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ABSTRACT: Many natural organic compounds with pharma-
ceutical applications, including antibiotics (chlortetracycline
and vancomycin), antifungal compounds (pyrrolnitrin), and
chemotherapeutics (salinosporamide A and rebeccamycin) are
chlorinated. Halogenating enzymes like tryptophan 7-halogen-
ase (PrmmA) and tryptophan S-halogenase (PyrH) perform
regioselective halogenation of tryptophan. In this study, the
conformational dynamics of two flavin-dependent tryptophan
halogenases—PrnA and PyrH—was investigated through
molecular dynamics simulations, which are in agreement with
the crystallographic and kinetic experimental studies of both
enzymes and provide further explanation of the experimental
data at an atomistic level of accuracy. They show that the
binding sites of the cofactor-flavin adenine dinucleotide and the

substrate do not come into close proximity during the simulations, thus supporting an enzymatic mechanism without a direct
contact between them. Two catalytically important active site residues, glutamate (E346/E354) and lysine (K79/K75) in PrnA
and PyrH, respectively, were found to play a key role in positioning the proposed chlorinating agent, hypochlorous acid. The
changes in the regioselectivity between PrnA and PyrH arise as a consequence of differences in the orientation of substrate in its

binding site.

B INTRODUCTION

Many pharmaceutically important natural organic compounds
(including antibiotics, such as chlortetracycline' and vancomy-
cin,” the antifungal compound pyrrolnitrin® and chemo-
therapeutics, such as salinosporamide A* and rebeccamycin®)
are chlorinated. Halogenating enzymes perform regioselective
halogenation of aromatic compounds efficiently in a solution
using only chloride ions at physiological temperatures and
atmospheric pressure. However, selective nonenzymatic chlori-
nation of the C—H bonds is a chemical synthesis challenge.’
For example, the halogenation of tryptophan in the solution
lacks regioselectivity and produces a mixture of products with
chlorine added at the 1st, Sth, and 7th carbon of the indole
ring.7 From an industrial point of view, this is unacceptable, as
the desired isomer is produced with a lower yield and is
expensive to separate from the other isomers. Interestingly,
many natural products with pharmaceutical relevance contain
halogen atoms at a range of different positions. These would be
difficult to synthesize chemocatalytically and rely on the use of
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protecting groups and metal-based catalysts. Such strategies
introduce extra reaction steps to the synthesis, increasing
financial costs and lowering yields." Hence, a detailed
understanding of the enzymatic mechanism of regioselective
chlorination/halogenation of natural organic compounds and
knowledge of the origin of the regioselectivity is of importance
to organic chemical synthesis. Halogenating enzymes are
attractive as biocatalysts because they can be engineered to
suit different synthetic purposes,’ not only adjusting their
regioselectivity but also their ability to accept a range of
different substrates, such as indoles and other aryl-based
substrates. "

The indole ring of tryptophan gets chlorinated at different
positions of the Sth, 6th, or 7th carbon atom by distinct flavin-
dependent halogenases, these include tryptophan S-halogenase
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(PyrH'""), tryptophan 6-halogenases (Thal'* and SttH'?), and
tryptophan 7-halogenases (RebH'* and PrnA'®), respectively.
All of these enzymes exhibit high levels of regio- and
stereoselectivity. For example, chlorination of the indole ring
of tryptophan at its sixth carbon atom by tryptophan 6-
halogenase (Thal'?) has been suggested to be the first step of
the biosynthesis of the indole alkaloid thienodolin—a natural
compound that exhibits plant growth-regulating activity. Our
study focuses on the structural analysis through extensive
molecular dynamics (MD) simulations of two flavin-dependent
halogenases, namely, PrnA (tryptophan 7-halogenase) and
PyrH (tryptophan S-halogenase). PrnA catalyzes the chlorina-
tion of free tryptophan to 7-chlorotryptophan as a first step in
the biosynthesis of the antibiotic and antifungal compound
pyrrolnitrin.” PyrH catalyzes the chlorination of free tryptophan
to S-chlorotryptophan as a part of the biosynthesis of the
antibiotic pyrroindomycin B."' It is important to understand
the reasons for regioselectivity, with a focus on the structural
differences at the active sites of these structurally similar
enzymes.

X-ray crystallographic structures of the two halogenases are
available from the Protein Data Bank (PDB)."¥'® The structure
of PrnA is shown in Figure 1.

Figure 1. X-ray PrnA structure drawn using PrnA displayed in
silhouette round ribbon. Substrate (Trp-S), cofactor FAD, chlorination
agent, hypochlorous acid, and the side chains of the catalytically
important K79 and E346 are shown in tube representation.
Hypochlorous acid and the to-be halogenated carbon of Trp-S are
shown in spherical representation. Carbons are green, nitrogens are
dark blue, oxygens are red, and hydrogens are white.

Several reaction mechanisms were proposed for the
enzymatic chlorination of tryptophan performed by tryptophan
7-halogenase.” In the van Pée mechanism, the aryl ring of
tryptophan reacts directly with hydroperoxy-FAD to produce a
hydroxylated tryptophan intermediate.'” The positively charged
intermediate is then attacked by a chloride ion to produce a
chlorinated hydroxyl-tryptophan product. This product under-
goes an elimination of water to produce the chlorinated
tryptophan product.'”” In the Walsh mechanism, chloride
attacks hydroperoxy-FAD to produce a FAD-OCI intermediate.
The tryptophan substrate (Trp-S) can then attack the chlorine
of the FAD-OCI intermediate in a classical electrophilic

4848

aromatic substitution reaction.'® The van Pée and Walsh
mechanisms rely on the possibility that the FAD and
tryptophan-binding sites of the enzyme can be brought within
a suitable proximity for direct contact between the FAD and
Trp-S."”"® Inspection of the crystal structures of the known
FAD-dependent halogenase enzymes shows a >10 A distance
between the FAD and tryptophan-binding sites (Figure 2)."' ™'

Figure 2. Two different views A and B of the ribbon representation of
the PrnA crystal structure, with Trp-S, FAD, hypochlorous acid, K79,
and E346 rendered as tubes and labeled. Hypochlorous acid and the
to-be halogenated carbon of Trp-S are represented with a sphere
rendering. Carbons are bright green and additional element colors are
as follows: nitrogen is dark blue, oxygen is red, and hydrogen is white.
In addition, the distance between the FAD C4A carbon and Trp-S C7
atom is drawn with a dashed line and the distance is labeled in blue.

The separation between the ligands would be too distant for
direct interaction. However, close contact between the cofactor
and the substrate, though not observable in the crystal
structure, is a possibility that cannot be entirely excluded. A
large conformational change could take place in the protein
structure, bringing the two binding sites into close proximity
and allowing direct reaction between the two ligands.

A third mechanism put forward by Naismith et al. suggests
that hypochlorous acid is produced at the FAD-binding site by
the reaction of a chloride ion and hydroperoxy-FAD.
Hypochlorous acid then travels through a channel between
the FAD and tryptophan-binding sites. ”'* Once in proximity
to tryptophan, the active site lysine and glutamate residues
facilitate a reaction between hypochlorous acid and tryptophan
to produce the chlorinated tryptophan product.'>*° Because
the FAD- and tryptophan-binding sites are distant, the
chlorinating agent, hypochlorous acid, is thought to travel
through a channel in the protein.'” Two amino acids K79 and
E346 in PrmA (analogous to K75 and E354 in PyrH) are
positioned in close proximity to the reactive carbon of
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tryptophan’s indole ring. They are thought to be involved in the
activation of the hypochlorous acid for the halogenation step of
the reaction.'” The role of K79 and E346 in PrnA is supported
by an experimental mutagenesis, showing that the K79A
mutant had no detectable activity, and in the E346Q mutant,
the K, value for the halogenation is decreased by 2 orders of
magnitude. "’

PyrH and PrnA share a 40% sequence identity and a 58%
sequence similarity, making their structures similar.”’ Despite
this similarity, the catalytic turnovers of tryptophan 7-
halogenase and tryptophan S-halogenase differ. For example,
PyrH was found to convert 100% of its Trp-S, whereas PrnA
converted only 59% of its substrate and the origin of this
difference has not yet been elucidated.'” In the FAD-binding
site of the crystal structure of PyrH, a “strap” region was
identified and hypothesized as a structural feature that allows
for “communication” between the two binding sites that are
involved in the regulation of FAD binding. The overlaid crystal
structures of PyrH and PrnA reveal that the FAD-binding sites
are almost identical (Figure 3). Structural analysis showed that

-y
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Figure 3. View of the aligned crystal structures of PrnA and PyrH
rendered with transparent protein ribbons, the FAD-binding straps are
rendered as solid ribbons to highlight them. FAD, Trp-S,
hypochlorous acid, and the active lysine and glutamate residues are
rendered as tubes with carbon atoms colored according to the protein:
PrnA in bright green and PyrH in light blue.

PyrH possesses a structurally different tryptophan binding site
to that of PrnA. Trp-S in the PyrH crystal structure is bound in
a way that is upside down with respect to tryptophan in the
PrnA crystal structure (Figure 3). However, the to-be
halogenated carbon of Trp-S in PmA (C7) and PyrH (CS)
superimpose well when the two protein structures are aligned.
The positioning of the reactive carbon is located between the
active site lysine and glutamate residues, which show similar
orientation across the two enzymes. In a recent study
investigating the reaction mechanism for the chlorination of
tryptophan in PrnA, quantum mechanics (QM)/molecular
mechanics (MM) methods were applied to study the potential
energy and free energy surfaces of the chlorination reaction.””
Key atomistic interactions in the stationary points and energetic
changes along the reaction path were explored. They reported
that E346 fulfills the role of a proton acceptor and hydrogen-
bonding residue for Trp-S, whereas K79 acts as a proton donor
and hydrogen-bonding residue for the hypochlorous acid. The
structural data suggest that the reason for different
regioselectivity of the two enzymes would be related to the
binding interactions of Trp-S in the active sites.”

Enzymes are large, flexible, and dynamic molecules that
naturally undergo a wide range of conformational changes and
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. . 2
molecular motions ranging from femtoseconds to hours. 3

Many of these motions are functionally important and relate
enzyme structure to function.”* Experimentally determined
protein structures (e.g, by X-ray crystallography) provide
valuable structural information, however, limited to a static
structure, averaged over the number of molecules in the crystal
lattice, and the duration of the experlment S In addition, steric
effects can also arise due to the compactness of the crystal
environment.”® Enzyme conformational flexibility plays a
substantial role in stabilizing the protein 1nteract10ns vital in
facilitating ligand binding and unbinding events.”” Molecular
plasticity is involved in assisting the migration of ligands to the
binding site, as well as the diffusion of gases and small
molecules through the protein.”® Mutations of key residues,
involved in catalysis and binding, can not only influence locally
the structure but also exercise a long-range structural effect on
the protein conformation as a whole. Exploration of the
dynamic events in proteins, using experimental methods, can be
a challenge; thus, computer-based experiments, for example,
MD simulations can be applied to study this.”>~*>*" Long-
range atomistic MD simulations were performed to elucidate
structure—function relationships and mechanistic implications
related to the origin of regioselectivity in both enzymes.

B METHODS

An initial structure for the MD simulations of the wild-type full
complex PrnA was created from the pdb structure of the
enzyme (PDBID: 2ARS8)."”> The product 7-chlorotryptophan
was separated to create tryptophan and hypochlorous acid; in
addition, the chloride ion bound at the FAD-binding site was
removed and FAD was modified to create hydroxy-FAD (from
this point forward, FAD will refer to hydroxy-FAD). These
changes were made with the aim to create the active full
complex before the halogenation of Trp-S. Modification of the
atomic coordinates was performed using Maestro 9.9.013.%

Structures of the mutant forms K79A and E346Q were
prepared by changing the respective reﬁdues in the wild-type
full complex structure using Maestro.”” The initial structure of
PyrH (PDBID: 2WET) for MD simulations was prepared by
superimposing the pdb structure with that of the wild-type full
complex PrnA. The coordinates of hypochlorous acid from this
were then added to 2WET, as they were not present in the
crystal structure.'® In addition to this, the sulfate and chloride
ions from the crystal structure were also removed. The
parameters for FAD and hypochlorous acid were generated
by the PRODRG web server’' for the GROMOS96 43al
forcefield®” with atomic partial charges for hypochlorous acid
supplemented from QM calculations performed by the
Automated Topology Builder web server.”> The missing
coordinates of the two loop reglons 1n the 2WET structure
were modeled using the Modeller’ plug-in for Chimera
1.10.2.* The setup for PyrH then followed the same protocol
as the one for PrnA. In total, the PrnA full complex had 94 114
atoms and PyrH 97 090 atoms. The hydrogen atoms missing
from the X-ray crystal structure were added using Gromacs
4.5.5.%° To remove unfavorable steric clashes in the starting
structure, in vacuo energy minimization was performed using
the steepest descent algorithm until the maximum force was
less than 100 k] mol™' nm™, the protein was then placed in a
box with periodic boundary conditions. The energy-minimized
protem structure was then solvated using the single point
charge’” model for water. The total charge of the system was
neutralized by adding the correct number of Na* or Cl™ ions to
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Figure 4. RMSD plot of all five 1 ys MD simulations: the PrnA full complex, apoenzyme PrnA, PyrH full complex, and the K79A and E346Q mutant

forms of PrnA.
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Figure S. Solvent accessible area graph of the PrnA full complex and PrnA apoenzyme simulations.

make the overall charge of the system zero. Another energy
minimization (using the same conditions as described for in
vacuo energy minimization) was then performed to reduce
close contacts between the solvent molecules or the ions that
may be unfavorably close to the protein structure. The energy-
minimized structure was then subject to position-restrained
MD for 50 ps at 300 K, during that, the protein structure was
restrained and the water was allowed to equilibrate. The
position-restrained dynamics simulations were performed in
NVT ensemble, a constant number of particles, volume, and
temperature with a time step of 2 fs. The productive MD was
then carried out with the output structure from the position-
restrained MD providing the initial structure for 1 us as in NPT
ensemble at a temperature of 300 K. The MD trajectories were
analyzed over the time period of 100—1000 ns, after
equilibration phase was reached, using tools provided in
Gromacs. Visualization and inspection of the trajectories were
performed with visual molecular dynamics.”® Dynamic cross
correlation analysis (DCCA) was performed using the Bio3D
package® for Rstudio.”” The DCCA is used to visualize which
residues play a role in correlated motions that occur between
different components of the protein structure.”" The level of
correlation between each Ca atom can be quantified and
visualized on a plot, with correlations ranging from +1 to —1,
indicating a strong positive to a negative correlation. This
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allows the identification of regions in the protein, showing
correlated motion in the simulation.

B RESULTS AND DISCUSSION

Conformational Dynamics of Full Complex Wild-Type
PrnA. In total, five 1 us MD simulations were performed: the
full complex of wild-type PrnA, apoenzyme PrnA, two single
point mutant forms, K79A and E346Q, of PrnA, as well as the
full complex wild-type PyrH.

The root mean square deviation (RMSD) profile for all Ca
atoms for the 1 ys MD simulation of the wild-type full complex
PrnA is 3.5 A. The RMSD profiles of all five of the 1 us
simulations (Figure 4) indicated that the initial equilibration
phase was completed after 100 ns. In addition to the 1 us
simulation, three additional 200 ns MD simulations of the wild-
type full complex of PrnA were performed. These used the
same initial structure but different initial velocities (Supporting
Information (SI) Figure S1). These simulations were created to
evaluate the effect of statistical error on the quality of the
simulations. The RMSDs for each of these trajectories was
consistent with the 1 us wild-type full complex PrnA simulation
indicating good quality of the simulations. The radius of
gyration of all four 1 us simulations (SI Figure S2) was 23 A,
showing that the protein remains relatively compact during the
simulation time scale.
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Figure 7. Plot showing the relationship between the RMSD of the flexible loop region in both the full complex PrnA and the apoenzyme PrnA
spanning residues 147—170 (left y-axis), and the hydrogen-bonding interaction distance between S157 side chain oxygen and Trp-S (right y-axis).

The average RMSD of the full complex wild-type PrnA is 3.5
A and in the apoenzyme PrnA is 3.6 A, indicating a slight trend
of increased flexibility of the apoenzyme form possibly due to
the absence of bound ligands. The average RMSD of PyrH was
2.8 A, reflecting its relatively lower flexibility compared with
PrnA. The solvent accessible area (SAS) of the apoenzyme
PrnA is lower than the SAS of the full complex wild-type PrnA
(Figure S). The radius of gyration also indicates a more
compact structure of the apoenzyme form of PrnA with respect
to the full complex PrnA (SI Figure S2). These observations are
consistent with the differences in the RMSDs of the full
complex PrnA and apoenzyme PrnA, and are indicative of
conformational changes associated with ligand binding and an
opening of the PrnA structure upon ligand binding. PyrH is
characterized as having overall lower levels of flexibility and a
more compact structure than the full complex PrnA (Figure 4
and SI Figure S2).

The root mean square fluctuation (RMSF) profiles of the full
complex PrnA and apoenzyme PrnA are presented in Figure 6.
For the full complex PrnA, the peak centered on residue P93
exhibits a high RMSF, reflecting its position at a particularly
flexible portion of the loop that precedes key tryptophan
interacting residues: H101, F103, G104, and N10S. These
residues are involved in the binding of Trp-S. It is therefore
possible that the flexibility of this loop is related to the binding
and orientation of Trp-S.
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A flexible loop consisting of residues 147—159 has a
maximum RMSF value of 6.7 A (centered on residue G152)
in the full complex PrnA (Figure 6). The same region has an
RMSF value of 1.8 A in the apoenzyme form of PrnA. This
loop is located on the exterior of the protein and is solvent
exposed, forming several intraloop hydrogen bonds. The loop
immediately precedes S157, a hydrogen bond stabilizing
residue of Trp-S. The RMSD plot of the loop region 147—
159 (Figure 7) shows that the loop is adopting a stable
orientation after 300 ns. In this conformation, S157 forms a
hydrogen bond with the carboxylate of Trp-S. The dynamics of
the loop differ greatly between the full complex wild-type PrnA
and the apoenzyme PrnA, suggesting that a conformational
change occurs in the loop upon binding of Trp-S. In the
apoenzyme, the S157 side chain forms hydrogen bonds with
the neighboring residues A80, M156, and Y443 instead. These
intraloop protein—protein hydrogen bonds stabilize the 149—
159 loop of the apoenzyme and maintain a more compact
conformation, which is reflected in the lower RMSD of the loop
in the apoenzyme (Figure 7).

Conformational changes in enzymes are complex and involve
collective motions between different regions of the protein
molecule.”” To analyze the collective correlated motions in the
studied tryptophan halogenase enzymes, we performed DCCA.
In the full complex PrnA, a correlated motion between the
portion of the FAD strap region closest to Trp-S (residues 50—
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Figure 8. DCCA plot of the PrnA full complex simulation. Areas of strongly positive correlation are in red and areas of strongly negative correlation

are in blue.

54) and the important catalytic residue E346 was found, and
supports the idea of the strap region being an important link
between the two binding sites (Figure 8).

In the DCCA plot of the full complex wild-type PrnA (Figure
8), a region of positive correlations corresponds to two areas of
protein from residues 20S to 255 and 305 to 350 (Figure 9).
The area makes up a large part of the FAD-binding site and
contains many important FAD-binding residues. It also
contains important residues from the tryptophan-binding site,
such as E346 and S347.

The region of residues from 355 to 380 that shows
fluctuation in both the RMSF plot (Figure 6) of the full

Figure 9. Two DCCA correlated regions described as spanning
residues 205—255 in red and the region spanning from residues 305 to
350 in blue. The important residues E346 and S347 are displayed
along with FAD and the substrate tryptophan in green carbon tubes.

4852

complex wild-type PrnA and apoenzyme PrnA correspond to a
long a-helix that intersects the FAD- and tryptophan-binding
sites. It contains the tryptophan hydrogen-bonding residue,
Y351. In the DCCA plot of the full complex wild-type PrnA
(Figure 8), this region of residues, 355—380, shows correlation
with an important tryptophan-binding residue W4S55. A
relatively large span of residues 396—456 directly precedes
the important tryptophan binding residues (Y443, Y444, W45S,
E450, F454, and N459) and shows more fluctuation in the full
complex than the apoenzyme (Figure 6). These residues form
several helices joined by short loops. Interactions between the
helices create a compact and less flexible hydrophobic cluster.

Tryptophan-Binding Site Interactions of Wild-Type
PrnA. The high level of regioselectivity of FAD-dependent
halogenases is thought to depend on the proper orientation of
Trp-S.” Tryptophan positioning and orientation allows for the
respective carbon atom from the indole ring (C7 in PrnA and
CS in PyrH) to be favorably oriented for the reaction. To
accomplish stable binding of tryptophan, an extensive network
of hydrogen bonds (Figure 10), electrostatic interactions (SI
Figure S3), and van der Waals interactions (Figure 11) were
found. The measured distances of interactions of Trp-S
observed in the X-ray crystal structure and wild-type full
complex PrnA MD simulation are recorded in Tables 1 and 2."
K79 and E346, thought to be important for hypochlorous acid
activation, are also involved in a network of hydrogen-bonding
and electrostatic interactions that maintain their orientations in
the active site relative to Trp-S and the chlorinating agent,
hypochlorous acid.'”**

Measurements were made between the donor and acceptor
atoms for hydrogen bonds. Measurements for electrostatic
interactions (highlighted in gray) were measured between the
centers of the charged groups.
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Figure 10. Hydrogen-bonding interactions surrounding Trp-S in
PrnA. The distances between the donors and acceptors are shown in
Table 1.

Figure 11. Hydrophobic contacts surrounding Trp-S in PrnA. The
distances between the centers of mass of the Trp-S indole ring and the
hydrophobic amino acid side chains are shown in Table 2.

Trp-S (Table 1) can act as both hydrogen bond donor and
acceptor with its amino nitrogen, carboxylate oxygen, and
indole ring nitrogen atoms. The backbone nitrogen of G104
participates in a hydrogen bond with Trp-S’s carboxylate. This
interaction does not exist in the crystal structure but is stable
during the MD trajectory. The amino group of tryptophan is
hydrogen bonded to the side chain phenolic oxygen of Y443,
and the backbone carbonyl oxygen of F454. The amino group
of tryptophan can also make electrostatic interactions (Table 1)

Table 2. Distances between the Centers of Mass between the
Hydrophobic Side Chains and the Indole Ring of Trp-S

residue name and average distance distance in crystal structure

number (A) (A)
152 6.2 5.0
H101 6.3 54
F103 4.7 5.6
W455 5.1 5.9

with the carboxylate of E450 with an average distance of 4.2 A.
E450 in turn interacts with the side chain amino group of K57
(distance 5.8 A), which would help more efficient binding of
Trp-S.

Hypochlorous acid can participate in hydrogen bonds and
interactions with charged residues in the enzyme active site.
The hydrogen atom of hypochlorous acid has a partial positive
charge (0.455¢) and forms a strong hydrogen bond with the
side chain of E346 (Table 1). In the initial structure of the PrnA
full complex, K79 is in close proximity to hypochlorous acid
and seems a likely candidate for hydrogen bonding; however,
during the MD simulation, hypochlorous acid moves away from
K79, reflected in the average distance of 6.7 A in the MD
(Table 1). The carboxylate side chain of E346 has two oxygen
atoms, OEl and OE2, with which it is possible to form
hydrogen bonds (Table 1). The E346 carboxylate forms an
electrostatic interaction with the NE2 nitrogen atom of the
protonated H395 side chain. Hypochlorous acid makes strong
hydrogen-bonding interactions with the carboxylate side chain
of E346. The E346 carboxylate side chain also interacts with the
positively charged doubly protonated H39S (Table 1). In the
crystal structure, the indole nitrogen atom of tryptophan forms
a hydrogen bond with the backbone carbonyl oxygen of E346.
However, in the MD simulation, the backbone carbonyl of
E346 moves away from tryptophan to make other hydrogen-
bonding interactions with T348 and the hydroxyl oxygen of
hydroperoxyflavin moiety of FAD."

F103, W45S, and H101 form 7—7 stacking interactions with
tryptophan (respective average distances of 4.7, 5.1, and 6.3 A).
Throughout the MD simulation, W4SS remains close to Trp-S
participating in a stable 7—n stacking interaction with the
substrate (Table 2). E346 and hypochlorous acid are also
located in a close proximity to the side chain of W4SS;
however, W45S5 does not become halogenated. K79 is not
found in proximity to W4SS, indicating that the proximity to

Table 1. Hydrogen-Bonding and Electrostatic Interactions for the Tryptophan-Binding Site in the Wild-Type Full Complex

PrnA
residue 1 atom 1 residue 2 atom 2
H395 NE2 E346 OE2 53
E346 OEl HYP () 91
E346 OE2 HYP (0] 90
G104 N Trp-S 0 82
G104 N Trp-S carboxylate 81
Y443 OH Trp-S amino 9S
F454 (¢] Trp-S amino 69
H395 NE2 E346 carboxylate n/a
E346 carboxylate HYP H n/a
K79 NZ HYP 01 n/a
E450 carboxylate Trp-S N n/a
Ks7 Nz E450 CD n/a
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% of the simulation time <3.5 A

average distance in MD (A)  distance in crystal structure (A)

3.5 2.5
3.0 3.5
3.1 52
3.0 6.0
3.1 8.0
3.1 3.1
3.4 2.8
3.7 4.5
2.5 4.6
6.7 32
4.2 3.8
5.8 10.3
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Figure 12. Distance between the center of mass of the binding sites of the substrate tryptophan and the flavin ring moiety of FAD in the PrnA full

complex, PrnA apoenzyme, and PyrH full complex MD simulations.

both K79 and E346 is needed for the halogenation reaction to
occur.

A positive correlation between residues 100—130 and
residues 475—505 is found in the DCCA of the full complex
wild-type PrnA (Figure 8). The region of residues 475—50S
forms a long a-helix running perpendicular to the H101/F103
region. The correlation is likely to be caused by hydrophobic
interactions between the two regions of the loop portions of
the H101/F103 (SI Figure S4). These two regions are
interwoven and any movement in one will affect the other
region as well.

FAD-Binding Site in PrnA. A structural feature previously
observed in the crystal structure of PyrH is the FAD-binding
strap. This strap region is thought to control the binding of
FAD and also hypothesized to act as a line of communication
between the FAD-binding and tryptophan-binding sites in
PyrH.'® In the crystallographic study of PyrH, the electron
density of the strap region is relatively low, implying that it is a
particularly flexible region of PyrH.' Through inspection of the
crystal structure of PrnA, we found that a similar strap region
superimposes with that of the PyrH crystal structure and would
also exists in PrnA (Figure 3). The high flexibility of the strap
region shown in SI Figure SS, together with its probable
influence on both FAD and tryptophan (Figure 3), points
toward the strap region fulfilling a similar role to the one
hypothesized to perform in PyrH. In both enzymes, the strap
region consists of a long straight section of residues running
parallel to FAD without secondary structure elements (Figure
3). The region of the strap that is in close contact with FAD
forms several hydrogen bonds (SI Figure S6) and hydrophobic
and cation— interactions (SI Figure S7) with FAD. These are
evident in the crystal structure as well as the MD simulations of
the PrnA wild-type full complex (SI Tables S1 and $2).*

FAD is a relatively large molecule, and in the crystal
structure, it adopts a linear extended conformation, whereas in
the MD, we see it undergoing a structural transition around 200
ns to adopt a bent conformation (SI Figure S8). We also see
this structural transition of FAD in the MD simulations of PrnA
and PyrH. In the PrnA full complex simulation, the change in
the conformation of FAD happens simultaneously with a
structural transition seen in the FAD strap region (SI Figure
SS). After 200 ns, the strap adopts a conformation that shows
reduced structural flexibility. In comparison, the RMSD of the
strap region in the apoenzyme form of PrnA shows a higher
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flexibility as well as larger fluctuations (SI Figure SS). The
increased flexibility of the strap region in the apoenzyme PrnA
MD in contrast to the full complex PrnA MD suggests that the
strap region is involved in the binding of FAD and becomes
more stable in its presence, which can be seen by comparing
hydrogen-bonding interactions of FAD in the X-ray crystal
structure to those from the MD (SI Table S2).

The RMSF profile of the strap region (SI Figure S9) shows
that although the strap region in the apoenzyme form of PrnA
possesses a higher flexibility than the strap region in the full
complex PrnA form, this is mainly due to the high flexibility of
residues 45—49. These residues are located in close proximity
to the flavin moiety of FAD and form stable hydrogen-bonding
interactions with it (SI Table S2). The region of residues from
50 to 53 connects the FAD-binding residues to those of the
tryptophan-binding site. S54 hydrogen bonds E450, which is a
key residue for the binding of the amino group of tryptophan.
The equilibration of the strap region and FAD after 150 ns
causes a conformational change that brings the side chain of
S54 into the proximity of E450 to form a hydrogen bond (SI
Figure S10). This movement brings E450 into the proximity of
the tryptophan amino group, where it forms an electrostatic
interaction (Table 1). This conformational change provides an
atomistic basis for the predicted communication between FAD
and tryptophan-binding sites. The binding of FAD can
influence the binding of tryptophan by means of the strap
region running through both domains.

The hydrophobic interactions between FAD and the protein
in the MD simulations and X-ray crystal structure are
predominantly with the flavin moiety of FAD (SI Table S1).
The adenine moiety of FAD also has the potential to form a
cation—7 interaction with the side chain of R221 (SI Table S1).
Most hydrogen bonds with the adenine moiety of FAD are
formed with the backbone carbonyl oxygen and nitrogen atoms
of the surrounding residues (SI Table S2). ASO, S347, T348,
and I350 are the key residues found to form stable hydrogen-
bonding interactions with the flavin ring moiety of FAD. The
backbone carbonyl groups of E346 and P344 interact with the
hydroxyl group of FAD. The interaction between hydroxy-FAD
and E346 could influence the communication between FAD
and Trp-S.

Possibility of Direct Contact between FAD- and
Tryptophan-Binding Site/Module. The 1 us MD simu-
lations show that close contact between FAD and tryptophan
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does not occur at this time scale. The distance between the
FAD-binding site and the substrate-binding site remains
relatively high during MD. The average distance between the
centers of mass of the FAD- and tryptophan-binding sites was
found to be 12.1, 13.5, and 14.2 A, respectively, for PrnA full
complex, apoenzyme PrnA, and PyrH full complex MD
simulations (Figure 12). The distance between C4A atom of
FAD and the to-be halogenated carbon of tryptophan (C7/CS)
remains high throughout the MD simulations of PrnA and
PyrH (Table 3). The side chains of residues K79 and E346

Table 3. Average Distances between the Proposed Reactive
Atoms in the Tryptophan-Binding Site

average average
distance distance
PrnA full PyrH full
complex MD  complex MD
(A) (&)
flavin C4A—substrate tryptophan C7/CS 11.6 11.0
flavin C4X—active lysine NZ 7.0 6.9
flavin C4X—active glutamate CD 8.3 10.8

remain distant from flavin at the 1 us time scale of the MD
simulations (Table 3). Some hydrogen bonding is found
between the hydroxyl group of flavin and the backbone
carbonyl oxygen of E346. This would not, however, allow for
direct halogenation of the E346 or K79 side chains (SI Table
S1). These observations support the main catalytic mechanism
in which the intermediary halogenating agent is created at the
FAD-binding site and travels throuﬁh a channel between the
FAD- and tryptophan-binding sites. >

Distances were measured between the lysine (K79/K75 of
PrnA and PyrH, respectively) —NZ, glutamate (E346/E354 of
PrnA and PyrH, respectively), CD, and substrate tryptophan
C7/CS atoms and the proposed reactive atom of FAD-C4A in
the MD simulations.

Conformational Effects of the Mutations of K79 and
E346. Mutational studies show that both K79 and E346 in
PrnA and K75 and E354 in PyrH play a vital role in the reaction

of chlorination of tryptophan. The residues are conserved
across the known FAD-dependent halo%enases: PyrH''
(tryptophan $-halogenase), Thal'* and SttH'® (tryptophan 6-
halogenases) and RebH,'* and PrnA" (trypthophan 7-
halogenases), indicating their key roles in the catalysis."* In
PrnA, the mutation K79A leads to a complete loss of activity
and the mutation E346Q_shows activity that is reduced by 2
orders of magnitude to a level where it is barely detectable."
Although possessing no formal charge, hypochlorous acid has a
strong dipole moment (oxygen —0.456 D and hydrogen 0.44S
D calculated by the automated force field topology builder™)
and interactions with K79 and E346 will have an influence on
its position and orientation. To test the stabilizing effect of the
two charged residues and to explain the experimental effects of
the mutations, we performed the MD simulations on in silico
mutated forms of PrnA K79A and E346Q. Without the
electrostatic environment created by both K79 and E346,
hypochlorous acid moves away from tryptophan and back along
the channel toward FAD. In this position, hypochlorous acid is
too distant from tryptophan and would likely be unable to
participate in the halogenation reaction (SI Figure S11). In the
MD simulation of K79A mutant, the hypochlorous acid remains
closer to the flavin ring and forms hydrogen bonds with the O4
atom of FAD. In the E346Q mutant form MD simulation, the
hypochlorous acid moves away from the tryptophan-binding
site along the channel toward FAD, where it forms a hydrogen
bond with T263. This residue, although close to K79, is
separated by internal protein structure and not accessible for
interaction with hypochlorous acid. The simulations of the two
mutant forms show increased hypochlorous acid Cl to Trp-C7
distances relative to the wild-type PrnA. This indicates to us
that both residues are of key importance for the positioning of
hypochlorous acid in proximity to tryptophan.

Comparison of PyrH to PrnA. PyrH and PrnA are
structurally similar enzymes that carry out similar reactions but
exhibit different kinetics. PyrH is a more efficient enzyme at
chlorinating tryptophan, it achieves 100% conversion to S-
chlorotryptophan, whereas under the same conditions, PrnA
converts only 59% of tryptophan to 7-chlorotryptophan, with

Figure 13. Ribbon structure of PrnA (dark green) and PyrH (gold) structurally aligned with one another. Stick representations of the bound ligands
FAD and tryptophan as well as the active glutamate and lysine residues. Hypochlorous acid and the to-be halogenated carbon of tryptophan are
represented as spheres. Light blue carbons represent PrnA and green carbons represent PyrH. Additional element colors are as follows: nitrogen is

dark blue, oxygen is red, and hydrogen is white.
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the remaining tryptophan unreacted.'” The binding mode of
FAD in both enzymes is almost identical, and the FAD
molecules overlay almost perfectly when the two proteins are
aligned (Figures 3 and 13). The differences in their
regioselectivity and kinetics probably originate in the
tryptophan-binding domain. The way these two enzymes
bind Trp-S in the active site is quite different, Trp-S in PyrH
is oriented in an upside-down position relative to its binding
orientation in PrnA. The benzene moieties of the indole rings
for both PrnA and PyrH are nearly superimposable in the
crystal structure (Figure 14). This indicates that the CS atom in

Figure 14. View of the aligned crystal structures of PrnA and PyrH
rendered with transparent protein ribbons, PrnA with yellow ribbons,
and PyrH with green ribbons. The substrate tryptophan, hypochlorous
acid, and the active lysine and glutamate residues are rendered as tubes
with carbon atoms colored according to the protein: PrnA in bright
green and PyrH in light blue. The to-be halogenated carbon (C7/C5)
of the substrate tryptophan is rendered as a sphere.

PyrH is in an almost identical place to that of the C7 atom in
PrnA. During the MD simulation of PyrH, we observe a
rotation of Trp-S to a slightly different orientation, and after
equilibration, this orientation remains relatively stable (SI
Figure S12). Despite this movement, the relative orientation of
the C$S atom of the indole ring of tryptophan toward K75 and
E354 remains the same. The position of hypochlorous acid in
the PyrH MD simulation also remains more stable relative to
the PrnA MD, which is indicated by the lower levels of
fluctuation in the RMSD plot of hypochlorous acid in SI Figure
S13.

The higher efficiency of PyrH as an enzyme may correlate
with the reduced flexibility of the PyrH tryptophan-binding site.
A more rigid binding site can make PyrH a more efficient
enzyme for halogenating tryptophan.'® The averaged distances
from the MD trajectories between K79/K75-NZ, hypochlorous
acid Cl, and Trp (C7 in PrnA and CS in PyrH) are shown in SI
Figures S14 and S15. K79/K75-NZ to hypochlorous acid Cl
and tryptophan C7/C$ in PyrH show that hypochlorous acid
makes more stable interactions with relatively lower levels of
fluctuations between the active lysine and glutamate residues.
The stability of these interactions could mean that more
energetically favorable interactions take place in PyrH as
opposed to PrnA. This could be one of the contributing factors
to the experimentally observed greater catalytic turnover of
PyrH compared to PrnA.

The average RMSD of PyrH was 2.8 A, which is significantly
lower than the PrnA full complex and PrnA apoenzyme
simulations and means that PyrH is less flexible than PrnA
(Figure 4). In the RMSF plot comparing the PyrH full complex
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and PrnA full complex MD simulations (SI Figure S16), the
region around G37, which immediately precedes the FAD
binding strap that runs from residues 37—50, we see a similar
feature, the FAD strap region, seen in the RMSF plot of PrnA.
However, in PyrH, this region shows lower levels of flexibility.
In PyrH, both the FAD strap region (SI Figure S17) and FAD
show more conformational fluctuations than those in the PrnA
full complex simulation (SI Figure S18). Due to the differences
in the tryptophan-binding sites between PyrH and PrnA, we
found no analogous interaction between S50 and E452 in PrnA.
Instead, a direct hydrogen-bonding interaction between the side
chain of S50 and the carboxylate moiety of Trp-S is found (SI
Table S3). This suggests that despite the differences in
tryptophan-binding between PyrH and PrnA, the role of the
strap region remains the same in the two enzymes.

In PrnA, the flexible loop region, which spans residues 147—
159, might be important for tryptophan binding. In the MD
simulation, we identified a hydrogen bond between the side
chain of S157 and the carboxylate moiety of tryptophan, which
was affected by the dynamics of the 147—159 loop. We propose
that this relationship is important for tryptophan binding
(Figure 7). In PyrH, there is a similarly positioned flexible loop
that had to be modeled due to its lack of coordinates in the
crystal structure.'® This loop of residues from 148 to 165 in
PyrH is similar to the loop 147—159 in PrnA in that G153 acts
as a hinge residue with several internal hydrogen-bonding
interactions forming within the loop during the MD simulation,
such as between T156 and D149, S151 and D149, and R154
and E150. This loop could play a similar role in PyrH as the
equivalent loop 157—159 does in PrnA, acting as a structural
link between the FAD-binding strap and Trp-S. However, the
residue S157 from PrnA has no analogous residue in PyrH;
instead, F164 is found in a similar spatial position and probably
fulfills a similar role in hydrogen-bonding Trp-S. After
equilibration, F164 forms stable hydrogen-bonding interactions
with Trp-S amino and carboxylate moieties (SI Figure S19).
DCCA of the PyrH full complex (SI Figure 520) shows similar
correlations to PrnA (Figure 8, SI Figure S4).

In general, most of the binding interactions between the
protein, Trp-S, and FAD in PrnA are similar to those in PyrH.
For example, tryptophan is bound in a similar way, ie.,
positioned between hydrophobic side chains, making 77—z
stacking interactions with the indole ring (shown in SI Figure
S21, Table 2 and SI Table S4). In PrnA, W4S5S is replaced by a
similarly positioned F451 in PyrH, although the distance is
greater (average distance 7.0 A), therefore making the
interaction weaker and less significant for tryptophan binding.
F49 in PyrH occupies a similar position to F454 in PrnA, with
an average distance of 5.3 A to Trp-S (SI Table S4). H101 and
F103 from PrnA are conserved in PyrH as H92 and F94 and
fulfill a similar role as hydrophobic residues in proximity to
Trp-S (SI Table S4).

In PyrH, the amino group of Trp-S interacts electrostatically
with the side chain of E452 (distance of 3.9 A) (SI Table S5
and Figure S22). In the crystal structure of PyrH, a similar
electrostatic interaction supports E452 and appears to be
created by R96; however, the average distance of this
interaction during the MD simulation is much greater and
therefore weaker than the analogous interaction between K57
and E450 observed in the MD simulation of PrnA. In PyrH, the
important catalytic residue E354 interacts with the protonated
H40 with a similar distance to that of H39S to E346 seen in
PrnA (Table 1 and SI Table SS). Hypochlorous acid forms
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strong interactions with both the active site K75 and E354. Low
average distances indicate that these interactions are stronger
and more stable than in PrnA (SI Figures S14 and S15). This
may be another contributing factor to the increased efficiency
of PyrH as an enzyme.

The greatest differences in tryptophan binding between PyrH
and PrnA observed in our MD simulations were found in the
hydrogen-bonding interactions between the protein and Trp-S.
The different orientations of the substrate between PrnA and
PyrH lead to very different hydrogen bonding. In PyrH, the
relative upside-down positioning of tryptophan means that the
tryptophan NE1 atom no longer points toward hypochlorous
acid channel, meaning it is more able to make hydrogen bonds
with the surface residues of the tryptophan binding pocket
(Figures 14 and 15). In PyrH, $34S forms a hydrogen bond

/\/

Figure 15. Hydrogen-bonding interactions of Trp-S in the PyrH
enzyme.

with the Trp-S NE1 atom, S50 is the main residue responsible
for the hydrogen bonding of Trp-S carboxylate moiety and
F164 forms hydrogen bonds with both amino and carboxylate
moiety of tryptophan (SI Table S3).

Similarly, in the PrnA MD simulation, FAD undergoes a
structural transition from a linear to a bent form (SI Figure S8).
The transition occurs much more rapidly in PyrH than in PrnA
(SI Figure S18). This is seen in the loss of several hydrogen
bonds in the crystal structure as compared to the MD
simulation (SI Table S6). The binding mode of FAD in
PyrH shows a high level of similarity to that of PrnA, in that it
is mainly bound by backbone hydrogen bonds (SI Figure S23).
Some of the interactions between hydrophobic side chains and
the adenine and flavin moieties are conserved by similar
residues to those in PrnA in both the crystal structure and MD
simulations (SI Table S7 and Figure S24).

Correlations to Experimental Studies. The simulations
of PrnA and PyrH agree with the experimental crystallographic
studies of both enzymes on the structural organization of these
enzymes and the structural basis of their functions. The
simulations are consistent with the crystallographic data for the
majority of the interactions that stabilize the binding of Trp-S
and FAD in their respective binding sites.">'°

Important justification concerning the nature of the reaction
mechanism arises from the observation of the crystal structure
of PrnA and especially by the fact that the FAD-binding site
and tryptophan-binding site are separated by 10 A."* Although
experimental studies assert that there is a lack of a potential
large conformational transition that brings into close proximity
the two binding sites, they cannot completely exclude such a
possibility. Instead, the MD simulations for 1 us of the full
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complex, apoenzyme form of PrnA, and full complex PyrH
(Figure 12) demonstrate that there is no such kind of
conformational transition that would bring the two binding
sites together and disfavor the reaction mechanism that
involves direct contact between FAD and Trp-S.

The computational results of the PrnA and PyrH simulations
agree with the experimental studies on the key interactions in
the tryptophan-binding site. The experiments show no activity
in PrnA for the K79A mutant and a 2 order of magnitude
reduction of activity for the E346Q mutant, and our
computational studies provide the atomistic details about
these experimental findings. Furthermore, the present simu-
lations agree with the overall profile of stabilizing interactions in
the FAD-binding site and further explain the role of the strap
region in both enzymes. Furthermore, the present MD studies
complement and agree with prev10us QM/MM studies on the
reaction mechanism of PrnA.**

B CONCLUSIONS

Applying MD simulations, atomistic insights into the
structure—function relationships of two halogenases—PrnA
and PyrH—were gained and the origin of their regioselectivity
was found to be related to structural features. The MD study
showed that during the 1 ps time scale, no major conforma-
tional change occurs that can bring the cofactor FAD and the
substrate tryptophan binding sites together. This confirms the
feasibility of the reaction mechanism that involves first
formation of hypochlorous acid in the FAD-binding site and
then its transfer to the tryptophan binding site, where the
halogenation reaction takes place. Key residues involved in
positioning the substrate tryptophan in the enzyme active sites
were identified. Specific active site orientation of tryptophan is
likely a key factor in the regioselectivity of the two enzymes.
The MD simulations identified several flexible regions that have
implications for substrate binding. A possible function was
proposed for the strap region. Atomistic details about the
communication that links the tryptophan and FAD binding
sites were provided. The study of the two mutant forms of
PrnA confirmed the experimental mutagenesis results and
provided a better understanding of the structural basis for
reduced activities observed for these mutants. Analysis of PyrH
and PrnA MD simulations showed that although the two
enzymes share very similar structures, they exhibit fine
differences in interactions in the respective tryptophan-binding
sites. These observations suggest a structural basis for PyrH as a
more efficient halogenating enzyme.

B ASSOCIATED CONTENT

© Supporting Information

The Supporting Information is available free of charge on the

ACS Publications website at DOI: 10.1021/acsomega.8b00385.
Supporting figures and tables for structural insights from
molecular dynamics simulations of tryptophan 7-
halogenase and tryptophan S-halogenase (PDF)

B AUTHOR INFORMATION

Corresponding Authors
*E-mail: christov@mtu.edu (C.Z.C.).
*B-mail: tatyanak@mtu.edu (T.G.K-C.).

ORCID
Tatyana G. Karabencheva-Christova: 0000-0001-8629-4377

DOI: 10.1021/acsomega.8b00385
ACS Omega 2018, 3, 4847—-4859


http://pubs.acs.org/doi/suppl/10.1021/acsomega.8b00385/suppl_file/ao8b00385_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.8b00385/suppl_file/ao8b00385_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.8b00385/suppl_file/ao8b00385_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.8b00385/suppl_file/ao8b00385_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.8b00385/suppl_file/ao8b00385_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.8b00385/suppl_file/ao8b00385_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.8b00385/suppl_file/ao8b00385_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.8b00385/suppl_file/ao8b00385_si_001.pdf
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acsomega.8b00385
http://pubs.acs.org/doi/suppl/10.1021/acsomega.8b00385/suppl_file/ao8b00385_si_001.pdf
mailto:christov@mtu.edu
mailto:tatyanak@mtu.edu
http://orcid.org/0000-0001-8629-4377
http://dx.doi.org/10.1021/acsomega.8b00385

ACS Omega

Author Contributions

J.A. conducted the calculations, analyzed the results, and wrote
the manuscript. AJ. M., GW.B, and O.S. analyzed and
discussed the results and revised the manuscript. T.G.K.-C.
designed the study and T.GK.-C. and C.Z.C. analyzed and
discussed the results and wrote and revised the manuscript. The
manuscript was written through contributions of all the authors.
All the authors have given approval to the final version of the
manuscript.

Funding

T.GK-C. and C.Z.C. acknowledge Marie Curie International
Outgoing Career Development Fellowships, NSCCS grants,
HEC-Biosim grants, and Michigan Tech start-up grants.
T.G.K-C. is grateful to the University of Bristol and the UK.
Overseas Postgraduate Research Scholarships. J.A. acknowl-
edges Northumbria University PhD Scholarship. The authors
acknowledge the High-Performance Computing Cluster
“Pasteur” and GPU System “Newton” at the Department of
Applied Sciences at Northumbria University.

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

The authors acknowledge Jimmy Gibson, Northumbria
University, for the provided technical IT support. J.A.
acknowledges the technical support of Dr. Warispreet Singh.

B ABBREVIATIONS

PrnA, tryptophan 7-halogenase from Pseudomonas fluorescens;
PyrH, tryptophan S-halogenase from Streptomyces rugosporus;
MD, molecular dynamics; FAD, flavin adenine dinucleotide;
Trp-S, the substrate tryptophan; Thal, tryptophan 6-halogenase
from Streptomyces albogriseolus; SttH, tryptophan 6-halogenase
from Streptomyces toxytricini; RebH, tryptophan 7-halogenase
from Lechevalieria aerocolonigenes; DCCA, dynamic cross-
correlation analysis; RMSD, root mean square deviation; SAS,
solvent accessible area; RMSF, root mean square fluctuation

B REFERENCES

(1) Jukes, T. H. Some Historical Notes on Chlortetracycline. In
Reviews of Infectious Diseases; Oxford University Press: Oxford, 1985;
Vol. 7, pp 702—707.

(2) Moellering, R. C. Vancomycin: A 50-year Reassessment. In
Clinical Infectious Diseases; Oxford University Press: Oxford, 2006; Vol.
42, pp S3—-54.

(3) Hammer, P. E; Hill, D. S.; Lam, S. T.; Van Pée, K.-H.; Ligon, J.
M. Four genes from Pseudomonas fluorescens that encode the
biosynthesis of pyrrolnitrin. Appl. Environ. Microbiol. 1997, 63,
2147-2154.

(4) Feling, R. H.; Buchanan, G. O.; Mincer, T. J.; Kauffman, C. A;
Jensen, P. R; Fenical, W. Salinosporamide A: a highly cytotoxic
proteasome inhibitor from a novel microbial source, a marine
bacterium of the new genus Salinospora. Angew. Chem. Int. Ed.
2003, 42, 355—357.

(S) (a) Neumann, C. S.; Fujimori, D. G.; Walsh, C. T. Halogenation
strategies in natural product biosynthesis. Chem. Biol. 2008, 15, 99—
109. (b) Long, B. H.; Rose, W. C.; Vyas, D. M.; Matson, J. A.; Forenza,
S. Discovery of antitumor indolocarbazoles: rebeccamycin, NSC
655649, and fluoroindolocarbazoles. Curr. Med. Chem.: Anti-Cancer
Agents 2002, 2, 255—266.

(6) Frese, M.; Schnepel, C.; Minges, H.; Vof, H.; Feiner, R.; Sewald,
N. Modular Combination of Enzymatic Halogenation of Tryptophan
with Suzuki-Miyaura Cross-Coupling Reactions. ChemCatChem 2016,
8, 1799—1803.

4858

(7) Somei, M. A Frontier in Indole Chemistry: 1-Hydroxyindoles, 1-
Hydroxytryptamines, and 1-Hydroxytryptophans. In Bioactive Hetero-
cycles I; Eguchi, S., Ed.; Springer, 2006; pp 77—111.

(8) (a) Young, I S.; Baran, P. S. Protecting-group-free synthesis as an
opportunity for invention. Nat. Chem. 2009, 1, 193—205. (b) Wang,
X.; Lane, B. S.; Sames, D. Direct C-arylation of free (NH)-indoles and
pyrroles catalyzed by Ar-Rh (III) complexes assembled in situ. J. Am.
Chem. Soc. 2005, 127, 4996—4997.

(9) Anderson, J. L. R; Chapman, S. K. Molecular mechanisms of
enzyme-catalysed halogenation. Mol. BioSyst. 2006, 2, 350—357.

(10) Shepherd, S. A.; Karthikeyan, C,; Latham, J.; Struck, A. W,;
Thompson, M. L.; Menon, B. R;; Styles, M. Q; Levy, C.; Leys, D,;
Micklefield, J. Extending the biocatalytic scope of regiocomplementary
flavin-dependent halogenase enzymes. Chem. Sci. 2018, 6, 3454—3460.

(11) Zehner, S.; Kotzsch, A.; Bister, B.; Siissmuth, R. D.; Méndez, C.;
Salas, J. A.; van Pée, K.-H. A regioselective tryptophan S-halogenase is
involved in pyrroindomycin biosynthesis in Streptomyces rugosporus
LL-42D005. Chem. Biol. 2008, 12, 445—452.

(12) Seibold, C.; Schnerr, H.; Rumpf, J.; Kunzendorf, A.; Hatscher,
C.; Wage, T.; Ernyei, A. J.; Dong, C.; Naismith, J. H,; Van Pée, K-H. A
flavin-dependent tryptophan 6-halogenase and its use in modification
of pyrrolnitrin biosynthesis. Biocatal. Biotransform. 2006, 24, 401—408.

(13) Shepherd, S. A.; Menon, B. R;; Fisk, H.; Struck, A. W.; Levy, C;
Leys, D.; Micklefield, J. A Structure-Guided Switch in the
Regioselectivity of a Tryptophan Halogenase. ChemBioChem 2016,
17, 821-824.

(14) Bitto, E.; Huang, Y.; Bingman, C. A,; Singh, S.; Thorson, J. S.;
Phillips, G. N. The structure of flavin-dependent tryptophan 7-
halogenase RebH. Proteins 2008, 70, 289—293.

(15) Dong, C.; Flecks, S.; Unversucht, S.; Haupt, C.; Van Pee Ligon,
K.-H.; Naismith, J. H. Tryptophan 7-halogenase (PrnA) structure
suggests a mechanism for regioselective chlorination. Science 2005,
309, 2216—2219.

(16) (a) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat,
T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The protein data
bank. Nucleic Acids Res. 2000, 28, 235—242. (b) Zhu, X.; De Laurentis,
W.; Leang, K; Herrmann, J.; Thlefeld, K; van Pée, K.-H.; Naismith, J.
H. Structural insights into regioselectivity in the enzymatic
chlorination of tryptophan. J. Mol. Biol. 2009, 391, 74—8S5.

(17) van Pée, K. H. Biosynthesis of halogenated metabolites by
bacteria. Annu. Rev. Microbiol. 1996, 50, 375—399.

(18) Yeh, E; Garneau, S.; Walsh, C. T. Robust in vitro activity of
RebF and RebH, a two-component reductase/halogenase, generating
7-chlorotryptophan during rebeccamycin biosynthesis. Proc. Natl.
Acad. Sci. US.A. 2005, 102, 3960—3965.

(19) Flecks, S; Patallo, E. P; Zhu, X;; Ernyei, A. J; Seifert, G;
Schneider, A,; Dong, C.; Naismith, J. H.; van Pée, K. H. New insights
into the mechanism of enzymatic chlorination of tryptophan. Angew.
Chem., Int. Ed. 2008, 47, 9533—9536.

(20) Dong, C.; Kotzsch, A.; Dorward, M.; van Pée, K.-H.; Naismith,
J. H. Crystallization and X-ray diffraction of a halogenating enzyme,
tryptophan 7-halogenase, from Pseudomonas fluorescens. Acta Crystal-
logr,, Sect. D: Biol. Crystallogr. 2004, 60, 1438—1440.

(21) (a) Prli¢, A; Bliven, S.; Rose, P. W.; Bluhm, W. F.; Bizon, C.;
Godzik, A.; Bourne, P. E. Pre-calculated protein structure alignments
at the RCSB PDB website. Bioinformatics 2010, 26, 2983—2985.
(b) Smith, T. F.; Waterman, M. S. Identification of common molecular
subsequences. J. Mol. Biol. 1981, 147, 195—197.

(22) Karabencheva-Christova, T. G.; Torras, J.; Mulholland, A. J;
Lodola, A.; Christov, C. Z. Mechanistic Insights into the Reaction of
Chlorination of Tryptophan Catalyzed by Tryptophan 7-Halogenase.
Sci. Rep. 2017, 7, No. 17395.

(23) (a) Karplus, M.;; McCammon, J. A. Molecular dynamics
simulations of biomolecules. Nat. Struct. Mol. Biol. 2002, 9, 646—652.
(b) Henzler-Wildman, K. A;; Lei, M; Thai, V.; Kerns, S. J.; Karplus,
M.; Kern, D. A hierarchy of timescales in protein dynamics is linked to
enzyme catalysis. Nature 2007, 450, 913—916.

(24) (a) Karplus, M.; Kuriyan, J. Molecular dynamics and protein
function. Proc. Natl. Acad. Sci. US.A. 2005, 102, 6679—668S.

DOI: 10.1021/acsomega.8b00385
ACS Omega 2018, 3, 4847—-4859


http://dx.doi.org/10.1021/acsomega.8b00385

ACS Omega

(b) Garcia-Viloca, M.; Gao, J.; Karplus, M.; Truhlar, D. G. How
enzymes work: analysis by modern rate theory and computer
simulations. Science 2004, 303, 186—195.

(25) Kruschel, D.; Zagrovic, B. Conformational averaging in
structural biology: issues, challenges and computational solutions.
Mol. BioSyst. 2009, S, 1606—1616.

(26) Henzler-Wildman, K. A.; Thai, V.; Lei, M.; Ott, M.; Wolf-Watz,
M,; Fenn, T.; Pozharski, E.; Wilson, M. A.; Petsko, G. A.; Karplus, M,;
et al. Intrinsic motions along an enzymatic reaction trajectory. Nature
2007, 450, 838—844.

(27) Csermely, P.; Palotai, R.; Nussinov, R. Induced fit, conforma-
tional selection and independent dynamic segments: an extended view
of binding events. Trends Biochem. Sci. 2010, 35, 539—546.

(28) Orozco, M,; Luque, F. J. Theoretical methods for the
description of the solvent effect in biomolecular systems. Chem. Rev.
2000, 100, 4187—4226.

(29) Grant, B. J; Gorfe, A. A; McCammon, J. A. Large
conformational changes in proteins: signaling and other functions.
Curr. Opin. Struct. Biol. 2010, 20, 142—147.

(30) Release, S. d. 3: Maestro, version 9.9; Schrodinger, LLC: New
York, 2014.

(31) Schiittelkopf, A. W.; Van Aalten, D. M. PRODRG: a tool for
high-throughput crystallography of protein-ligand complexes. Acta
Crystallogr., Sect. D: Biol. Crystallogr. 2004, 60, 1355—1363.

(32) Schuler, L. D.; Daura, X.; Van Gunsteren, W. F. An improved
GROMOS96 force field for aliphatic hydrocarbons in the condensed
phase. J. Comput. Chem. 2001, 22, 1205—1218.

(33) Malde, A. K; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P.
C.; Oostenbrink, C.; Mark, A. E. An automated force field topology
builder (ATB) and repository: version 1.0. J. Chem. Theory Comput.
2011, 7, 4026—4037.

(34) Fiser, A; gali, A. Modeller: generation and refinement of
homology-based protein structure models. Methods Enzymol. 2003,
374, 461—491.

(35) Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S;
Greenblatt, D. M;; Meng, E. C; Ferrin, T. E. UCSF Chimera-a
visualization system for exploratory research and analysis. J. Comput.
Chem. 2004, 25, 1605—1612.

(36) Pronk, S; Pall, S; Schulz, R; Larsson, P.; Bjelkmar, P.;
Apostolov, R.; Shirts, M. R;; Smith, J. C.; Kasson, P. M,; van der Spoel,
D.; et al. GROMACS 4.5: a high-throughput and highly parallel open
source molecular simulation toolkit. Bioinformatics 2013, 845—854.

(37) Berendsen, H. J.; Postma, J. P.; van Gunsteren, W. F.; Hermans,
J. Interaction Models for Water in Relation to Protein Hydration. In
Intermolecular forces; Springer: Dordrecht, 1981; pp 331—342.

(38) Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular
dynamics. J. Mol. Graphics 1996, 14, 33—38.

(39) Grant, B. J.; Rodrigues, A. P.; ElSawy, K. M.; McCammon, J. A;
Caves, L. S. Bio3d: an R package for the comparative analysis of
protein structures. Bioinformatics 2006, 22, 2695—2696.

(40) Studio, R. RStudio: Integrated Development Environment for R;
RStudio Inc: Boston, MA, 2012.

(41) Singh, W,; Fields, G. B; Christov, C. Z.; Karabencheva-
Christova, T. G. Effects of Mutations on Structure-Function
Relationships of Matrix Metalloproteinase-1. Int. J. Mol. Sci. 2016,
17, No. 1727.

(42) Hiinenberger, P. H.; Mark, A,; Van Gunsteren, W. Fluctuation
and cross-correlation analysis of protein motions observed in
nanosecond molecular dynamics simulations. J. Mol. Biol. 1995, 252,
492—-503.

(43) Yeh, E; Blasiak, L. C.; Koglin, A.; Drennan, C. L.; Walsh, C. T.
Chlorination by a Long-Lived Intermediate in the Mechanism of
Flavin-Dependent Halogenases. Biochemistry 2007, 46, 1284—1292.

(44) Andorfer, M. C.; Park, H. J; Vergara-Coll, J.; Lewis, J. C.
Directed evolution of RebH for catalyst-controlled halogenation of
indole C-H bonds. Chem. Sci. 2016, 7, 3720—3729.

4859

DOI: 10.1021/acsomega.8b00385
ACS Omega 2018, 3, 4847—-4859


http://dx.doi.org/10.1021/acsomega.8b00385

