Development and use of real-time PCR to detect and quantify Mycoplasma haemocanis and "Candidatus Mycoplasma haematoparvum" in dogs

Published PDF deposited in Coventry University’s Repository

Original citation:

DOI 10.1016/j.vetmic.2009.07.006
ISSN 0378-1135
ESSN 1873-2542

Publisher: Elsevier
Under a Creative Commons license

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.
Short communication

Development and use of real-time PCR to detect and quantify *Mycoplasma haemocanis* and “*Candidatus Mycoplasma haematoparvum*” in dogs

E.N. Barker a,*, S. Tasker a, M.J. Day a, S.M. Warman a, K. Woolley b, R. Birtles b, K.C. Georges c, C.D. Ezeokoli c, A. Newaj-Fyzul c, M.D. Campbell c, O.A.E. Sparagano d, S. Cleavelande, C.R. Helpsa

a Department of Clinical Veterinary Science, University of Bristol, Langford House, Langford, Bristol, BS40 5DU, UK
b Disease Ecology Group, Faculty of Veterinary Science, Leahurst Campus, University of Liverpool, Chester High Rd, CH64 7TE, UK
c School of Veterinary Medicine, University of the West Indies, St. Augustine Campus, Trinidad and Tabago
d Newcastle University, School of Agriculture Food and Rural Development, Newcastle upon Tyne, NE1 7RU, UK
e Division of Animal Production and Public Health, Faculty of Veterinary Medicine, University of Glasgow, G61 1QH, UK

1. Introduction

Haemoplasmas are epierythrocytic parasites of mammals that are currently uncultivatable in vitro. They were reclassified from the *Haemobartonella* and *Eperythrozoon* genera to the *Mycoplasma* genus due to 16S rRNA gene sequence analysis (Messick et al., 2002). Infection with *Mycoplasma haemocanis* (*Mhc*) generally only induces clinically significant anaemia in splenectomised or immunocompromised dogs, although latent infections may cause sub-clinical anaemia (Brinson and Messick, 2001). “*Candidatus Mycoplasma haematoparvum*” (*CMhp*) was
first described in association with anaemia in a splenecto-
mised dog undergoing chemotherapy for leukaemia (Sykes 
et al., 2004).

Recently, quantitative real-time PCR (qPCR) assays have been described for the detection of Mhc and CMhp 16S rRNA genes in blood samples (Kenny et al., 2004; Wengi et al., 2008). However, none of these qPCR assays include an endogenous internal control to confirm the presence of amplifiable canine DNA and the absence of PCR inhibitors.

Two prevalence studies, from southern France and eastern Sudan, found CMhp to be more prevalent than Mhc, with occasional co-infections also detected (Kenny et al., 2004; Inokuma et al., 2006). A recent Swiss study reported much lower CMhp and Mhc prevalences (Wengi et al., 2008). It has been suggested that these differences in haemoplasma prevalence could be due to the absence of the proposed tick vector, *Rhipicephalus sanguineus*, in most of Switzerland compared to its presence in southern France and eastern Sudan (Wengi et al., 2008).

The aim of this study was to develop species-specific TaqMan qPCR assays, containing an endogenous internal control, for the diagnosis of canine haemoplasma infections and to use these assays to determine the prevalence of infection in dogs from geographical areas where the proposed vector *R. sanguineus* is widespread (Walker et al., 2000).

2. Materials and methods

CMhp-specific primers and probe were designed to the 16S rRNA gene at sites of divergence from Mhc and *“Candidatus Mycoplasma haemominutum”* (CMhm) using Primer 3 (Rozen and Skaletsky, 2000). *Mycoplasma haemofelis* (Mhf)-specific primers and probe were utilised for the Mhc qPCR due to sequence identity (Peters et al., 2008). Mhc and CMhp qPCR assays were duplexed with a previously validated canine GAPDH gene-specific qPCR as internal control (Peters et al., 2003) (Table 1).

Both duplex qPCRs were optimised for primer/probe concentration and annealing temperature. qPCR was performed using 2× Qiagen HotStartTaq Master Mix (Qiagen, Crawley, UK) with 200 nM haemoplasma primers, 100 nM haemoplasma TaqMan probe, 25 nM canine GAPDH primers, 50 nM canine GAPDH TaqMan probe, 4.5 mM final MgCl₂ and 5 μl gDNA in a total volume of 25 μl. All reactions were performed in an iCycler IQ (Bio-Rad Labs Ltd., Hemel Hempstead, UK) at: 95 °C for 15 min and 45 cycles of 95 °C for 10 s and 60 °C (Mhc) or 62 °C (CMhp) for 30 s, during which fluorescence data were collected.

Due to the near-100% sequence identity between Mhc and Mhf, a previously sequenced plasmid containing the entire Mhf 16S rRNA gene (Tasker et al., 2003) was used to test the efficiency and specificity of the Mhc qPCR. A 1458 bp near-complete 16S rRNA gene product was amplified from a CMhp-positive sample, using universal prokaryote primers 8F and 1492R (Pitulle et al., 1999). The appropriate sized fragment was gel purified, cloned into pCR4-TOPO (Invitrogen) and sequenced by The Sequencing Service (School of Life Sciences, University of Dundee, Scotland). The sequence was subjected to BLASTn (www.ncbi.nlm.nih.gov) and compared to previously published CMhp sequences.

These plasmids were used to determine haemoplasma reaction specificity, sensitivity and efficiency. Assays were conducted in a background of canine gDNA (approximately 70 ng/reaction). Haemoplasma qPCR specificity was tested using 10⁶ copies of the non-target 16S rRNA gene sequence as template. A 10-fold serial dilution of each plasmid, 10⁶ to one copy per qPCR for the CMhp assay, and 10⁷ to one copy per qPCR for the Mhc assay, were generated to determine assay sensitivity. Plots of threshold cycle (Ct) versus log₁₀ copy number were used to determine qPCR efficiency.

Intra-assay and inter-assay precision were measured by analysis of aliquotted DNA samples on the same (n = 6 for each plasmid concentration) and separate plates (n = 4). Coefficients of variation (CVs) were calculated for copy number and Ct at high (10⁶ copies of Mhc; 10⁵ copies of CMhp) and low (10² copies of Mhc; 10 copies of CMhp) plasmid concentrations. Relative copy numbers were calculated from replicate C values assuming 40 equalled 1 haemoplasma copy/reaction, and using the reaction efficiencies obtained from the standard curves.

Blood samples (n = 100) were taken as part of the Carnivore Disease Project’s research programme in north-ern Tanzania during June 2007. Clinical data including sex, age and presence/absence of *R. sanguineus* ticks were recorded. Blood was applied directly to Whatman FTA Classic cards (Whatman Inc., Clifton NJ, USA), air dried and stored at room temperature. Two 2 mm diameter discs were taken from each sample using individual sterile punches (Miltex, Inc., York, USA) and digested in 180 μl T1 Buffer with 20 μl Proteinase K (overnight; 56 °C, 1000 rpm in a Vortemp 56 shaker). DNA extraction was performed using a Macherey-Nagel Nucleospin Blood kit (ABgene, Epsom, UK) with DNA eluted into 100 μl of elution buffer. Negative control extractions were performed with each batch.

DNA samples (n = 185) were extracted from whole blood obtained from a veterinary diagnostic laboratory in

Table 1 Details of the qPCR assays used for the detection of haemoplasma species (16S rRNA gene) and canine DNA (glyceraldehyde-3-phosphate dehydrogenase gene). Mhc: *Mycoplasma haemocanis*; CMhp: *“Candidatus Mycoplasma haematoparvum”*. FAM: 6-carboxyfluorescein; TXR: Texas Red; BHQ1/2: Black Hole Quencher.

<table>
<thead>
<tr>
<th>Target</th>
<th>Forward primer (5’–3’)</th>
<th>Reverse primer (5’–3’)</th>
<th>Probe (5’–3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mhc</td>
<td>GTGCTACAAATTGGCCGACACCA</td>
<td>TCCTATCCGCAACTGAGACGAA</td>
<td>FAM-TGGTTGGAAAACAGGATGGT-BHQ1</td>
</tr>
<tr>
<td>CMhp</td>
<td>GGAAGATACAACTGCGCAGGA</td>
<td>GCCATTACCCACCACACACAC</td>
<td>FAM-CTTGGGACCCCGCCCG-BHQ2</td>
</tr>
<tr>
<td>Canine</td>
<td>TCAACGGATCTCCCGAGATG</td>
<td>TGAAGGGCGTCTTGTGGCAG</td>
<td>TXR-CAGGGCCTGTTAACACTCGGAAAAG-GHGQ</td>
</tr>
</tbody>
</table>

1/2
Trinidad between July 2004 and March 2006 as part of another study (Georges et al., 2008), using a QIAamp® DNA blood kit (QIAGEN®). Valencia, CA, USA) and stored at −20 °C until use. Age, sex and haematological parameters were recorded.

All DNA samples from Tanzania and Trinidad were subjected to the Mhc and CMhp qPCR assays. Positive control samples (of known copy number) and negative controls (water) were included on each PCR plate.

Data were entered into Excel (Microsoft® 2002) and analysed or imported into SPSS for Windows (SPSS Inc., Chicago IL, USA). The 95% confidence intervals (CI) of the observed prevalences were calculated. Age and haematological variables were tested for normality using the Kolmogorov–Smirnov test. Normally and non-normally distributed data were analysed using the Student's t-test. Significance was taken as P < 0.05.

3. Results

BLASTn analysis of the 1458 bp 16S rRNA gene fragment from CMhp confirmed it to be closely related to previously published CMhp sequences (99.4–99.9% identity). No cross-reactivity was detected for either qPCR when 10⁶ copies/reaction of the non-target species was applied to DNA extracted from whole anti-coagulated blood, in order to prevent false negative results due to the failure of DNA extraction, presence of PCR inhibitors or qPCR setup errors. Both haemoplasma qPCR assays described in this study could detect between one and 10 copies per PCR in the presence of canine genomic DNA. Our results were comparable with sensitivities reported for previously published qPCR canine and feline haemoplasma assays (Peters et al., 2008; Wengi et al., 2008).

The newly described qPCR assays were successfully applied to DNA extracted from whole anti-coagulated blood and Whatman FTA Classic cards. Whilst Whatman FTA Classic cards are a solution to atypical environmental conditions, samples had to undergo additional processing steps, compared to whole anti-coagulated blood, in order to extract DNA, which could have resulted in insufficient DNA in the resultant preparation or the presence of PCR inhibitors. Comparable levels of GAPDH DNA were detected in both the Tanzanian and Trinidadian samples. The GAPDH DNA negative Trinidadian sample was also negative for both species of haemoplasma, and could have been mistakenly included in the prevalence calculations without the internal control assay.

Both canine haemoplasma species were detected in the Tanzanian and Trinidadian samples tested in this study. However, in contrast to previous studies in Sudan and France (Kenny et al., 2004; Inokuma et al., 2006), Mhc was more prevalent than CMhp. Similar populations of representative village dogs were used in both the Sudanese and Tanzanian studies, in contrast to the veterinary clinic derived samples from typically sick dogs used in the French, Swiss (Wengi et al., 2008), and our Trinidadian studies. The French study reported an overall Mhc prevalence of 5.9% which was similar to our Trinidadian population (6.0%). However, the French prevalence of

Table 2

<table>
<thead>
<tr>
<th>Assay</th>
<th>Mhc</th>
<th>CMhp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-assay—high [plasmid]</td>
<td>9.2% (0.87%)</td>
<td>9.2% (0.79%)</td>
</tr>
<tr>
<td>Intra-assay—low [plasmid]</td>
<td>19.8% (0.98%)</td>
<td>17.6% (0.86%)</td>
</tr>
<tr>
<td>Inter-assay—high [plasmid]</td>
<td>4.7% (0.43%)</td>
<td>5.1% (0.40%)</td>
</tr>
<tr>
<td>Inter-assay—low [plasmid]</td>
<td>2.8% (0.13%)</td>
<td>13.5% (0.66%)</td>
</tr>
</tbody>
</table>
CMhlp (12.2%) was much greater than that in Trinidad (3.8%) although difficulties exist in comparing results since small sample sizes may not necessarily truly represent the whole of the local population.

The French and Sudanese studies were from climactic regions known to support the proposed vector R. sanguineus’ life cycle (Kenny et al., 2004; Inokuma et al., 2006). In contrast, the climate across most of Switzerland is too cool to support R. sanguineus, and all the haemoplasma positive dogs identified in that study (0.3% CMhlp and 0.9% Mhc positive; no co-infections; n = 889) had either originated from, or had visited areas where R. sanguineus was known to be prevalent (Wengi et al., 2008). No association was found between tick presence and haemoplasma status in our Tanzanian samples. This was not unexpected since haemoplasmas can chronically infect animals (Wengi et al., 2008) such that a direct temporal relationship between tick and haemoplasma infections may not always occur.

The Swiss study found no relationship between haemoplasma (Mhc and CMhlp) infection and the presence of anaemia (Wengi et al., 2008), similar to our findings for the Trinidadian samples. Both the Swiss and the French studies found no association between age or sex and haemoplasma status (Kenny et al., 2004; Wengi et al., 2008), again similar to our Trinidadian samples; although males were significantly more likely to be Mhc positive in the Tanzanian samples. A recent study found that 34.2% of 73 Tosas (Japanese fighting dogs) were Mhc positive compared to 1.4% of 840 non-Tosa dogs sampled (Sasaki et al., 2008). Of the Tosa Mhc positive dogs, 96% were male. The increased prevalence of Mhc in Tosas was attributed to ingestion of infected blood during aggressive contact. The domestic dogs sampled in Europe and Trinidad are not likely to have roaming or fighting tendencies whereas in Tanzania the majority of rural dogs are free-roaming with frequent opportunities for fighting, especially amongst males which may explain the increased haemoplasma prevalence amongst the Tanzanian male dogs.

5. Conclusion

We have described the development and use of qPCRs for the detection of canine haemoplasmas, which include an internal control to confirm the presence of amplifiable DNA from canine blood preparations. We also describe the application of these assays to blood derived DNA from two separate populations of dogs, both residing in areas harbouring R. sanguineus. Comparable levels of haemoplasma infection to other areas where the tick vector is prevalent were found, albeit with different ratios of infecting species.

Acknowledgements

Development of the assays and qPCR analysis was supported by a grant from BSAVA PetSavers with additional funding provided by the Wellcome Trust (Grant WT077718). The Carnivore Disease Project in Tanzania was supported by the joint National Institutes of Health/ National Science Foundation Ecology of Infectious Diseases Program (Grant NSF/DEB0225453). We thank Harriet Auty, Iddi Lipende and Ernest Ebilte for assistance in the field. The Trinidadian work was supported by the Waltham Foundation and The University of the West Indies Campus Research and Publication Fund (Grant 23601). ENB was supported by a University of Bristol Postgraduate Research Scholarship and Pfizer Health Limited.

Data from this study were presented by ENB in abstract form at the 18th European College of Veterinary Internal Medicine—Companion Animal Annual Congress, Ghent, Belgium in September 2008.

References


