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Abstract  

Safe and reliable operation of power plants invariably relies on the structural 

integrity assessments of pressure vessels and piping systems. Welded joints are a 

potential source of failure, because of the combination of the variation in mechanical 

properties and the residual stresses associated with the thermomechanical cycles 

experienced by the material during welding. This paper presents comparative studies 

between methods based on artificial neural networks (ANN) and fuzzy neural 

networks (FNN) for predicting residual stresses induced by welding. The performance 

of neural network and neuro-fuzzy systems are compared based on statistical 

indicators, scatter plots and several case studies. Results show that the neuro-fuzzy 

systems optimised using a hybrid technique can perform slightly better than a neural 

network trained using Levenberg-Marquardt algorithm, primarily because of the 

inability of the ANN approach to provide conservative estimates of residual stress 

profiles. Specifically, the prediction accuracy of the neuro-fuzzy systems trained 

using the hybrid technique is better for the axial residual stress component, with root 

mean square error (RMSE), absolute fraction of variance (R2) and mean absolute 

percentage error (MAPE) error of 0.1264, 0.9102 and 22.9442 respectively using the 

test data. Furthermore, this study demonstrates the potential benefits of implementing 
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neuro-fuzzy systems in predicting residual stresses for use in structural integrity 

assessment of power plant components.   

Keywords: Artificial neural networks, Adaptive neuro-fuzzy inference system 

(ANFIS), welding, residual stress 

1 Introduction  

Residual stresses can be generated in pressure vessel and piping systems as a 

consequence of manufacturing process such as welding. Structural integrity 

assessment of welded components must take account of residual stresses remaining in 

the welded joint as well as the applied service loading conditions. Tensile residual 

stresses in engineering structures can be detrimental as they can initiate cracks or 

accelerate growth of pre-existing cracks during service. Engineering fracture 

assessment procedures such as R6 [1] and API-579 [2] provide guidelines on the 

treatment of residual stresses. In undertaking safety assessments of welds, estimations 

are generally made of the residual stresses, and in order to provide both simplicity and 

conservatism, yield levels of residual stresses may be assumed. These estimated 

residual stress distributions in welded components can then lead to conservatism in 

the predicted plant life and may unfavourably affect the life extension scenarios of 

operating power plants. 

 The use of mechanistic approaches such as finite element modelling [3] often 

rely on the modeller’s choice of assumptions and there is significant uncertainty 

owing to the inherent complexity of the welding process. Moreover, finite element 

simulation requires extensive computational requirements and tedious non-linear 

analysis of the welding process, limiting its application to safety-critical components 

that require a high standard of validation [4]. The finite element approach for 

predicting weld residual stresses requires comprehensive data such as the physical and 
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thermo-physical properties from room temperature up to the melting point, parameters 

for all beads deposited during welding, and tensile and cyclic stress-strain data of 

weld and parent material [5]. A series of round-robin activities have been undertaken 

recently for the improvement of the numerical techniques in order to reliably 

characterise the distribution of residual stresses in structural welds [6, 7].    

With the development of residual stress measurement techniques, both non-

destructive and destructive, extensive experimental data are readily becoming 

available on residual stresses in welds. Neutron diffraction [8] is a popular non-

destructive technique that can be used to determine the residual stress distribution in 

thick-section welds because of its high depth of penetration and good spatial 

resolution that is capable of resolving high strain gradients. Neutron diffraction is 

based on the principle of Bragg’s law to measure the changes in lattice spacing of the 

material’s crystallographic planes. By contrast, destructive methods such as the 

contour method [9] and deep hole drilling [10] are based on the principle of stress 

relaxation that occurs during cutting or drilling operations. However, characterisation 

of residual stresses to high confidence levels is notoriously difficult owing to the 

innate scatter in welding residual stress [11]. Undertaking residual stress 

measurements using multiple experimental techniques is crucial for robust validation 

of analytical or finite element models [12]. 

The substantial amount of data accumulated in recent years can be utilised for the 

application of data-driven models to predict the residual stresses in weldments; 

thereby finding potential applications in structural integrity assessment of power plant 

components. Machine learning techniques such as artificial neural networks (ANNs) 

and adaptive neuro-fuzzy inference systems (ANFIS) have been increasingly used as 

alternative prognostic methods for modelling complex problems associated with 
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engineering systems. Recently, ANNs have been applied to predict welding-induced 

residual stresses [13, 14] where the prediction was expressed as a distribution plot 

providing realistic uncertainty bounds. Ahmadzadeh et al. [15] presented ANNs for 

predicting residual stress distributions obtained from finite element data in gas-metal-

arc weldments using a Levenberg-Marquardt training algorithm. The application of 

hybrid models based on support vector regression and neuro-evolutionary computing 

have also been proposed [16, 17] using datasets accumulated from finite element 

simulation. Na et al. developed a fuzzy neural network model for prediction of 

residual stresses in dissimilar metal welds using data from parametric finite element 

analysis [18]. More recently, Koo et al. [19] estimated the residual stresses in 

dissimilar metal welds in nuclear power plants using cascaded support vector 

regression. Alamaniotis et al. [20] studied the application of probabilistic kernel 

machines for predictive monitoring of welding residual stress in circumferentially 

welded pipes. The outcomes of these studies for predicting the residual stress state of 

weldments have been promising. However, there have been inadequate studies 

comparing the performance of different data-driven techniques for predicting residual 

stress distribution of welded components.  

ANN and ANFIS models have been increasingly used for prediction and 

optimisation purposes using improved algorithms [21-24]. In this work, we present a 

novel application of ANN and ANFIS methods to predict residual stresses induced by 

welding for application in structural integrity assessment. The performance of ANN 

and ANFIS models can be effectively compared as the convergence criteria for 

training algorithms used in both neural networks and neuro-fuzzy systems is based on 

the minimisation of the error function over the given weight space. In supervised 

training, the error function is defined as the sum of square of the difference between 
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the desired and predicted output vectors. The problem of mapping inputs to outputs by 

operating gradient descent to minimise the error can be reduced to a common 

optimization problem.  

In this study, we present: (1) ANN and ANFIS models to predict through-

thickness residual stress profiles using experimental data, described in section 2.2 and 

2.3 respectively; (2) Section 3.1 presents performance comparison of the proposed 

techniques based on statistical indicators such as root mean square (RMSE), absolute 

fraction of variance R2 and mean absolute percentage error (MAPE); (3) the 

generalisation ability of methods on test and training datasets (see section 3.1), and 

residual plots expressed as a function of individual input parameters (see section 3.2); 

and, (4) case studies demonstrating the efficacy of the ANN and ANFIS methods are 

discussed in section 3.3.  

2 Material and methods  

2.1 Database 

Residual stress measurements in austenitic stainless steel girth welds collated 

over the last two decades were used to develop ANN and ANFIS models.  These 

measurements were undertaken by diverse measurement techniques as part of UK 

nuclear power industry research programmes. The primary objective was to contribute 

to the knowledge gap in measured residual stress profiles, and to validate finite 

element simulations for assessing the structural integrity of engineering components. 

Neutron diffraction, the only non-destructive technique employed in this work, can 

achieve penetration depth of several centimetres and spatial resolution of the order of 

1 mm in linear dimension. The contour method (CM) and deep hole drilling (DHD) 

methods were the preferred destructive techniques for measuring the through-wall 
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distribution of the residual stresses in welded mock-ups. Detailed information about 

the experimental measurements can be found in [25]. 

A schematic diagram defining the stress components and geometry of a pipe girth 

weld is shown in Fig. 1. The measurement database covers a wide range of welding 

heat input Q (kJ/mm), wall thickness (t) and mean radius-to-wall-thickness ratio (R/t), 

which are considered to be the key input parameters controlling the residual stress 

distribution in circumferentially welded pipes [26]. Details of the welded samples and 

input parameters used to simulate the axial and hoop residual stress profiles are 

described in Table 1. The forecasting models were trained and tested using randomly 

selected samples. A total of 278 and 338 samples were obtained in the axial and hoop 

stress direction respectively, of which 80% of the data were used for training and the 

remainder for testing purposes.  

2.2 Artificial neural network (ANN) 

ANNs are abstract computational models inspired by the functionality of a 

biological neuron [27]. ANNs consist of processing elements called neurons that 

operate in a parallel and interconnected manner through the synaptic connections 

between multiple layers. The amplitude of a synaptic connection between two nodes, 

referred to as ‘weight’ and ‘bias’ parameters, are optimised during training. A multi-

layer perceptron (MLP) [28], consisting of at least one hidden layer, is capable of 

representing non-linear relationships between the input and the output. The non-linear 

functions are usually sigmoidal-shaped, such as a log-sigmoid transfer function, 

because of the relative ease of determining derivatives and for adapting an appropriate 

input-output mapping. In a fully connected MLP, the input variables are connected to 

the neurons of the hidden layer and the outputs from these nodes are propagated to the 

output layer. The net output y from the output layer is represented by equation (1), 
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(1) (2)
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where wij is the weight vector of the hidden layer, wk the weight vector of the 

output layer, b(1)
  the bias of the hidden layer, b(2)

 the bias of the output layer, z the 

number of input variables, and H is the number of hidden neurons. 

Convergence to the optimal solution is based on the minimisation of the error 

function over the given weight space. The error function E(x,w) is defined as the sum 

of squares of the desired (dk) and predicted (pk) output vectors,  

 
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where x is the input vector, w the weight vector, and N the total number of data 

points.  

Importantly, the search for the global optimum minimum of the error surface can 

be a tedious process and may well end with becoming trapped in local minima. Error 

back-propagation [29] is the most commonly used algorithm for training in pattern 

recognition problems. The algorithm is governed by the application of a chain rule in 

an iterative manner until the influence of each weight parameter is determined based 

on the error function of the form: 

(3)
i i

ij i i ij

E E y net

w y net w
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

     

where wij is the weight matrix from neuron j to neuron i, yi the output, and neti is 

the weighted sum of inputs of neurons i. Consequently, a gradient descent is operated 

with the objective of minimising the error function expressed as: 

( 1) ( ) ( ) (4)ij ij

ij

E
w t w t t

w



  
  
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However, the use of the error back-propagation method can often lead to slow 

convergence owing to the increased dependence on the learning rate (ε). A small 

learning rate would imply higher computational time and a trade-off approach is 

required to give the optimal learning rate in order to obtain the best global minima. 

The use of resilient propagation (RPROP) [30] and Levenberg-Marquardt (LM) 

algorithms [31] are the possible alternatives to the conventional back-propagation 

algorithm, as they can arguably overcome the inherent drawbacks associated with the 

gradient descent techniques. The RPROP algorithm [30] is claimed to be an easy to 

implement scheme owing to its robustness against the choice of network parameters 

such as delta initial (∆0) and a reduced number of learning steps required to reach 

convergence. The sign of the derivative is a deciding factor of the direction of weight 

update and the individual weight values ∆ij are updated based on the learning rules 

expressed as follows: 

( )

( )

( )

( )

, 0

( ) , 0 (5)

0,

t

i j t

ij

t

i j i j t
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E
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where 0 < η– < 1 < η+ 

The LM algorithm combines the advantages of the steepest descent method, and 

the Gauss-Newton algorithm introduces an approximation of the Hessian matrix (H) 

to be an invertible matrix of the form: 

(8)TH J J I   

where µ is defined as the combination coefficient, J is the Jacobian matrix of the 

error function with respect to the weights, and I is the identity matrix.  

The update rule follows the Gauss-Newton algorithm for values of combination 

coefficient approaching zero. The weight update rule of the LM algorithm for a 

relatively large value of µ can be expressed as a function of Jacobian and error vector 

(e): 

 
1

( 1) ( ) (9)T

t t t tw t w t J J I J e

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2.3 Adaptive neuro-fuzzy inference systems (ANFIS) 

A neuro-fuzzy system [32, 33] is a combination of fuzzy logic and neural 

networks where the input-output relationship is constructed by the fuzzy inference 

system (FIS) and membership functions are tuned using an adaptive neural network. 

The learning capability of ANN is exploited to design the fuzzy IF-THEN rules and to 

adapt the semantic network parameters. The learning regime can be either performed 

using a backpropagation method or hybrid method (combination of least squares and 

backpropagation). The conceptual diagram of an ANFIS consists of five functional 
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components: fuzzifier, database, rulebase, inference engine, and defuzzifier (see Fig. 

2). The fuzzifier transforms the numeric input parameters into linguistic fuzzy sets. 

The database stores the values of the membership functions. The rulebase facilitates 

the definition of premises and consequences as fuzzy sets that represent all possible 

relationships between the input parameters and output. A fuzzy inference system 

implements a non-linear mapping of the input-output datasets formulated by the IF-

THEN rules. The fuzzy inference engine takes into account all the rules in the fuzzy 

rule base and learns to transform a set of inputs to a given output through the use of 

inference operators such as minimisation (min) and product (prod). Subsequently, the 

defuzzifier is employed to translate the linguistic fuzzy sets back to the crisp form or a 

non-fuzzy real number.  

The layer-by-layer operation of a fuzzy inference system assuming two input 

parameters x and y, with z as the output parameter, is demonstrated in Fig. 3. For a 

first-order Sugeno fuzzy model [30], the rule base consisting of two IF-THEN rules 

can be expressed as,  

Rule 1: If x is A1 and y is B1, then f1 = p1x + q1y + r1  (10) 

Rule 2: If x is A2 and y is B2, then f2 = p2x + q2y + r2   (11) 

where pi, qi and ri (for i = 1 or 2) are the linear parameters, and A1, B1, A2 and B2 are 

the non-linear parameters. The ANFIS structure is made of five layers: fuzzification 

layer, inference layer, normalisation layer, defuzzification layer and the output layer 

[30].  

Layer 1 (Input layer): The fuzzification layer defines the membership function that is 

used to incorporate fuzziness in the fuzzy sets. The membership grade (O) can be 

expressed using the membership function of the form:  

O1,i = µAi (x), for i = 1, 2 or     (12) 
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O1,i = µBj (y), for j = 1, 2        (13) 

where x and y is the input to node I, and Ai and Bj is the corresponding linguistic label 

associated with the node. Membership function of the form µAi (x) or µBj (y) is 

typically denoted using a Gaussian or bell-shaped function having a magnitude of unit 

interval [0, 1]. These functions inherently hold the advantage of representing non-

linear relationships owing to the flexibility and continuous nature of their derivatives. 

The bell-shaped function is defined as a set of three fitting parameters {a, b, c},  

2
A

1
( ) (14)

1 (( ) / )
i b

x c
µ

a
x 

     

The parameters in this layer are referred to as the premise part of the fuzzy IF-THEN 

rules, as they control the shape of the membership function.  

Layer 2 (Rule node): The AND operator (labelled as “Π”) is then applied to the 

corresponding degrees obtained from the input layer, resulting in the generation of 

firing strengths as the subsequent output denoted as (O2,k). The most commonly used 

fuzzy AND operators are the min or prod.  The output is expressed as: 

, for k = 1 to 4             (15) 

Layer 3 (Normalized layer labelled “N”): In this layer, the firing strength (wk) is 

normalised by following a simple transformation: i.e., the ratio of each of the ith’s 

rule firing strength to the sum of all rules firing strength is calculated using the 

equation: 

(16)
in

i

1 2 3

3, k

k

w
w

w w w .
O

.. w


  


  

Layer 4 (Consequent node): The contribution of the ith’s rule towards the final output 

parameter is determined in this layer. This is represented as the consequent parameter 

set {pi, qi, ri} of the Sugeno fuzzy model: 

 ' '
, (17)4 k i i i i i iw f w pO x q y r  

 

, ( ) ( )2 k k Ai BjO w µ x  µ y  
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Layer 5 (Output layer): The overall output Σ is computed by summing all the incoming 

signals using the equation, 

'
, (18)

4

i i

i
5 k i i

4

i

i

w f

w

w

O f 





 

The premise parameters of the ANFIS membership function are tuned by 

employing the gradient descent method (used in backpropagation algorithm) or the 

hybrid algorithm based on the combination of gradient descent and least-square 

methods. In the backpropagation algorithm, the error function is calculated as the sum 

of squared difference between the network output and the desired output. The error 

function with respect to each node is then computed and subsequently propagated 

backwards to adapt the network parameters in order to satisfy the global minima 

criteria [34]. However, the learning process can stop with the error function becoming 

trapped in a local minimum and this can affect the network performance.  In the latter 

approach, the non-linear parameters, also described as ‘premise’ parameters ({a, b, 

c}), are fixed in the forward pass. The output can therefore be expressed as a linear 

combination of consequent parameters optimised using the least-squares method. The 

error function is then determined using the sum of squares error from the actual and 

desired output parameters. In the backward pass, the consequent parameters ({pi, qi, 

ri}) remain unchanged and the premise parameters are optimised using the gradient 

descent method. The hybrid method is known to converge faster than conventional 

backpropagation as it reduces the dimensionality of the search space.  
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2.4 Implementation 

The performance and efficacy of the developed ANN and ANFIS models are 

subjected to robust comparison by a wide range of methods. The gradient descent 

method is used to evaluate the ANN parameters and ANFIS premise parameters but are 

governed by the local minimum stopping criteria. The models employed in this study 

are summarized as follows:   

ANN-1: Artificial neural network trained using resilient backpropagation algorithm 

ANN-2: Artificial neural network trained using Levenberg-Marquardt algorithm  

FNN-1: Fuzzy neural network trained using backpropagation algorithm  

FNN-2: Fuzzy neural network trained using hybrid method (combination of 

backpropagation and least squares method) 

All input parameters and output were normalised in the range –1 to 1 by 

simple linear transformation. All methods were undertaken with four inputs (welding 

heat input, radius/thickness, wall thickness and through-wall position) and one output 

(residual stress) using the MATLAB neural network and fuzzy logic toolbox [35]. 

Table 2 summarizes the network parameters of the ANN-1 and ANN-2 methods. For 

the sake of comparison, the number of epochs was set to 1000 for all models. The 

number of neurons in the hidden layer essentially controls the complexity of the 

neural network model and should be optimised to prevent overfitting. An iterative 

procedure was followed by evaluating the test and training error as a function of the 

number of hidden neurons (see Fig. 4). The ANN architecture used in this study is 

shown in Fig. 5. The neural network weights are initialised with small random values 

to prevent premature saturation of the sigmoid functions [36]. Conversely, this would 

result in having different predictions each time the network is run. As a consequence, 

an ensemble of 100 networks with the same architecture were formed and the best 
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network was chosen based on minimum test error criteria. The network parameters 

used for training the fuzzy neural network methods FNN-1 and FNN-2 are 

summarised in Table 3. Fig. 6 provides a schematic illustration of the ANFIS 

architecture used in this study. Generalised bell-type (Gbellmf) was the chosen input 

membership function based on minimum root mean square error using the test data 

and the most consistent of all. For instance, several membership functions were 

attempted such as Gaussian (gaussmf), triangular shaped (trimf), trapezoidal shaped 

(trapmf), Gaussian combination (gauss2mf), sigmoidal shaped (sigmf), and Π shaped 

(pimf).  The total number of rules used in FNN-1 and FNN-2 methods were 256 and 

81 respectively, as training with four membership functions could not be performed in 

FNN-2 owing to computational limitations. The statistics of the measured and 

predicted residual stress data using the training and test datasets obtained from 

different models are summarised in Table 4. Fig. 7 present the pseudocode of the 

proposed methods using ANN and ANFIS. For validation of the predictions, the 

holdout method was primarily used by randomly dividing into training and test 

datasets. Note, 80% of the data was used for training and remaining for testing 

purposes. The leave-one-out cross validation technique was also employed in the case 

studies to compare the residual stress profiles predicted by ANN and ANFIS.    

 

3 Results and Discussions  

3.1 Benchmark criteria for comparing performance of ANN and ANFIS 

methods 

The model performance is evaluated by both numerical and visual methods. Visual 

methods can provide an intuitive representation of the model performance whereas 

statistical indicators can provide robust means of model comparison from a scientific 
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point of view [37]. The performance of the models was assessed using root-mean-

square error (RMSE), absolute fraction of variation (R2), and mean absolute percentage 

error (MAPE) as described in equations (19), (20) and (21),  

 
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where ai is the actual residual stress, pi the predicted residual stress, and N the 

sample size.  

Statistical performance indicators can give a quantitative estimate of how well a 

predictive model has performed based on the actual and predicted data. The 

performance indices for predicting residual stresses in the axial and hoop directions 

are given in Table 5. The statistical values RMSE, R2, and MAPE for training and 

testing data from the ANN methods for axial and hoop stresses clearly revealed the 

superior predictive performance of the ANN-2 model over ANN-1. Likewise, the 

statistical indicators from the ANFIS methods demonstrate superior predictive 

performance of FNN-2 model in comparison with FNN-1. 

In the axial residual stress prediction, the lowest RMSE error in training is 

observed with FNN-2 followed by ANN-2, then FNN-1 and ANN-1. This trend is also 

repeated with the RMSE error of the testing data. The R2 parameter follows a 

recurrent pattern with the training and testing data sets. However, the only exception 

was with the MAPE statistical indicator where the lowest error in training has been 

achieved by ANN-2 closely followed by FNN-2. Overall, the performance of different 



16 

 

models for predicting axial residual stresses solely based on statistical indicators can 

be summarized as FNN-2 > ANN-2 > FNN-1 > ANN-1. With the hoop residual 

stresses, ANN-2 outperforms FNN-2 in the case of RMSE test (RMSEANN-2 = 0.0939, 

RMSEFNN-2 = 0.1444), R2 test (R2
ANN-2 = 0.9677, R2

FNN-2 = 0.9258) and MAPE training 

error (MAPEANN-2 = 19.9089, MAPEFNN-2 = 33.0865). Hence it is difficult to select the 

best method for the prediction of hoop stresses. Therefore, the performance of 

different techniques based on statistical indicators can be ranked as FNN-2 or ANN-2 

> FNN-1 > ANN-1.  

Scatter plots of the predicted versus observed data are an efficient way to 

visualise the data and evaluate the model’s performance. It is good practice to present 

the predicted versus measured plots using independent training and test datasets as the 

former can provide a measure of the fitting uncertainty whereas the latter represents 

the generalisation ability of the network to perform in unseen datasets. Fig. 8 shows 

the comparison of predicted and measured results for the axial residual stresses using 

the ANN methods. Fig. 8(a) and (b) show the predicted (in the Y-axis) and observed 

(in the X-axis) residual stresses using ANN-1 and ANN-2 models with the training 

data; and 8(c) and (d) show the comparison with the test data. Fig. 9 shows the 

predicted versus observed plots using the neuro-fuzzy models following the same 

sequence. Interestingly, the dataset comprising axial residual stress profiles is much 

noisier than the hoop stresses as evident from the scatter plots. 

To summarize, the ANN-2 model (trained using Levenberg-Marquadt algorithm) 

performs superior to the ANN-1 model (trained using resilient back-propagation). In 

the case of neuro fuzzy models, FNN-2 (trained using hybrid method) outperforms 

FNN-1 (trained using back-propagation) as demonstrated in Fig. 9. Consistent trends 

are observed with the predicted and measured plots of hoop residual stresses as 
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evident in Figs. 10 and 11.  Hence it was a relatively simple task to select the best 

individual model among the ANN and FNN methods. However, the selection of the 

single best model remains indecisive between the ANN-2 and FNN-2 models from the 

observations here. The following sections discuss further studies undertaken to 

compare the performance of these methods.  

3.2 Residual plots as a function of input variables 

Residual plots are used to improve the understanding of the regression models by 

identifying the presence of any systematic error.  For this purpose, the residuals 

(difference between predicted and measured values) are plotted as a function of the 

individual input parameters. For instance, it can be inferred that the input variables 

used in the predictive model are insufficient to capture crucial information in the data 

if the residual plot reveals the presence of non-random patterns. It can potentially 

represent scenarios where there is a missing variable, sometimes in a higher order 

form, or missing interaction of the variables used in the model.  In contrast, the model 

can be improved if there is evidence of systematic error in the residual plots. Fig. 12 

shows the comparison of the residual plots for predicting axial stresses as a function 

of the through-wall position, radius/thickness ratio, wall-thickness and welding heat 

input for training and test data. Residual plots were evenly distributed with no obvious 

pattern, suggesting the absence of any systematic error.  Furthermore, the plots are 

mostly symmetrically distributed with the mean centred around zero (along the Y 

axis) throughout the range of fitted variables following a Gaussian distribution. The 

pattern observed in residual plots of hoop stresses were matching with the residual 

plots of axial stresses (see Fig. 13). As envisaged, both ANN-2 and FNN-2 methods 

are able to capture the non-linear patterns in the residual stress data. Moreover, this 

study confirms that the input parameters used in these models were able to specify the 
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required mapping without the need for including additional variables. However, it was 

not distinguishable from the residual plots as to which model is superior.   

 

3.3 Case studies demonstrating the efficacy of different methods 

The model predictions are compared with experimental measurements to evaluate 

the efficacy of the ANN-2 and FNN-2 models. The leave-one-out cross validation 

technique was used in case studies shown in Figs. 14 and 15. This approach was 

attempted for four cases each using axial and hoop residual stress data. In Fig. 14, the 

residual stress profiles along the axial direction are compared with experimental 

measurements undertaken using neutron diffraction, contour method and deep hole 

drilling in welded mock-ups. Fig. 14(a) shows the predicted and measured residual 

stress profile in sample MU4-3 (R/t = 4.5, t = 25mm, Q = 1.5 kJ/mm).  There is a 

significant amount of scatter between the residual stress measurements using neutron 

diffraction and the contour method. This is not unusual considering the innate scatter 

found in weld residual stresses [11]. Both ANN-2 and FNN-2 model predictions are in 

reasonable agreement with the measurements, however the ANN-2 profile is non-

conservative in the through-wall position range (x/t) from 0.3 to 0.7 with regard to 

both neutron and contour measurements. The FNN-2 profile is slightly better in 

comparison with the ANN-2 profile. This is repeatedly seen in the axial stress profile 

of sample S5New (R/t = 2.8, t = 65mm, Q = 0.8 kJ/mm) in Fig. 14(d) where the ANN-

2 profile underestimates the measured stresses using deep hole drilling from through 

wall position x/t between 0.6 - 0.9. The stress profiles predicted by ANN-2 and FNN-2 

models are in excellent agreement in mock-ups ES (R/t = 2.1, t = 35mm, Q = 1.6 

kJ/mm) and SP37 (R/t = 5.3, t = 37mm, Q = 1.68 kJ/mm) as shown in Figs. 13 (b) and 

(c) respectively. The hoop residual stress profiles from different models and 

experimental measurements are given in Fig. 15. Good agreement is seen with most 
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of the measurements through the thickness and the predicted residual stresses in 

sample MU4-3 (refer Fig. 15 (a)). Some discrepancy is observed only with the 

neutron measurements near the inside and outside surfaces of the pipe.  In Fig. 15 (b) 

the contour method measurements near the surfaces are in good agreement with the 

ANN-2 and FNN-2 predictions. Despite this, there is slight under-prediction by ANN 

close to the outside surface.  The through-wall residual stress profiles are in excellent 

agreement with the deep hole drilling measurements in mock-ups SP37 and S5New 

(see Fig. 15 (c) and (d)).  

In fracture assessment procedures [1, 2] the three dimensional (3-D) distribution 

of the residual stresses in a welded joint is usually simplified by assuming a 

representative 1-D profile of the stress tensor through the thickness. The stress 

intensity factor of the postulated crack is calculated from the representative 1-D 

profile that is assumed to be acting normal to the crack path. As a consequence, the 

residual stress profile assumed in these calculations can have a critical influence on 

the outcome of fracture assessments. In fact, this would determine whether defects are 

repaired, components replaced or whether a rigorous inspection regime need to be 

implemented to monitor further degradation. It has been demonstrated that the ANN-

based prediction expressed as a distribution plot can be effectively used to provide a 

reliable prediction interval of the residual stress distribution in weldments [13, 14]. 

However, in this study, the performance of two independent machine learning 

techniques based on ANN and ANFIS are evaluated based on several benchmarks. 

Overall, the performance of the ANN and ANFIS models are acceptable and could 

serve as surrogate models for predicting residual stresses in welds. The application of 

these data-based models compared to the finite element approach is relatively simple 

and does not require comprehensive information for generating accurate results. The 
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superiority of the ANFIS compared to ANN model is realised in the case studies 

shown in Fig. 14 and Fig. 15 where the ANN-2 model tends to underestimate the 

magnitude of residual stresses significantly: an example is shown in Fig. 14 (d) where 

under-prediction of tensile stresses in excess of 150 MPa is reported. This is possibly 

due to the better local interpolation capabilities of ANFIS compared to the ANN that 

tries to develop a generalised relationship. Moreover, the performance of FNN-2 is 

found to be slightly better in application to axial data which exhibits more noise, with 

the respective error values in the test data: RMSE = 0.1264, R2 = 0.9102, and MAPE = 

22.9442 compared to ANN-2 error values: RMSE = 0.1486, R2 = 0.8719, and MAPE = 

48.0591. Nevertheless, residual stress data associated with welding inherently exhibits 

a high level of noise and this is considered as a drawback if the model is to be used in 

safety-critical assessment of welded components. Additionally, the ANFIS method 

was more time consuming though has better ease of implementation without the need 

for any post processing. By contrast, the best network of the ANN has to be selected 

from the ensemble of networks based on the test error making the total processing 

time higher than that of the ANFIS method. To conclude, taking into account all the 

factors discussed above, the overall performance of ANFIS model FNN-2 is slightly 

better than the ANN-2 model. ANFIS trained using hybrid algorithm has reportedly 

given more realistic predictions than the ANN model trained Levenberg-Marquadt in 

all the case studies presented. The ANFIS method can be further developed as a 

reliable prediction model for structural integrity assessments of defective plant 

thereby reducing the susceptibility to be overly conservative by a large margin, 

avoiding unnecessary and costly repair or inspection. However, the application of the 

model requires the construction of a comprehensive database covering greater neutron 

diffraction, contour method and surface measurements. Furthermore, as a caveat, 
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appropriate fracture sensitivity studies should be undertaken and suitable margins of 

safety has to be included prior to the application of the proposed model. 

  

Conclusions 

1. Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference 

System (ANFIS) models were developed that can predict through-thickness 

residual stress profiles in stainless steel pipe girth welds. The performance of 

different models was evaluated, using statistical indicators and scatter plots 

obtained from training and test datasets as the benchmark. 

2. ANN trained using Levenberg-Marquadt, and ANFIS based on a hybrid 

algorithm, were far superior to ANN model trained by resilient-

backpropagation and ANFIS using backpropagation method. However, it was 

not possible to determine a single best method from the statistical performance 

indicators and scatter plots.  

3. Residual plots were found to be evenly distributed displaying non-random 

patterns suggesting there is no missing variable, or missing interaction of the 

variables used in the model. ANN trained using Levenberg-Marquadt method 

and ANFIS using hybrid algorithm are able to capture the non-linear patterns 

in the residual stress data confirming the ability to specify the required 

mapping without the need for additional variables.  

4. The ANFIS model based on a hybrid algorithm performed better than the 

ANN model trained using Levenberg-Marquadt, as the latter tends to 

underestimate the tensile residual stresses by a large margin as high as 150 

MPa. This is possibly due to the better local interpolation capabilities of 
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ANFIS compared to the ANN that tries to develop a generalised relationship. 

Moreover, the performance of ANFIS based on a hybrid method is regarded as 

better in axial data prediction which exhibits more noise, with the respective 

error values in the test data: RMSE = 0.1264, R2 = 0.9102, and MAPE = 

22.9442 compared to the ANN error values: RMSE = 0.1486, R2 = 0.8719, and 

MAPE = 48.0591.  

5.  ANFIS trained using a hybrid algorithm has reportedly given more realistic 

predictions than the ANN model trained Levenberg-Marquadt. The ANFIS 

method can be further developed as a reliable prediction model for structural 

integrity assessments of defective plant thereby reducing the susceptibility to 

be overly conservative by a large margin, avoiding unnecessary and costly 

repair or inspection. However, for the application of the model in fracture 

assessments, the construction of a comprehensive database covering greater 

neutron diffraction, contour method and surface measurements is essential. 
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Tables and Figures  

Table 1. Experimental residual stress measurements considered for training ANN and 

ANFIS methods.  

Sample Measurement 

technique 

Axial hoop R/t t / mm Q / kJ 

mm–1 

Welding 

process 

Weld C BRSL   25 15.9 2.2 SAW 

SP19 ND   10.5 19.6 1.12 MMA 

SP37 DHD   5.3 37 1.68 MMA 

S5VOR DHD   2.8 65 1.92 MMA 

S5Old DHD   2.8 65 1.12 MMA 

S5New DHD   2.8 65 0.8 MMA 

S5NG DHD   3 62 1.32 TIG 

RR DHD   1.8 110 1.8 SAW 

ES CM   2.1 35 1.6 MMA 

MU4-1 ND, CM   4.5 25 0.8 TIG 

MU4-3 ND, CM   4.5 25 1.5 TIG 

HI-1 CM   10 12.7 0.7 TIG 

HI-2 CM   10 12.7 1 TIG 

HI-3 CM   10 12.7 1.2 TIG 

ND – Neutron diffraction, CM – Contour method, DHD – Deep hole drilling,  

BRSL – Block removal splitting and layering, SAW – Submerged arc welding,   MMA – 

Manual metal arc, TIG – Tungsten inert gas. 
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Table 2. Summary of network parameters used in ANN-1 and ANN-2 models 

Network parameters  Description 

ANN-1  

Maximum Epochs                       1000 

Minimum Gradient                   1  10–5 

Initial Delta (∆o)                  0.07 

Delta Increase                     1.2 

Delta Decrease                     0.5 

Maximum Delta                      50 

ANN-2  

Maximum Epochs                       1000 

Minimum Gradient                   1  10–7 

Mu  (µ) 0.001 

Mu Decrease Ratio                    0.1 

Mu Increase Ratio                    10 

Maximum Mu                           10000000000 
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Table 3. Summary of network structure and optimised parameters used in FNN-1 and 

FNN-2 models 

Network parameters  Description 

Structure  Anfis 

Inference type Sugeno 

Inputs/Outputs    [4 1] 

Optimisation method Back-propagation and hybrid 

Number of Input MFs [4 4 4 4],  [3 3 3 3] 

 

Number of Rules   256, 81 

And Method prod 

Or Method max 

Implication Method prod 

Aggregation Method max 

De-fuzzification Method wtaver 

Input MF Type   gbellmf 

Output MF Type linear   
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Table 5. Comparison of statistical performance indicators for predicting axial and 

hoop residual stresses by different methods used in this study.  

Performance 

indicator 

ANN-1 

 

ANN-2 FNN-1 FNN-2 

axial     

RMSE training 0.1894 0.1162 0.1337 0.0883 

RMSE test 0.1655 0.1486 0.1501 0.1264 

R2 training  0.7579 0.9238 0.8935 0.9571 

R2 test 0.8204 0.8719 0.8669 0.9102 

MAPE training 99.1335 41.0222 64.2955 46.0874 

MAPE test 51.1335 48.0591 51.9166 22.9442 

hoop     

RMSE training 0.1264 0.0581 0.0990 0.0529 

RMSE test 0.1389 0.0939 0.1102 0.1444 

R2 training  0.9397 0.9882 0.9640 0.9901 

R2 test 0.9258 0.9677 0.9543 0.9258 

MAPE training 49.5157 19.9089 37.4735 33.0865 

MAPE test 51.0772 26.7454 38.9118 23.7976 
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Fig. 1. Schematic illustration of a circumferential pipe-butt weld showing the residual 

stress components.  

 

 

 

Fig. 2. Conceptual diagram of the fuzzy inference system 
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Fig. 3. Layer structure of a two-input Sugeno fuzzy ANFIS model   

 

 

 

 

 

 

 

 



34 

 

 

Fig. 4. Optimisation of the number of hidden neurons based on an iterative procedure 

comparing root-mean-square errors in training and testing scenarios.  
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Fig. 5. Schematic representation of artificial neural network architecture representing 

the input parameters and output used in this study. Log-sigmoid activation function 

with 18 neurons was used in the hidden layer and linear function used in the output 

layer.    
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Fig. 6. Schematic representation of ANFIS architecture based on Sugeno-type fuzzy 

model representing the input parameters and output used in this study. Gbellmf 

function was used in the input layer and linear function used in the output layer. Total 

number of rules used in FNN-1 and FNN-2 methods were 256 and 81 respectively.  
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Fig. 7. Pseudocode of the proposed methods using ANN and ANFIS 
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Fig. 8. Comparison of predicted and measured residual stress in axial direction for: (a) 

ANN-1 using training data; (b) ANN-2 using training data; (c) ANN-1 using test data; 

and (d) ANN-2 using test data.  
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Fig. 9. Comparison of predicted and measured residual stress in axial direction for: (a) 

FNN-1 using training data; (b) FNN-2 using training data; (c) FNN-1 using test data; 

and (d) FNN-2 using test data. 
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Fig. 10. Comparison of predicted and measured residual stress in hoop direction for: 

(a) ANN-1 using training data; (b) ANN-2 using training data; (c) ANN-1 using test 

data; and (d) ANN-2 using test data. 
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Fig. 11. Comparison of predicted and measured residual stress in hoop direction 

using: (a) FNN-1 using training data; (b) FNN-2 using training data; (c) FNN-1 using 

test data; and (d) FNN-2 using test data.  
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Fig. 12. Comparison of residual plots using (a) ANN-2 method and (b) FNN-2 method 

for predicted axial stresses as a function of input variables: (i) through-wall position; 

(ii) Radius/thickness; (iii) wall-thickness; (iv) welding heat input. 
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Fig. 13. Comparison of residual plots using (a) ANN-2 method and (b) FNN-2 method 

for predicted hoop stresses as a function of input variables: (i) through-wall position; 

(ii) Radius/thickness; (iii) wall-thickness; (iv) welding heat input. 
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Fig. 14. Case studies showing the performance of ANN and FNN methods for the 

predicted axial residual stresses in welded mock-ups (a) MU4-3 (b) ES (c) SP37 and 

(d) S5New. 
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Fig. 15. Case studies showing the performance of ANN and FNN methods for the 

predicted hoop residual stresses in welded mock-ups (a) MU4-3 (b) ES (c) SP37 and 

(d) S5New. 

 

 


