pr = 1, Ra = 5 x 10%and Fr = 10 on 1024 grid, plots of the energy supply rate
by buoyancy, Fg(k), and the dissipation spectrum, D(k).

Borue and Orszag [12] and Skandera et al [100] reported KO scaling for the velocity and temperature fields. Kerr
[49] reported the horizontal spectrum as a function of horizontal wavenumber and observed Kolmogorov’s
spectrum. Verzicco and Camussi [117], and Camussi and Verzicco [20] showed BO scaling using the frequency
spectrum of real space probe data. Kaczorowski and Xia [48] reported KO scaling for the longitudinal velocity
structure functions, but BO scaling for the temperature structure functions in the centre of a cubical cell. Kumar
etal[53] computed E, (k) and II,, (k), and showed Kolmogorov-like behaviour for RBC, i.e., E, (k) ~ k—3/3and
II,(k) ~ const. In this paper we present the above quantities for 4096° resolution and very high Ra that
unambiguously demonstrates KO scaling for RBC. We also report the shell-to-shell energy transfers and the ring
spectrum for RBC that show close resemblance with the hydrodynamic turbulence.
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Figure 7. For the RBC simulation with Pr = 1and Ra = 1.1 x 10" on 4096 grid: (a) plots of normalized KE spectra for Bolgiano-
Obukhov (BO) and Kolmogorov-Obukhov (KO) scaling; KO scaling fits better with the data than BO scaling. (b) KE flux I, (k) and
entropy flux ITy(k). The shaded region exhibits the inertial range.
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Figure 8. For the RBC simulation with Pr = 1and Ra = 1.1 x 10! (a) plots of F(k) and D(k). (b) plots of [dIT,, (k) /dk] /TL,, (k) in
the inertial range 15 < k < 600.

We performed RBC simulations in a unit box with 4096 grid for Pr = 1and Ra = 1.1 x 10" For the
velocity field, we employed the free-slip boundary condition at the top and bottom plates, and periodic
boundary condition at the side walls. The temperature field satisfies conducting boundary condition at the top
and bottom plates, and the periodic boundary condition at the side walls. We computed the spectra and fluxes of
the KE and the entropy (6/2) using the steady state data. Figure 7(a) exhibits the KE spectra normalized with
k'/5 and k/3. The plots indicate that in the wavenumber band 15 < k < 600 (inertial range), the shaded region
of the figure, the KO scaling fits better than the BO scaling.

We exhibit the KE and entropy fluxes in figure 7(b). We observe that the kinetic energy flux I1,, (k) remains
constant in the inertial range, aband where E,, (k) ~ k=/3. Thus we claim that the convective turbulence
exhibits Kolmogorov’s power law in the inertial range. We also computed Fp(k), I1,,(k), and dIT, (k) /dk as
further tests. According to figure 8(a) Fg (k) > 0 in the inertial range, consistent with the discussion of
section 3.2.3 and figure 3(b), and it approximately balances D(k). Therefore, dI1,,(k) /dk =~ 0 or
I1, (k) ~ constant (see equation (60)). The constancy of II,, (k) yields E, (k) ~ k~3/3, consistent with the energy
spectrum plots of figure 7(a). Figure 8(b) shows that [dIT,, (k) /dk] /11, (k) < 1in the inertial range consistent
with the constant IT,, (k). Interestingly, D (k) = 2vk?E, (k) ~ k'/3, consistent with E,, (k) ~ k—3/3. Also,

Fg(k) ~ k—5/3.In addition, the entropy flux IT (k) is constant, and IT,,(k) ~ IIs(k) in dimensionless units.

We also compute the shell-to-shell energy transfers (equation (64)) using the steady-state data of our
simulation. We divide the Fourier space into 40 concentric shells; the inner and outer radii of the nth shell are
k,_1and k, respectively with k,, = {0, 2, 4, 8, 8 x 2:=3),...,6432}, where s = (1/35)log,(804). The radii of
the inertial-range shells are binned logarithmically due to the power law physics of RBC in the inertial range. In
figure 9(a) we exhibit the shell-to-shell energy transfers with the indices of the x, y axes representing the receiver
and giver shells respectively. The plot indicates that mth shell gives energy to (m -+ 1)thshell, and it receives
energy fromthe (in — 1) thshell [111]. Thus the energy transfer in RBC is local and forward, very similar to
hydrodynamic turbulence. This result is consistent with the energy spectrum and flux studies described earlier.

Convective flows are expected to be anisotropic due to buoyancy; hence it is important to quantify
anisotropy using the quantities that are dependent on the polar angle, the angle between Z and k. For the same,
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Figure 9. For the RBC simulation for Pr = 1and Ra = 1.1 x 10'!:(a) Plot of the shell-to-shell energy transfers T}’ of equation (64),
where m, n represent the giver and receiver shell indices respectively. (b) Plot of the ring spectrum E (k, 3) demonstrates near
isotropy in the Fourier space.
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Figure 10. For RBC simulation with Pr = 1and Ra = 1.1 x 10!, plot of the entropy spectrum that exhibits dual branches. The
upper branch matches with k=2 quite well, while the lower part is fluctuating.

we divide a wavenumber shell into rings [75]. The energy contents of the rings are called ring spectrum E (k, (3),
where Brepresents the sector index for the polar angles (for details see Nath et al[75]). The ring spectrum

E (k, 3), depicted in figure 9(b), shows that the flow is nearly isotropic, again similar to hydrodynamic
turbulence. These results clearly demonstrate that the turbulent convection for Pr = 1has a very similar
behavior as hydrodynamic turbulence.

The temperature fluctuation however exhibit a unique behaviour. As illustrated in figure 10, we observe dual
branches for the entropy spectrum (E (k)). The upper branch varies as k=2 because 0 (0, 0, k,) ~ —1/(wk), as
discussed in section 2.7. The lower branch shows neither KO (k~>/3) nor BO (k~7/%) spectrum. Note that both
the branches of entropy spectrum generate a constant entropy flux I1y (k) (see figure 7(b)), and the modes
0(0, 0, k) also participate in energy transfers.

3.4. Experimental results
For stably-stratified flows, there are not many laboratory experiments to verify BO phenomenology. However,
scientists have measured the KE spectrum of the Earth’s atmosphere and relate it to the theoretical predictions.
Most notably Gage and Nastrom [35] observed a combination of k3 and k~5/3 energy spectra. Some researchers
attribute the k3 spectrum at lower wavenumbers to the two-dimensionalization of the flow, while k=373
spectrum at larger wavenumbers to the forward cascade of kinetic energy; yet these issues are still unresolved.
These features are expected to arise for Fr < 1.

There are a significant number of laboratory experiments on RBC, with some favouring the BO scaling
[25, 124], while some others in support of the KO scaling [30]. These results are reviewed in detail in Lohse and
Xia [63]. In most convective experiments, the velocity field, u, (r, t), and/or the temperature field, T (r, t), are
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Figure 11. A possible schematic diagram of the kinetic energy flux II,,(k) for two-dimensional RBC.

probed near the lateral walls of the container. For such experiments, the Taylor’s hypothesis [56, 94, 105] is
invoked to relate the frequency power spectrum E( f) of the time series to the one-dimensional wavenumber
spectrum E (k); this connection is under debate due to the absence of any constant mean velocity field [56, 63].
Researchers [57, 104, 122, 123] employ 2D particle image velocimetry for high-resolution visualization and
computation of an approximate energy spectrum under the assumption of homogeneity and isotropy, which is
not strictly valid in convection [75]. In summary, on the experimental front, there is no convergence on which of
the two scaling, BO of KO, is valid. For details refer to the review papers [2, 63].

3.5. Turbulence in thermal boundary layer and in two dimensions

A burning question is whether KO scaling or BO scaling is applicable to the boundary layers of RBC. The flux
arguments of section 3.2.3 provide some insights into the dynamics of boundary layers. Here, typically u, < u,
hence the flow is quasi-2D, and we expect an inverse cascade of KE. Using IT,, (k) < 0, Fz(k) > 0,and

dIl, (k) /dk ~ Fy(k), we may argue that I, (k) may increase with k as shown in figure 11. An application of
scaling arguments of section 3.2.1 may yield E,,(k) and |II,,(k) | according to equations (68)—(71), i.e., Bolgiano-
Obukhov scaling for k < kg. For k > kg, the KE spectrum may exhibit a mixture of k—>/3 (regime of inverse
cascade of energy) and k2 (regime of forward cascade of enstrophy) depending on where the effective forcing
band lies in relation to kz. Thus, in the boundary layer, RBC may exhibit BO scaling, and it needs to be
investigated carefully using numerical simulations and experiments.

The aforementioned scaling arguments may also work for 2D RBC (xz plane in which the buoyancy is along
the zdirection), as well as in quasi 2D RBC (when L, > L,). Toh and Suzuki [106] simulated 2D RBC and
reported E, (k) ~ k~'"/>and IT,, (k) ~ —k~*/ in line with the above arguments. Calzavarini et al [19] also
reported similar results in their structure function computations.

3.6. Turbulence in RTI

RTThas a strong similarity with RBC in the sense that the heavier fluid sits on top of lighter fluid. Hence we
expect the RBC turbulence phenomenology to be applicable to RTI as well, at least approximately. Chertkov [24]
proposed that a fully-developed 3D RTI will exhibit Kolmogorov’s spectrum due to the Rayleigh—Taylor
pumping at large scales. Boffetta et al [10] observed this behaviour in their numerical simulations. Chertkov [24]
however does not take into account the buoyancy at all scales (see section 3.2.3). Ina quasi-2D box (L, < Ly),
Boffetta et al [9] show coexistence of BO and KO scaling (k~'/% and k—>/3), consistent with the arguments of
section 3.5.

3.7. Turbulence in miscellaneous systems

Scientists have studied spectra of the velocity field and the scalar field in other buoyancy-driven systems. Pawar
and Arakeri [87] performed experiment on the vertical tube described in section 2.8.3. They observed that the
velocity field exhibits k~>/ spectrum, while the scalar spectrum is closer to k~7/°.

Prakash et al [88] studied the energy spectrum of the bubbly turbulence using an experiment. For the velocity
field, they reported k—>/2 energy spectrum for k < 1/b,and k=2 for k > 1/b where b is the bubble size. They
argued that the large and intermediate scales exhibit k=3/3 spectrum due to the standard Kolmgorov’s argument.
For k > 1/b, Prakash et al [88] explained the k2 energy spectrum by invoking equipartition between the energy
dissipation and energy feed by the buoyancy. We believe that the Kolmogorov’s spectrum for bubbly turbulence
arises due to the dynamical similarities with RBC. For this system it may be interesting to investigate the energy
spectrum using the flux arguments.

The turbulent Taylor—Couette flow [43] may exhibit spectral behaviour similar to RBC since both the
systems are unstable with similar energetics (see sections 3.2.3 and 3.3.2). We believe that the Non-Boussinesq
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convective flows may also exhibit Kolmogorov-like spectrum for weak compressibility since here too the
thermal plumes feed the kinetic energy, as in RBC.

3.8. Turbulence in small and large Prandtl number RBC

In section 3.2.3 we derived the spectra and fluxes of the velocity and temperature fields for RBC with Pr ~ 1.
These arguments are not applicable to RBC at extreme Prandtl numbers. However, we can easily deduce the
spectrum for very small and very large Pr’s as follows. These computations have been first reported in [72] and
[86] respectively.

In RBC with zero or small Prandtl numbers, thermal diffusivity £ — oo thatleads to u, (k) ~ 6 (k)(xk?)
[72]. Hence, the buoyancy, which is proportional to 6 (k), is dominant at small wavenumbers. Therefore, the
assumption of the Kolmogorov’s phenomenology that the forcing acts at large length scales is valid, and we
expect the Kolmogorov’s phenomenology for the hydrodynamic turbulence to be applicable to RBC with
Pr — 0. Mishraand Verma [72] verified the above phenomenology using numerical simulations.

In the limit of infinite Prandtl number (¥ — 00), the momentum equation is linear [86]. However if the
Péclet number is large, the temperature equation is nonlinear and it yields an approximate constant entropy
flux. Using scaling arguments, Pandey et al [86] derived that for infinite and large Pr, E, (k) ~ k~'3/3. Theyalso
verified the above scaling using numerical simulations.

3.9. Simulation of turbulent convection in a periodic box and shell model
Borue and Orszag [12], Skandera et al [100], Lohse and Toschi [62], and Calzavarani et al [18] simulated
turbulent thermal convection in a periodic box. They simulated equations (17), (18) under a gradient dT/dz. In
the absence of boundary layers, the velocity and temperature fields exhibit k=3/3 spectra[12, 100]. In addition,
the Nusselt number Nu ~ Ral/2[18, 62], which is expected in the ultimate regime when the effects of boundary
layers are negligible. Note that the temperature spectrum for the periodic box is very different from that with
conducting walls that exhibit dual spectra. It is important to note that turbulent thermal convection in a periodic
box is numerically unstable; the system exhibits steady behaviour for carefully chosen set of initial conditions.
Direct numerical simulation of turbulent systems is quite demanding due a large number of interacting
Fourier modes. Therefore, scientists often use shell models, which are based on much fewer number of modes.
Brandenburg[13], Lozhkin and Frick [64], Mingshun and Shida [70], Ching and Cheng [28], and Kumar and
Verma [54, 55] constructed shell models for buoyancy-driven turbulence. Ching [27, 29] and Ching et al [28]
computed the structure functions of turbulent convection using a shell model, and claimed consistency with
Bolgiano-Obukhov scaling. The advantage of the shell model of Kumar and Verma [54] is that it describes both
turbulent stably-stratified and convective flows using a single set of equations. It also enables flux computation
of the kinetic energy and p2/2, where pis the density of the fluid. Kumar and Verma [54] showed that the results
of the shell model are consistent with the DNS results described earlier.

3.10. Concluding remarks on the energy spectrum
We summarise the important results of this section as follows:

(i) A large body of works on RBC assume Bolgiano-Obuknov scaling. The flux-based arguments described in
sections 3.2.3 and 3.3.2 demonstrate that in three dimensions for Pr near unity, RBC exhibits Kolmogorov-
like energy spectrum and flux. For example, the KE flux is nearly constant in the inertial range; the shell-to-
shell energy transfer is local and forward; the ring spectrum exhibits a near isotropy in Fourier space. The
constant KE flux is due to the near cancellation between the KE supply by buoyancy and the viscous
dissipation rate.

(ii) The nature of energy spectrum and flux of RBC depends on the space dimensionality and Prandtl number,
as described earlier in this section. For small Prandtl number, convective turbulence is similar to
hydrodynamic turbulence, but E, (k) ~ k~'3/3 for very large and infinite Prandtl number.

(iii) The small-scale fluctuations in the boundary layer contributes to E, (k) at large k. Hence the aforementioned
E, (k) in the inertial range is dominated by the fluctuations of the bulk.

(iv) The temperature fluctuations for RBC exhibits dual spectra, with the upper branch scaling as k=2. In
section 2.7 we discussed the origin of k=2 spectrum in terms of temperature profile in the boundary layers
and in the bulk.

(v) The SST under nearly isotropic conditions (when Froude number is of the order of unity) exhibits
Bolgiano-Obukhov scaling.

In the next section, we briefly describe scaling of Reynolds and Nusselt numbers.
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4. Modelling of large-scale quantities of RBC

In this section we quantify the large-scale quantities of RBC, namely the Nusselt and Reynolds numbers. Many
researchers have worked on this problem; for details and references, refer to the review articles [2, 8, 26, 63, 98].
Despite complexities of the flow, RBC exhibits certain universal behaviour; in the turbulent limit,
Pe ~ +/Ra Pr,butin the viscous regime, Pe ~ Ra3/5[38, 84].

Turbulent thermal flux is somewhat more complex; it is quantified using the nondimensional variable called
Nusselt number, Nu, which is defined as [2, 26, 119]

Nu:“““+W”@V:1+<&E%ﬁ = 1+ Cun, (/2 02N/, (87)
\4

kA/d K

where ()y stands for a volume average, u, = u,d/k, 0., = O/ A, and Cy,.. is the normalized correlation
function between the vertical velocity and the residual temperature fluctuation [116]:
< u; 0 ;es> |4
e P O o

Kraichnan [52] argued that in turbulent convection u, ~ Ra'/2, 0/, ~ 1,and C,_ ~ const, hence
Nu ~ Ra!/?, which is called the scaling of ultimate regime. Experiments and numerical simulations however
reveal that Nu ~ Ra” with Branging from 0.25 to 0.33. Grossmann and Lohse [38—42] derived a
phenomenological formula that fits with the experimental and numerical results quite well. The deviation from
Kraichnan’s predictions of 1/2 to ~0.3 is attributed to the boundary layer [38, 39]. There are intense research
activities to test whether the ultimate regime exists or not. He et al[44] and others performed experiments on
turbulent convection up to Ra ~ 10> and observed an increase in the Nusselt-number exponent 3 from 0.31 to
0.38, as well as logarithmic mean temperature profile [108]. Thus they claimed existence of the ultimate regime.
However, Niemela et al [79] and Urban et al [107] do not observe deviation of 3 from ~0.3, hence they argue
against the existence of ultimate regime. In this paper, we do not discuss this issue any further, and we refer the
reader to works described above.

In the next subsection we describe the Grossmann—Lohse model that predicts the scaling of Reynolds and
Nusselt number quite successfully.

4.1. Grossmann—Lohse model

Grossmann and Lohse (GL) [38—42, 102] derived the formulas for Nu(Ra, Pr)and Re(Ra, Pr) by exploiting the
fact that the global viscous dissipation rate, ¢,, and thermal dissipation rate, er, get contributions from the bulk
and boundary layers, i.e.,

€y = €4,BL + €u,bulk> (89)
€1 = €r1,BL + €T,bulk> (90)

where BL and bulk denote the boundary layer and the bulk respectively. They invoked the exact relations of
Shraiman and Siggia [97] for the global viscous and thermal dissipation rates (see equations (38), (39)), and
estimated the aforementioned contributions of the boundary layers and the bulk to ¢, and er in various Ra—Pr
regimes. For Pr 2 1and very large Ra they used ¢, pux = U?/d and e7 puc = UA?/d, but for extreme Prandtl
numbers, these estimates get altered by the boundary layer widths.

Using the above ideas, GL [38—42, 102] derived the following coupled equations

(Nu — 1)RaPr—2 = ¢ o Re?, ClY)

_ome
2(JRer/Re)
Nu — 1 =c3RePr4f ZaNug Re "
JRer Re
2aNu &
+ qRePrf[ e g( e ]], (92)

where ¢;’s and Rey are constants, and the functions fand g model the thermal BL [102]. Using the above
formulae, GL computed the Nusselt and Reynold numbers as a function of Ra and Pr that agree with presently
available experimental and numerical simulation results quite well [2].

In the next subsection we describe a new model developed recently by Pandey et al [84] and Pandey and
Verma [85].
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vV3u
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Figure 12. The relative strengths of the forces acting on a fluid parcel. In the turbulent regime, the acceleration u - Vu is provided
primarily by the pressure gradient. In the viscous regime, the buoyancy and the viscous force dominate the pressure gradient, and they
balance each other. From Pandey and Verma [85]. Reprinted with permission from AIP.

4.2. An alternate derivation of Péclet number
Recently Pandey et al [84] and Pandey and Verma [85] provided an alternate derivation of Péclet number. Note
that Pe = RePr. Pandey et al [84] analysed the rms values of various terms of the momentum equation, which
are exhibited in the schematic diagram of figure 12. Under statistical steady state ((Ou/0t) = 0), Pandey et al
observed that in the turbulent regime, the acceleration u - Vu is primarily provided by the pressure gradient
— Vo, and the buoyancy and viscous terms are relatively small. The above features are consistent with
similarities between the turbulence in RBC and hydrodynamics (see section 3.3.2). However, in the viscous
regime (Re 5 1), —Vois small, and the buoyancy and viscous terms cancel each other resulting in a very small
acceleration of the fluid.

Dimensional analysis of the momentum equation yields

2 2 A U
ag— =06— + G« — Cyv—, 93
1~ 2~ 308 v (93)
where ¢;’s are dimensionless coefficients defined as
u-Vu Volies/ Py Vu
a= | 2 l o= | |2 /p 5 = |0 /Al = | 2| (94)
U:/d U4/d U/d

Pandey et al [84] observed ¢;’s to be functions of Ra and Pr that yields interesting and nontrivial scaling relations.
Itis important to contrast this behaviour with free turbulence (without walls) where ¢;’s are constants.
Multiplication of equation (93) with d*/x? yields

aPe? = gPe? + ¢;RaPr — ¢, PePr, (95)

where Pe = Ud/k is the Péclet number. The solution of the above equation is

—c4Pr + \/cfPrz + 4(¢q — o)csRaPr
2(q — o) '

(96)

using which Pe can be computed as a function of Ra and Pr.
In the turbulent regime, the viscous term of equation (95) can be ignored, hence

Pe ~ |—2  RaPr. 97)
la — ol

ciPr? < 4|q — ofcsRaPr. (98)

This limit is applicable when

The scaling for the viscous regime is obtained by equating the buoyancy and viscous terms of the momentum
equation that yields

Pe ~ 2 Ra. (99)
Cq
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Figure 13. The normalized Péclet number (PeRa—'/2) versus Ra for numerical data of Pandey et al [84] for Pr = 1 (red squares),

Pr = 6.8 (blue triangles), and Pr = 10? (black diamonds); numerical data of Silano et al [99] (magenta pentagons, Pr = 10%),
Reeuwijk et al [110] (red circles, Pr = 1), Scheel and Schumacher [93] (green crosses, Pr = 0.7); and the experimental data of Xin and
Xia [120] (orange pluses, Pr ~ 6.8), Cioni et al[31] (brown right triangles, Pr & 0.022), and Niemela et al [80] (Pr = 0.7, green
down-triangles). The continuous curves represent Pe computed using equation (96). The predictions of equation (96) for Pr = 0.022
and 6.8 have been multiplied with 2.5 and 1.2, respectively, to fit the experimental results from Cioni et al [31] and Xin and Xia [120].
From Pandey and Verma [85]. Reprinted with permission from AIP.

Pandey et al [84] computed c;’s using the RBC simulation data for Pr = 1, 6.8, 10%, 10>and Ra from 10°to
5 x 10%. These simulations were performed for no-slip boundary condition at all the walls using a finite volume
solver OPENFOAM [82]. They reported the following functional form for ¢;’s

¢ = 1.5Ra%10py—006, (100)
¢ = 1.6Ra%0pr—0-08, (101)
c3 = 0.75Ra=015py =005, (102)
¢y = 20Ra%24pr—0-08, (103)

The errors in the above exponents are $0.01, except for the Ra exponent of ¢, that has error of the order of 0.10.
In figure 13, we plot the normalized Péclet number, PeRa~'/2 for Pr = 1, 6.8, 102and compare them with the
predictions using equation (96). The figure also exhibits Pe from other simulations and experiments. The plots
reveal that the predictions of Pandey et al [84] (equation (96)) match with the numerical and experimental results
quite well.

Using the above ¢;’s and equation (98), we find that Ra >> 10° Pr belongs to the turbulent regime, whereas
Ra < 10° Prbelongs to the viscous regime. In the viscous regime

Pe = ZRa ~ 0.038Ra%, (104)
Cy

which is independent of Pr, consistent with the results of Silano et al [99], Horn et al [46], and Pandey et al [86].
For the turbulent regime, equation (97) yields

Pe — /I673| JRaPr ~ /7.5 PrRa®3, (105)
aq—Q

For mercury (Pr & 0.025) as an experimental fluid, Cioni et al [31] observed that Re ~ Ra%#?*, which is close to
the predicted exponent of 0.38 discussed above. The range of Rayleigh numbers in the experiment of Cioni et al
[31]is5 x 10° < Ra < 5 x 10° thatis consistent with the turbulent regime estimated above (Ra >> 10° Pr).
The aforementioned results are in general agreement with those of Grossmann and Lohse [38—42].

4.3. Scaling of Nusselt number and dissipation rates

We revisit the Nusselt number scaling that has been studied widely using theoretical models, experiments, and
numerical simulations. The predictions of Grossman and Lohse [38—42], equations (91), (92), fits with the
experimental and numerical data quite well. As described earlier, a major debate is whether ultimate regime
(exponent = 1/2) exists or not. See reviews for details [2, 8, 29, 63, 98].

Here we report recent results on the correlation function of equation (88) and the viscous dissipation rate
that yield interesting insights. Verma et al[116], Pandey et al [84], and Pandey and Verma [85] computed C,_ of
equation (88) for arange of Ra in the turbulent regime and observed nontrivial scaling. They observed that C,g,_,
and the rms values of u, and 6., scale with Ra in such a way that Nu ~ Ra’3; without these corrections,
Nu ~ Ra!/?in the turbulent regime. Thus, one way to explain the deviation of the exponent from 1/2 in the

ultimate regime [52] is due to the nontrivial scaling of C,4,_, ,, and 0.
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Figure 14. A plot of the viscous dissipation rate ¢, versus Ra.The best fit curveis €, ~ Ra'*2, indicating that ¢, ~ (U?/d)Ra=%2!

since U ~ Ra>!,

In hydrodynamic turbulence, the viscous dissipation rate ¢, ~ U?/d. However this is not the case in RBC,
primarily due to walls or boundary layers. Using numerical data, Verma et al [116] and Pandey et al [84] have
shown that ¢, ~ Ra'*? or

€.~ (U3/d)Ra=021, (106)
See figure 14 for illustration for Pr = 1. One of the exact relations of Shraiman and Siggia [97] yields
_ U’ (Nu — 1)RaPr

(107)
Yd pe’
Substitution of Pe ~ Ra®>'and ¢, ~ (U3/d)Ra—?!yields Nu ~ Ra’32. These arguments show that the
reduction of the viscous dissipation rate could be a reason for the deviation of the observed scaling Nu ~ Ra’32

from Nu ~ Ra'/? corresponding to the ultimate regime.
Nietal[77,78] computed the local (bulk) energy dissipation rate in RBC cell using experimental
measurements. They showed that

U3
€u,bulk ™~ =" Ra%/2, (108)

which is consistent with the predictions of Grossmann and Lohse [38—42]. Thus the variation of the exponent
from the aforementioned 3/2 to 1.32 of figure 14 is possibly due to the effects of the boundary layers near the
walls (also see Pandey and Verma [85]). We require detailed experimental and numerical analysis to resolve this
issue.

5. Large-scale flow structures and flow reversals in RBC

The flow properties in the last two sections are related to the random nature of the flow. It has been observed that
coherent structures too play important role in the convective flow, and they have certain universal properties. An
interesting phenomena of RBC related to large-scale structures is flow reversals. Sreenivasan et al [101], Brown
and Ahlers [16], Xiand Xia [118], and Sugiyama et al [103] observed that the vertical velocity near the lateral wall
switches sign randomly. Deciphering how the reversals take place is an interesting puzzle, and it is not yet fully
solved. In this section we briefly describe the present status of the field.

Itis believed that the flow reversals are caused by the nonlinear interaction among the large-scale structures
of the flow. For a closed cartesian box, these structures can be conveniently described by the small-wavenumber
Fourier modes [21, 22]. This description is useful even for no-slip boundary conditions since the flow structures
inside the boundary layers contribute to the large wavenumber modes. For a cylindrical geometry, partial
information about the flow structures can be obtained by computing the azimuthal Fourier modes
corresponding to the velocity field measured at various angles near the later walls [16, 71, 118]. Here we
summarise the main results on the properties of flow reversals.

(i) During a reversal, the amplitude of the most dominant large-scale mode vanishes, while that of the
secondary mode rises sharply. Chandra and Verma [21, 22] reported that during a reversal in a unit two-
dimensional cartesian box, the Fourier mode (1, 1) vanishes, while the mode (2, 2), corresponding to the
corner rolls, become the most dominant mode [21, 22]. See figure 1 of Chandra and Verma [21]. This
numerical result is consistent with the experimental results of Sugiyama et al [103].
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(ii) The nature of dominant structures depends on the box geometry and boundary conditions. For example,
forabox ofsize2 x 1, under the no-slip boundary condition, (2, 1) and (2, 2) are the primary and
secondary modes respectively. However, under the free-slip boundary condition, the corresponding modes
are (1, 1)and (2, 1) respectively[15, 113]; here (3, 1) too plays a major role.

(iii) Sugiyama et al[103], Chandra and Verma [21, 22] and Verma et al [113] reported that the flow reversals in
two-dimensional turbulent convection are suppressed at large Rayleigh numbers. This is primarily due to
relative strengthening of the primary mode (1, 1) compared to the secondary modes. At large Ra, the
secondary modes become too weak to be able to cause flow reversals.

(iv) Huang et al [47] studied the flow reversals for two different boundary conditions: (a) constant temperatures
atboth the boundaries (CTCT), and (b) constant heat flux at the bottom plate and constant temperature at
the top plate (CFCT). They showed that the flow reversals are more frequent in the CTCT case compared to
the CFCT case despite the former being more stable than the latter. Thus, the flow reversals are not directly
related to the flow instability [47].

(v) Vermaetal[113] have constructed a group-theoretic argument to decipher the reversing and non-reversing
modes during a reversals. The structure of the groups is related to the Klein group.

(vi) Thermal convection in a cylinder exhibit reversals that have similar behaviour as above. Brown and Ahlers
[16] termed such reversals as cessation-led reversals. Note however that during a cessation-led reversal, the
secondary modes become significant, hence the kinetic energy does not vanish.

(vii) Cylindrical convection exhibits another kind of flow reversals, called rotation-led reversals, in which the
large-scale structure rotates azimuthally [16, 71, 118]. This rotation is due to the azimuthal rotation
symmetry of the system. Such phenomena is also observed in a cylindrical annulus [76].

These observations reinforce the viewpoint that the nonlinear interactions among the large-scale structure
are very relevant for flow reversals. The magnetic field reversals in dynamo [36], and the velocity field reversals in
Kolmogorov-flow [74] also involve nonlinear interactions among the large-scale structures of the flow. Thus,
these reversals share certain similarities with the flow reversals of RBC.

6. Summary

In this paper we describe the recent results on the spectral and large-scale properties of buoyancy-driven
turbulence—stably-stratified flows and RBC. A summary of the results covered in this review is as follows:

(1) The SST is nearly isotropic for Froude number Fr Z 1. Bolgiano [11] and Obukhov [81] showed that for
gravity-dominated flows (Fr ~ 1), the kinetic-energy spectrum E,, (k) ~ k~''/5. Kumar et al [53]
demonstrated this scaling using numerical simulations.

(if) For Fr > 1, SST exhibits Kolmogorov scaling, i.e. E, (k) ~ k=5/3, due to the dominance of the nonlinear
term over the buoyancy.

(iii) For Fr < 1, SST is quasi two-dimensional, and the kinetic-energy spectrum exhibits a combination of
k~5/3and k—3. We do not discuss this case in detail. We refer the reader to Lindborg [60], Brethouwer et al
[14], and Bartello and Tobias [4].

(iv) In three dimensions and for Prandtl number $1, turbulence in RBC has strong similarities with the
hydrodynamic turbulence, e.g, it exhibits constant energy flux and k=33 energy spectrum in the inertial
range. For very large and infinite Prandtl numbers, convective turbulence has E, (k) ~ k~'3/3. The energy
spectrum is expected to be different in two dimensions and in the boundary layer.

(v) In RBC turbulence, the pressure gradient accelerates the flow, while the buoyancy is balanced by the viscous
dissipation. This observation is consistent with the Kolmogorov-like phenomenology observed for RBC.

(vi) The aforementioned phenomenology of RBC turbulence is expected to work for other buoyancy-driven
flows in which buoyancy feeds the kinetic energy. Some of the examples of such flows are bubbly turbulence,
non-Boussinesq thermally-driven flows in stars, turbulent buoyancy-driven exchange flows in a vertical

pipe [3], etc.
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(vii) The scaling of the Reynolds and Nusselt numbers of RBC are well described by the models of Grossmann
and Lohse [38—42]. Recently Pandey et al [84] and Pandey and Verma [85] derived a formula for the Péclet
number that fits with the experimental and numerical data quite well.

In ashort review it is impossible to cover the vast number of results of buoyancy-driven turbulence. Here we
could not describe recent results on the ultimate regime of turbulent convection [44, 107], logarithmic profile of
the boundary layer [96, 108], new scaling of temperature [45], rotating convection [23], etc. Also we could not
discuss SST for Fr < 1, which is very important for atmospheric turbulence. We hope that a more
comprehensive review will be written. For relatively older works, we refer the reader to the review articles
[2,8,29,63,98].

In this article we covered the present status of the energy spectrum and flux of turbulent convection that
shows certain resolution. The issue of Nusselt number exponent being 1/2 or ~0.3, and the existence of the
ultimate regime is being intensely investigated. The structure and dynamics of boundary layer (e.g. existence of
loglayer or not), flow reversals, and intermittency in RBC are also of major interest. High-resolution
simulations, advanced experiments, and careful modelling may resolve these outstanding questions in future.
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