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Experimental Study of Robust Output-Based
Continuous Sliding-Modes Controllers for Van der

Pol Oscillator
Hafiz Ahmed, Héctor Ríos

Abstract

Robust output tracking control of Van der Pol oscillator is an important practical problem from an application point of
view. Output feedback based robust tracking control strategies are proposed in this work for that purpose. First, a High-Order
Sliding-Mode Observer (HOSM-O) is used to estimate the oscillator states from the measurable output and to identify some type
of disturbances. Then, five different Continuous Sliding-Modes Controllers (Continuous-SMCs) are provided to robustly track a
desired time-varying trajectory, exponentially or in a finite time, for the Van der Pol oscillator despite the presence of external
disturbances. The closed-loop stability for each Continuous-SMC is given based on input-to-state stability (ISS) properties. Finally,
experimental validations are also provided to show the feasibility of the proposed controllers in real-time.

I. INTRODUCTION

Most of real practical systems are nonlinear and of second order e.g., inverted pendulum [1], DC servomotor [2], oscillator
[3], robotic manipulator [4]. As such, the robust control of second order nonlinear systems attracted a lot of attention from
the control community. To test the developed algorithms, several benchmark models are considered standard in the literature.
One such model is Van der Pol oscillator. This model has been applied in several practical fields as well e.g., biomedical
engineering [5], power system [6], environmental monitoring [7], robotics [8]. As a result, robust tracking control of Van der
Pol oscillator has important practical significance.

Various works have already been reported in the literature for the control of nonlinear systems like Van der Pol oscillator.
In [3], a robust controller with integral filter is applied to Van der Pol oscillator. The controller of [3] can reject matched
perturbations but the number of control parameters to tune is high. Moreover, the controller assumes full state measurement
which limits the implementation. Experimental validations are also not provided. A first order sliding-mode controller with low
pass filters has been proposed in [9]. To implement this controller, additional information of the system is required to tune the
low-pass filters. Moreover, it assumes full state feedback as well. Some other results are also available in the literature using
Neural Networks [10], [11]. However, the resulting controllers provide only the boundedness of the output tracking error. So,
there exists scope to provide robust tracking control strategies for Van der Pol oscillator using output feedback only. This is
the objective of this paper.

Out of various choices (e.g. neural network [12], adaptive control [13], Sliding-Mode Control (SMC) [14], [15], [16], [17],
[18], [3], [19], [20], [21], [22], [23]) for the robust tracking control of Van der Pol oscillator, in this work SMC will be
considered. SMC is one of the most promising robust control techniques. SMC has several very appealing properties like
robustness with respect to parametric uncertainties and disturbances, finite-time convergence etc. However, the control signal is
discontinuous. This discontinuity introduces high-frequency switching or “chattering” in practical implementation. Except some
application areas like power electronics [24], discontinuous control signal is not desirable in many applications. To overcome
the effect of chattering, several solutions have been proposed in the literature e.g., [21], [22], [19], [25]. One of the most
popular methods is the super-twisting algorithm (STA) which generates continuous control signal. One can apply the STA to
alleviate the chattering in systems with relative degree two. Most of the practical second order nonlinear systems satisfy this
condition.

In this work, using STA and its various extensions, the objective is to provide several Continuous-SMCs for robust tracking
control of Van der Pol oscillator. These controllers can provide continuous control signals and also reject matched perturbations.
In this work, it is assumed that only the output signal is available for measurement unlike [3], [9]. So, HOSM-O [20] will be
used to estimate the states and perturbations of the Van der Pol oscillator. The closed-loop stability for each Continuous-SMC is
given based on ISS properties. Moreover, experimental validation is also another objective. It is to be noted here that although
this article consider Van der Pol oscillator only, the proposed controllers can be used for any other systems that share similar
model structure e.g., DC servomotor [15], robotic manipulator [4]. The main idea of this work can be summarized as follows:
design of a HOSM-O to estimate the states and perturbation of Van der Pol oscillator followed by the development of several
Continuous-SMCs for robust output tracking.
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The contributions of this work over the existing literature [26], [20], [19], [22], [21] can be summarized as below: first of
all, unlike the existing literature, this article focus only on Van der Pol oscillator but the control strategy can be applied to any
system with similar model structure. As a result, the development of several observer based Continuous-SMCs for Van der
Pol oscillator is the first contribution. Moreover, the second novelty is the closed-loop stability analysis for each Continuous-
SMC based on ISS properties. Finally, unlike the existing literature, experimental validations using rapid prototyping tool are
provided.

The rest of the article is organized as follows: Section II gives the formal problem statement while some preliminaries
are given in Section III. HOSM observer based robust tracking controllers design can be found in Section IV. Results and
discussions are given in Section V. Section VI concludes this article.

II. PROBLEM STATEMENT

The model of the Van der Pol oscillator with external disturbances can be written as

ẋ1 = x2, (1a)

ẋ2 = −x1 + εx2(1− x2
1) + w (t) + u, (1b)

y = x1, (1c)

where ε > 0 is the model parameter, x = (x1, x2)T ∈ R2, u ∈ R, y ∈ R, and w ∈ R are the state, the control input, the
measurable output, and the unknown but bounded and Lipschitz external disturbance, i.e. |ẇ(t)| ≤ w+, for almost all t ≥ 0
and with w+ a known positive constant, respectively.

The control objective is to ensure that the system output y tracks a desired time-varying trajectory yd(t) ∈ C∞ in a finite
time despite the presence of external disturbance w(t). To quantify the tracking objective, a trajectory tracking error is defined
as

ye(t) = y(t)− yd(t). (2)

Thus, the control objective is equivalent to synthesizing a robust control input u, based on the state estimation from the
measurement y, given by a robust observer, such that ye(t) converges to zero in a finite time.

III. PRELIMINARIES

A. Notation

Throughout the paper the following notations are used:
• R+ = {x ∈ R : x ≥ 0} , where R is the set of all real numbers.
• Denote a sequence of integers 1, ..., n as 1, n.
• | · | denotes the absolute value in R, || · || denotes the Euclidean norm on Rn.
• For a (Lebesgue) measurable function d : R+ → Rm define the norm ||d||[t0,t1) = ess supt∈[t0,t1)||d (t) || , then ||d||∞ =
||d||[0,+∞) and the set of d(t) with the property ||d||∞ < +∞ is denoted as L∞ (the set of essentially bounded measurable
functions); and LD = {d ∈ L∞ : ||d||∞ ≤ D} for any D > 0.

• A continuous function α : R+ → R+ belongs to class K if it is strictly increasing and α(0) = 0; it belongs to class K∞ if
it is also unbounded. A continuous function β : R+×R+ → R+ belongs to class KL if for each fixed s, β(·, s) ∈ K, and
β(r, ·) is strictly decreasing to zero for any fixed r ∈ R+while β belongs to class KLT if for each fixed s, β(·, s) ∈ K,
and for each fixed r there exists 0 < T (r) < ∞ such that β(r, s) is decreasing to zero with respect to s < T (r), and
β(r, s) = 0 for all s ≥ T (r).

B. Stability of Nonlinear Systems

This section gives the notion of different types of stability of nonlinear systems. These notions will be helpful to understand
the type of convergence of the proposed differentiator based control strategy given in Section IV.

Consider the following nonlinear system
ẋ (t) = f (x (t) , d (t)) , t ≥ 0, (3)

where x (t) ∈ Rn is the state, d (t) ∈ Rm is the external input such that d ∈ L∞, f : Rn+m → Rn ensures forward existence of
the system solutions at least locally, f (0, 0) = 0. For an initial condition x0 ∈ Rn and input d ∈ L∞, define the corresponding
solution by ϕ(t, x0, d), for any t ≥ 0 for which the solution exists. Let Ω be an open neighborhood of the origin in Rn and
D > 0.

Definition 1. At the steady state x = 0, the system (3), for d ∈ LD, is said to be
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a) Uniformly Lyapunov Stable (US) if for any x0 ∈ Ω and d ∈ LD the solution ϕ(t, x0, d) is defined for all t ≥ 0, and for
any ε > 0 there is δ(ε) > 0 such that for any x0 ∈ Ω, if ||x0|| < δ(ε) then ||ϕ(t, x0, d)|| < ε for all t ≥ 0;

b) Uniformly Exponentially Stable (UES) if it is uniformly Lyapunov stable in Ω and exponentially converging from Ω, i.e.
for any x0 ∈ Ω there exist κ, γ > 0 such that ||ϕ(t, x0, d)|| < κ||x0||e−γt for all t ≥ 0;

c) Uniformly Finite-Time Stable (UFTS) if it is uniformly Lyapunov stable in Ω and uniformly finite-time converging from
Ω, i.e. for any x0 ∈ Ω and all d ∈ LD there exists 0 ≤ T ≤ +∞ such that ϕ(t, x0, d) = 0 for all t ≥ T . The function
T0 (x0) = inf {T ≥ 0: ϕ(t, x0, d) = 0 ∀t ≥ T, ∀d ∈ LD} is called the uniform settling time of the system (3).

If Ω = Rn, then the corresponding properties are called global uniform Lyapunov/exponential/finite-time stability of (3) for
d ∈ LD at x = 0. For details, please consult [27] and the references therein.

C. Homogeneity
For any ri > 0, i = 1, n, and λ > 0, define the dilation matrix Λr(λ) = diag{λri}ni=1, the vector of weights r =

(r1, . . . , rn)T , and the homogeneous norm, defined for any x ∈ Rn, as follows

||x||r =

(
n∑

i=1

||xi||
ρ
ri

) 1
ρ

, ρ =

n∏
i=1

ri.

For all x ∈ Rn, its Euclidean norm ||x|| is related with the homogeneous one [28]:

αr(||x||r) ≤ ||x|| ≤ αr(||x||r), (4)

for some αr, αr ∈ K∞. Due to this “equivalence”, stability analysis with respect to the norm ||x|| may be substituted with
analysis for the norm ||x||r. The homogeneous norm has an important property that is ||Λr(λ)x||r = λ||x||r for all x ∈ Rn.
Define Sr = {x ∈ Rn : ||x||r = 1}.

Definition 2. [29] The function g : Rn → R is called r-homogeneous (ri > 0, i = 1, n), if for any x ∈ Rn the relation
g(Λr(λ)x) = λqg(x), holds for some q ∈ R and all λ > 0. The function f : Rn → Rn is called r-homogeneous (ri > 0,
i = 1, n), if for any x ∈ Rn the relation f(Λr(λ)x) = λqΛr(λ)f(x), holds for some q ≥ −min1≤i≤n ri and all λ > 0. In
both cases, the constant q is called the degree of homogeneity.

Homogeneous systems possess certain robustness with respect to external disturbances. Consider a system described by the
following differential inclusion

ẋ(t) ∈ F (x(t), d(t)), t ≥ 0, (5)

where x and d have the same meaning as in (3), and F : Rn+m ⇒ Rn is a set-valued map. Similarly to system 3, for an
initial condition x0 ∈ Rn and input d ∈ L∞, define the corresponding solution by ϕ(t, x0, d), for any t ≥ 0 and denote by
S(x0) as the set of solutions ϕ(t, x0, d) corresponding to the common initial condition x0.

Definition 3. [30] System (5) is said to be finite-time input-to-state stable (FT-ISS) if for all x0 ∈ Rn and d ∈ LD the estimate

||ϕ(t, x0, d)|| ≤ β(||x0||, t) + γ(||d||∞),

holds for all t ≥ 0 and ϕ(t, x0, d) ∈ S(x0) for some β ∈ KLT and γ ∈ K.

Definition 4. [30] System (5) is said to be finite-time integral input-to-state stable (FT-iISS) if for all x0 ∈ Rn and d ∈ LD
the estimate

α(||ϕ(t, x0, d)||) ≤ β(||x0||, t) +

∫ t

0

γ(||d(τ)||∞)dτ,

holds for all t ≥ 0 and ϕ(t, x0, d) ∈ S(x0) for some α ∈ K∞, β ∈ KLT and γ ∈ K.

For a system represented by the differential equation (3), the classic definitions of ISS and iISS can be obtained if it is
assumed that β ∈ KL (see, for instance [31]).

Let us denote an extended discontinuous function F̃ (x, d) = (FT (x, d), 0m)T .

Theorem 1. [30] Let F̃ be homogeneous with weights r = (r1, . . . , rn) > 0 and r̃ = (r̃1, . . . , r̃m) ≥ 0 with a degree
q ≥ −min1≤i≤n ri, i.e. F (Λrx,Λr̃d) = λqΛrF (x, d). Assume that the system (5) is globally asymptotically stable for d = 0.
Let

||F (z, d)− F (z, 0)|| ≤ σ(||d||), ∀z ∈ Sr,

σ(s) =

{
csρmin , if s ≤ 1,

csρmax , if s > 1,
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for some c > 0 and ρmax ≥ ρmin > 0. Then, the system (5) is:
a) ISS if r̃min > 0, where r̃min = min1≤j≤m r̃j;
b) iISS if r̃maxρmin − µ ≤ q ≤ r̃min = 0, where r̃max = max1≤j≤m r̃j and some µ > 0.
If the homogeneity degree q < 0, then the system (5) is FT-ISS or FT- iISS, respectively.

IV. ROBUST TRACKING CONTROLLERS DESIGN

In the following the design of the proposed control strategies to tracking the Van der Pol oscillator output is addressed. The
proposed robust tracking is composed by a HOSM-O and the possibility to use five different Continuous-SMCs. Firstly, the
design of the HOSM-O is presented.

A. Finite-Time Sliding-Mode Observer
Consider the following HOSM-O

˙̂x1 = x̂2 + k̂1 dê1c
2
3 , (6a)

˙̂x2 = −x1 + εx̂2(1− x2
1) + u+ x̂3 + k̂2 dê1c

1
3 , (6b)

˙̂x3 = k̂3 dê1c0 , (6c)

where ê1 := x1 − x̂1 is the output error, the function d·cγ := | · |γsign(·), for any γ ∈ R≥0; and some design parameters
k̂i, i = 1, 3. Define the state estimation error as ê := (ê1, ê2)T ∈ R2, where ê2 := x2 − x̂2. Let us introduce the following
assumption.

Assumption 1. Suppose that there exists ξ > 0 such that the following inequality is satisfied:∥∥∥∥ ddt (f(x1, ê2) + w)

∥∥∥∥
∞
≤ ξ,

where f(x1, ê2) := εê2(1− x2
1).

Note that, due to the boundedness properties of the Van der Pol oscillator and the fact that the disturbance w is Lipschitz,
Assumption 1 always holds. Then, the following theorem describes the convergence properties of the HOSM-O.
Theorem 2. Let the observer (6) be applied to system (1) and Assumption 1 be satisfied. If the observer parameters are chosen
as follows:

k̂1 = 3ξ
1
3 , k̂2 = 1.5ξ

1
2 , k̂3 = 1.1ξ,

then the state estimation error ê = 0 is UFTS.
Proof: The error dynamics between system (1) and the HOSM-O (6) is given as follows:

˙̂e1 = ê2 − k̂1 dê1c
2
3 , (7a)

˙̂e2 = εê2(1− x2
1) + w − x̂3 − k̂2 dê1c

1
3 , (7b)

˙̂x3 = k̂3 dê1c0 . (7c)

Define ê3 := εê2(1− x2
1) + w − x̂3, then (7) may be written as

˙̂e1 = ê2 − k̂1 dê1c
2
3 , (8a)

˙̂e2 = ê3 − k̂2 dê1c
1
3 , (8b)

˙̂e3 = −k̂3 dê1c0 + ḟ + ẇ, (8c)

It is clear that the previous dynamics is the same that the second-order sliding-mode differentiator given by [20]. The error
dynamics (8) is homogeneous of degree q = −1 and weights r = (3, 2, 1). Hence, based on homogeneity and Lyapunov theory,
one can show that the error dynamics (8) is finite-time stable.

In this sense, in [32] , it has been shown that System (8) admits the following strong, proper, smooth and homogeneous of
degree q = 5 with weights r = (3, 2, 1), Lyapunov function

V (ê) = α1|ê1|
5
3 − β1ê1ê2 + α2|ê2|

5
2 − β2ê2ê

3
3 + α3|ê3|5,

with some positive constants αj , j = 1, 3 and βi, i = 1, 2. Moreover, considering that Assumption 1 holds, then there exist
some positive constants k̂i, αi, i = 1, 3 and βj , j = 1, 2 such that ê = 0 is UFTS; and hence, x̂1(t) = x1(t), x̂2(t) = x2(t)
and x̂3(t) = f(x1(t), ê2(t)) + w(t), for all t ≥ T̂ .

Particularly, in [20] it has been shown that the set of gains k̂1 = 3ξ
1
3 , k̂2 = 1.5ξ

1
2 and k̂3 = 1.1ξ provides finite-time

convergence for system (8). This concludes the proof.
In the following sections five different Continuous Sliding-Modes Control strategies are presented in order to track a desired

time-varying trajectory, exponentially or in a finite time, despite the presence of external disturbances.
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B. Linear Control Design

Let us consider the following compensation-based controller

u = −ueq + ÿd − k1e1 − k2ē2, (9a)

ueq = −x1 + εx̂2(1− x2
1) + x̂3, (9b)

where e1 := x1 − yd and ē2 := x̂2 − ẏd are the output tracking errors while k1 and k2 are some positive design gains. Define
the tracking error as e := (e1, e2)T ∈ R2, where e2 := x2 − ẏd. Then, the following result is established.

Theorem 3. Let the observer (6) and the controller (9) be applied to system (1) and Assumption 1 be satisfied. If the observer
parameters are chosen as in Theorem 1 and the controller gains k1, k2 > 0, then the tracking error e = 0 is Uniformly
Exponentially Stable, for all (ḟ + ẇ) ∈ Lξ.

Proof: The tracking error dynamics is given by

ė1 = e2, (10a)

ė2 = −x1 + εx2(1− x2
1) + w + u− ÿd. (10b)

Let us substitute the controller (9) into (10). Note that ē2 can be expressed as ē2 = e2− ê2. Thus, the closed-loop dynamics
is written as:

Πl :

{
ė1 = e2,
ė2 = −k1e1 − k2e2 + k2ê2 + ê3,

(11a)

Π2 :


˙̂e1 = ê2 − k̂1 dê1c

2
3 ,

˙̂e2 = ê3 − k̂2 dê1c
1
3 ,

˙̂e3 = −k̂3 dê1c0 + ḟ + ẇ.

(11b)

According to Theorem 2, the trajectories of the system Π2 converge to zero in a finite time. Then, since the trajectories of
the system Πl do not grow faster than an exponential, i.e. they do not escape to infinity in a finite time, one can assume that
ê = 0. Hence, the closed-loop dynamics (11) is reduced to

ė1 =e2, (12a)
ė2 =− k1e1 − k2e2. (12b)

Therefore, for any k1, k2 > 0, one can show that e = 0 is UES. Thus x1(t) → yd(t) and x2(t) → ẏd(t) as t → ∞. The
proof is concluded.

C. Super-Twisting Control Design

Let us consider the Super-Twisting Control (see [20] and [26]), i.e.

s = ē2 + k1e1, (13a)

u = −ueq + ÿd + v − k2 dsc
1
2 , (13b)

ueq = −x1 + εx̂2(1− x2
1) + x̂3 + k̂2 dê1c

1
3 + k1ē2, (13c)

v̇ = −k3 dsc0 , (13d)

for some positive constants ki, i = 1, 3. The following result is stated.

Theorem 4. Let the observer (6) and the controller (13) be applied to system (1) and Assumption 1 be satisfied. Let the
observer parameters be chosen as in Theorem 2 and suppose that there exist matrices 0 < PT = P ∈ R2×2 and Y ∈ R2×1,
and a positive constant α > 0 such that the linear matrix inequality

PA+ATP − Y C − CTY T + αI ≤ 0, (14)

A :=

(
0 1
0 0

)
, B :=

(
0
1

)
, CT :=

(
1
0

)
,

is feasible. Then, for (k2, k3)T = P−1Y and any k1 > 0, the tracking error e = 0 is Uniformly Exponentially Stable, for all
(ḟ + ẇ) ∈ Lξ, and the quadratic form V = ζTPζ, with ζT = ( dsc

1
2 v ), is a strong and robust Lyapunov function for

system (10).
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Proof: Substituting (13) in the tracking error dynamics (10), one obtains

ė1 = e2, (15a)

ė2 = −k1ē2 − k̂2 dê1c
1
3 + v − k2 dsc

1
2 + ê3, (15b)

v̇ = −k3 dsc0 , (15c)

and then, recalling that ē2 = e2 − ê2 and s = ē2 + k1e1, the closed-loop dynamics can be given as

Π1 :
{
ė1 = s− k1e1, (16a)

Πst :

{
ṡ = v − k2 dsc

1
2 + k1ê2,

v̇ = −k3 dsc0 ,
(16b)

Π2 :


˙̂e1 = ê2 − k̂1 dê1c

2
3 ,

˙̂e2 = ê3 − k̂2 dê1c
1
3 ,

˙̂e3 = −k̂3 dê1c0 + ḟ + ẇ.

(16c)

Note that system (16) can be viewed as a cascade system where Π2 is the input of Πst, and in turn, Πst the input of Π1.
Once again, according to Theorem 2, the trajectories of the system Π2 converge to zero in a finite time. Therefore, it follows

that for all |ḟ + ẇ|∞ ≤ ξ
||ê(t, ê0, ḟ + ẇ)|| ≤ δê, ∀t ≥ 0,

with some δê ≥ 0. On the other hand, it is clear that Πst has the same structure as the Super-Twisting algorithm except for
the bounded external input ê2. Let us define the following set-valued map

F̃ (s, v, ê2) =

(
F (s, v, ê2)

0

)
=

 v − k2 dsc
1
2 + k1ê2

−k3 dsc0
0

 .

Such a discontinuous function is homogeneous of degree q = −1 and weights r = (2, 1) and r̃ = 1. In [33], it has been
shown that, for ê2 = 0, the quadratic form V = ζTPζ, with ζT = ( dsc

1
2 v ) and P satisfying (14), is a strong and robust

Lyapunov function for Πst. Thus, (s, v) = 0 is UFTS. Moreover, it follows that

||F (s, v, ê2)− F (s, v, 0)|| = k1||ê2|| ≤ σ(||ê2||), ∀s, v ∈ R,

σ(s) =

{
csρmin , if s ≤ 1,

csρmax , if s > 1,

for c ≥ k1 and ρmax = ρmin = 1. Therefore, all the conditions of Theorem 1 are satisfied, and since r̃min = 1 > 0, system
Πst is FT-ISS with respect to the bounded input ê2, i.e.∥∥∥∥ s(t, s0, ê2)

v(t, v0, ê2)

∥∥∥∥ ≤ βst(∥∥∥∥ s0

v0

∥∥∥∥ , t)+ γê1(||ê2||∞), (17)

for all t ≥ 0 and some βst ∈ KLT and γê1 ∈ K. Moreover, since for system Π2, ê = 0 is UFTS, one obtains that (17) satisfies∥∥∥∥ s(t, s0, ê2)
v(t, v0, ê2)

∥∥∥∥ ≤ βst(∥∥∥∥ s0

v0

∥∥∥∥ , t)+ γê2(||ê2(0)||, t),

for all t ≥ 0 and some βst, γê2 ∈ KLT . This implies that also (s, v) = 0 is UFTS for any ê2 ∈ R. Finally, it is easy to show
that system Π1 is ISS with respect to the input s, i.e.

|| e1(t, e1(0), s)|| ≤ βe1(||e1(0)||, t) + γs1(||s||∞), (18)

for all t ≥ 0 and some βe1 ∈ KL and γs1 ∈ K. Then, due to the fact that (s, v) = 0 is UFTS, (18) satisfies

|| e1(t, e1(0), s)|| ≤ βe1(||e1(0)||, t) + γs2(||s0||, t),

for all t ≥ 0, βe1(||e1(0)||, t) = ||e1(0)||e−k1t and some γs2 ∈ KLT . Evidently, e1 = 0, and hence ē2 = 0, are UES for any
k1 > 0. Thus x1(t)→ yd(t) and x2(t)→ ẏd(t) as t→∞. This concludes the proof.
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D. Continuous Singular Terminal Sliding-Mode Control Design

Consider now the Continuous Singular Terminal Sliding-Mode control (Continuous-STSMC) [19], i.e.

s = ē2 + k1 de1c
2
3 , (19a)

u = −ueq + ÿd + v − k2 dsc
1
2 , (19b)

ueq = −x1 + εx̂2(1− x2
1) + x̂3 + k̂2 dê1c

1
3 , (19c)

v̇ = −k3 dsc0 , (19d)

for some positive constants ki, i = 1, 3. The following result is provided.

Theorem 5. Let the observer (6) and the controller (19) be applied to system (1) and Assumption 1 be satisfied. Let the
observer parameters be chosen as in Theorem 2. Then, for some ki, i = 1, 3, the tracking error e = 0 is Uniformly Finite-Time
Stable, for all (ḟ + ẇ) ∈ Lξ.

Proof: Let us substitute (19) into the tracking error dynamics (10), i.e.

ė1 = e2, (20a)

ė2 = v − k2 dsc
1
2 + ê3, (20b)

v̇ = −k3 dsc0 . (20c)

Thus, since ē2 = e2 − ê2, the closed-loop dynamics is given as

Πcst :


ė1 = ē2 + ê2,

˙̄e2 = v − k2 dsc
1
2 ,

v̇ = −k3 dsc0 ,
(21a)

Π2 :


˙̂e1 = ê2 − k̂1 dê1c

2
3 ,

˙̂e2 = ê3 − k̂2 dê1c
1
3 ,

˙̂e3 = −k̂3 dê1c0 + ḟ + ẇ.

(21b)

Once again, system (21) can be viewed as a cascade system where Π2 is the input of Πcst. In this vein, this proof follows
the same spirit as the proof of Theorem 4.

It has been already proven that system Π2 converges to zero in a finite time, and moreover, that for all t ≥ 0 and all
|ḟ + ẇ|∞ ≤ ξ, ||ê(t, ê0, ḟ + ẇ)|| ≤ δê, for some δê ≥ 0.

Then, for system Πcst, let us define the following set-valued map

F̃ (ē, v, ê2) =

(
F (ē, v, ê2)

0

)
=


ē2 + ê2

v − k2 dsc
1
2

−k3 dsc0
0

 ,

with ē := (e1, ē2)T ∈ R2. This discontinuous function is homogeneous of degree q = −1 and weights r = (3, 2, 1) and
r̃ = 2. In [19], it has been proven that, for ê2 = 0, the quadratic form V = ζTPζ, with ζT = ( de1c

2
3 s dvc2 ) and some

0 < PT = P ∈ R3×3, is a Lyapunov function for Πcst such that, for some ki, i = 1, 3, V̇ ≤ −κV 3/4, with some positive κ.
Therefore, (ē, v) = 0 is UFTS. Moreover, it is given that

||F (ē, v, ê2)− F (ē, v, 0)|| = ||ê2|| ≤ σ(||ê2||), ∀e1, ē2, v ∈ R,

σ(s) =

{
csρmin , if s ≤ 1,

csρmax , if s > 1,

for c ≥ 1 and ρmax = ρmin = 1. Hence, all the conditions of Theorem 1 hold, and due to r̃min = 2 > 0, system Πcst is FT-ISS
with respect to the bounded input ê2, i.e.∥∥∥∥ ē(t, ē0, v, ê2)

v(t, e, v0, ê2)

∥∥∥∥ ≤ βcst(∥∥∥∥ ē0

v0

∥∥∥∥ , t)+ γê3(||ê2||∞), (22)

for all t ≥ 0 and some βcst ∈ KLT and γê3 ∈ K. Additionally, since for system Π2, ê = 0 is UFTS, (22) satisfies∥∥∥∥ ē(t, ē0, v, ê2)
v(t, e, v0, ê2)

∥∥∥∥ ≤ βcst(∥∥∥∥ ē0

v0

∥∥∥∥ , t)+ γê4(||ê2(0)||, t),
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for all t ≥ 0 and some βcst, γê4 ∈ KLT . This implies (ē, v) = 0 is also UFTS for any ê2 ∈ R. Then, since ê(t) = 0 for some
t ≥ T̂ , it follows that x1(t) = yd(t) and x2(t) = ẏd(t) for all t ≥ Tcst, with some Tcst > T̂ . The proof is concluded.

It is worth mentioning that, unfortunately, there is not a constructive way to design the controller gains. However, one can
try to use the same procedure as in Theorem 5, i.e. k1 > 0 and (k2, k3)T = P−1Y .

E. Continuous Nonsingular Terminal Sliding-Mode Control Design

Let us consider the Continuous Nonsingular Terminal Sliding-Mode control (Continuous-NTSMC) [22], i.e.

s = e1 + k1 dē2c
3
2 , (23a)

u = −ueq + ÿd + v − k2 dsc
1
3 , (23b)

ueq = −x1 + εx̂2(1− x2
1) + x̂3 + k̂2 dê1c

1
3 , (23c)

v̇ = −k3 dsc0 , (23d)

with some positive constants ki, i = 1, 3. The following result is established.

Theorem 6. Let the observer (6) and the controller (23) be applied to system (1) and Assumption 1 be satisfied. Let the
observer parameters be chosen as in Theorem 2. Then, for some ki, i = 1, 3, the tracking error e = 0 is Uniformly Finite-Time
Stable, for all (ḟ + ẇ) ∈ Lξ.

Proof: Let us replace control (23) into the tracking error dynamics (10), i.e.

ė1 = e2, (24a)

ė2 = v − k2 dsc
1
3 + ê3, (24b)

v̇ = −k3 dsc0 . (24c)

Note that ē2 = e2 − ê2, then the closed-loop dynamics is described as follows

Πcnt :


ė1 = ē2 + ê2,

˙̄e2 = v − k2 dsc
1
3 ,

v̇ = −k3 dsc0 ,
(25a)

Π2 :


˙̂e1 = ê2 − k̂1 dê1c

2
3 ,

˙̂e2 = ê3 − k̂2 dê1c
1
3 ,

˙̂e3 = −k̂3 dê1c0 + ḟ + ẇ.

(25b)

System Π2 converges to zero in a finite time and for all t ≥ 0 and all |ḟ + ẇ|∞ ≤ ξ, ||ê(t, ê0, ḟ + ẇ)|| ≤ δê, for some
δê ≥ 0. Then, for system Πcnt, define the following set-valued map

F̃ (ē, v, ê2) =

(
F (ē, v, ê2)

0

)
=


ē2 + ê2

v − k2 dsc
1
3

−k3 dsc0
0

 .

It is easy to show that this discontinuous function is also homogeneous of degree q = −1 and weights r = (3, 2, 1) and
r̃ = 2. In [22], it is shown that, for ê2 = 0, there exist coefficients β > 0 and γ > 0 such that the function

V (e, v) = β|e1|
5
3 + e1ē2 +

2

5
k1|ē2|

5
2 − 1

k3
1

ē2v
3 + γ|v|5,

is a Lyapunov function for Πcnt and for some ki, i = 1, 3, V̇ ≤ −ηV 4/5, with some positive η. Thus, this implies that
(ē, v) = 0 is UFTS. The rest the proof follows the same steps as in the proof of Theorem 4 or 5, showing that system Πcnt

is also FT-ISS with respect to the bounded input ê2.
Therefore, one concludes that ē = 0 is UFTS for some ki, i = 1, 3; and since ê(t) = 0 for some t ≥ T̂ , hence, x1(t) = yd(t)

and x2(t) = ẏd(t) for all t ≥ Tcnt, with some Tcnt > T̂ .
A possible selection for the gains ki, i = 1, 3, is given as follows [22]:
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Table I
Continuous-NTSMC’S GAINS SELECTION

Set 1 2 3 4
k1 20ζ−

1
2 28.7ζ−

1
2 7.7ζ−

1
2 ζ−

1
2

k2 4.4ζ
2
3 4.5ζ

2
3 7.5ζ

2
3 16ζ

2
3

k3 2.5ζ 2ζ 2ζ 7ζ
ζ > 0 > 0 > 0 > 0

F. Continuous Twisting Control

Consider the Continuous Twisting control (Continuous-TC) [21], i.e.

u = −ueq + ÿd + v − k1 de1c
1
3 − k2 dē2c

1
2 , (26a)

ueq = −x1 + εx̂2(1− x2
1) + x̂3 + k̂2 dê1c

1
3 , (26b)

v̇ = −k3 de1c0 − k4 dē2c0 , (26c)

with some positive constants kj , j = 1, 4. The following result is stated.

Theorem 7. Let the observer (6) and the controller (26) be applied to system (1) and Assumption 1 be satisfied. Let the
observer parameters be chosen as in Theorem 2. Then, for some ki, i = 1, 3, the tracking error e = 0 is Uniformly Finite-Time
Stable, for all (ḟ + ẇ) ∈ Lξ.

Proof: Substitute control (26) in the tracking error dynamics (10), i.e.

ė1 = e2, (27a)

ė2 = v − k1 de1c
1
3 − k2 dē2c

1
2 + ê3, (27b)

v̇ = −k3 de1c0 − k4 dē2c0 . (27c)

Recalling that ē2 = e2 − ê2, the closed-loop dynamics can be written as follows

Πct :


ė1 = ē2 + ê2,

˙̄e2 = v − k1 de1c
1
3 − k2 dē2c

1
2 ,

v̇ = −k3 de1c0 − k4 dē2c0 ,
(28a)

Π2 :


˙̂e1 = ê2 − k̂1 dê1c

2
3 ,

˙̂e2 = ê3 − k̂2 dê1c
1
3 ,

˙̂e3 = −k̂3 dê1c0 + ḟ + ẇ.

(28b)

Then, according to Theorem 2, system Π2 converges to zero in a finite time and for all t ≥ 0 and all |ḟ + ẇ|∞ ≤ ξ,
||ê(t, ê0, ḟ + ẇ)|| ≤ δê, for some δê ≥ 0. On the other hand, for system Πct, define the following set-valued map

F̃ (ē, v, ê2) =

(
F (ē, v, ê2)

0

)
=


ē2 + ê2

v − k1 de1c
1
3 − k2 dē2c

1
2

−k3 de1c0 − k4 dē2c0
0

 .

This discontinuous vector field is homogeneous of degree q = −1 and weights r = (3, 2, 1) and r̃ = 2. In [21], it has been
shown that, for ê2 = 0, there exist coefficients βj , j = 1, 4, such that the function

V (ē, v) = β1|e1|
5
3 + β2e1ē2 + β3|ē2|

5
2

+ β4e1 dvc2 − β5ē2v
3 + β6|v|5,

is a Lyapunov function for system Πct and for some kj , j = 1, 4, V̇ ≤ −γV 4/5, with some positive γ. This implies that
(ē, v) = 0 is UFTS. Then, note that

||F (ē, v, ê2)− F (ē, v, 0)|| = ||ê2|| ≤ σ(||ê2||), ∀e1, ē2, v ∈ R,

σ(s) =

{
csρmin , if s ≤ 1,

csρmax , if s > 1,

for c ≥ 1 and ρmax = ρmin = 1. Hence, following the same steps as in the proof of Theorem 4 or 5, one can show that system
Πct is also FT-ISS with respect to the bounded input ê2.



10

Therefore, one concludes that ē = 0 is UFTS for some kj , j = 1, 4. Since ê(t) = 0 for some t ≥ T̂ , it follows that
x1(t) = yd(t) and x2(t) = ẏd(t) for all t ≥ Tct, with some Tct > T̂ . The proof is concluded.

A possible choice for the gains kj , j = 1, 4, is given as follows [21]:

Table II
Continuous-TC’S GAINS SELECTION

Set 1 2 3 4
k1 25ζ

2
3 19ζ

2
3 13ζ

2
3 7ζ

2
3

k2 15ζ
1
2 10ζ

1
2 7.5ζ

1
2 5ζ

1
2

k3 2.3ζ 2.3ζ 2.3ζ 2.3ζ
k4 1.1ζ 1.1ζ 1.1ζ 1.1ζ
ζ > 0 > 0 > 0 > 0

Remark 5. It is worth mentioning that the proposed control strategy together with the five Continuous SMCs can be perfectly
applied to any system described by a perturbed double integrator; for instance, DC servomotor [15], robotic manipulator [4],
etc.

Some theoretical comments about the proposed strategies:
1) All of the proposed control strategies are continuous and robust against the class of perturbations described by Assumption

IV-A.
2) The Linear Control and the Super-Twisting Control approaches provide only uniform exponential stability.
3) The Continuous-STSMC, the Continuous-NTSMC and the Continuous-TC provide uniform finite-time stability. This

represents the main theoretical difference between these three controllers and the two previous ones. Evidently, the
finite-time stability is a stronger property than the exponential one, theoretically speaking.

4) The Linear Control has only two design gains and it is the simplest approach to implement which are the main advantages
of this approach.

5) The Super-Twisting Control, the Continuous-STSMC and the Continuous-NTSMC have three design gains and they are
more complex to implement due to the nonlinearities which can be seen as drawbacks with respect to the Linear Control.

6) The Continuous-TC has four design gains and the implementation complexity is similar to the other nonlinear controllers.
In this sense, the Continuous-TC is the most complex to implement and design with respect to the other approaches.

7) The main advantage of the Continuous-STSMC, the Continuous-NTSMC and the Continuous-TC is the finite-time stability
they provide for the same class of perturbations.

8) It is clear that there exist a trade-off between implementation and designing complexity, and the stability performance.

V. RESULTS AND DISCUSSIONS

A. Simulation Results

To demonstrate the performance of the Continuous-SMCs proposed in Section IV, numerical simulation studies are performed
in this section. Model parameter ε = 0.1 is selected. Band-limited white noise is added in the output y to make the simulation
realistic. w (t) = sin (3t) + 1 is selected as the bounded Lipschitz disturbance in Eq. (1). The objective of the controllers is to
track a sinusoidal reference yd (t) = sin (2πt). The used parameters for the HOSM-O and the Continuous-SMCs are shown in
Table III. As a comparison tool, an extended high-gain (EHG) observer based output-feedback control strategy [34] has been
selected. The parameters of EHG controller are selected according to the guidelines given in [34] and avoided here for the
purpose of brevity.

Table III
PARAMETERS OF THE CONTROL STRATEGIES

Parameter HOSM-O Linear Super Twisting
k̂1 / k1 11.0521 1 1
k̂2 / k2 10.6066 3.6742 3.6742
k̂3 / k3 55 – 6.6000
ξ / ζ 50 – 6

Parameter STSMC NTSMC TC
k1 1 3.1435 23.1135
k2 3.6742 24.7645 12.2474
k3 6.6000 12 13.8000
k4 – – 6.6000
ζ 6 6 6

The first step in applying the Continuous-SMCs is to estimate the states x1 and x2 as well as some perturbations from the
noise corrupted measurement y. In the simulation, measurement noise has been added. The state estimation errors can be found
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in Fig. 1. The Fig. 1 shows that the HOSM-O successfully estimated the states in a finite-time. Using the estimated states, the
Continuous-SMCs (9), (13), (19), (23) and (26) are applied. EHG based output-feedback is also applied as a comparison tool.
The tracking performance of the controllers are given in Fig. 2. The tracking error for different controllers is shown in Fig. 3.
From Fig. 2 and 3, it can be seen that the performances of the various Continuous-SMCs are more or less the same. Except
the compensation based linear control (9), the other Continuous-SMCs converged to the desired trajectory in a very short-time.
However, the same cannot be said about EHG. It s clear that the EHG has very high peak amplitude for the states x2. This
impacts the settling time for x1. Moreover, the steady state error for EHG is significantly higher than the Continuous-SMCs. As
such this method has not been included in the further calculation for the sake of readability. This demonstrates the effectiveness
of the applied Continuous-SMC control strategies for the Van der Pol oscillator. The control signals for all the SMC controllers
are given in Fig. 4. The Fig. 4 shows that some SMC controllers require high amplitude in the transient period while others
do not need it. High amplitude control signal may be problematic for some applications. In that case, saturation of the control
signal can be done to prevent the damage of the plant being controlled.
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Figure 1. State estimation errors for each SMC control strategy. Zoomed versions are given in the bottom row.
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Figure 2. Comparative tracking performance for each control strategy.

B. Experimental Results

To validate the theoretical results presented in Section IV, an experimental study is considered in this section. For this
purpose, model (1) has been constructed with parameter ε ≈ 0.1. The electronic circuit diagram can be seen in Fig. 5.

The circuit parameters are: Ri = 1MΩ, i = 1, 6, R7 = 130Ω, R8 = 1.2KΩ, R9 = 100Ω, R10 = 1.5KΩ, C1 = C2 = 1µF ,
LM741 is a general purpose operational amplifier and AD633 is a 4-quadrant multiplier operational amplifier. A dSPACE 1104
board was used as a rapid prototyping solution. The experimental setup was realized at Coventry University, United Kingdom.
All the proposed controllers were implemented using Simulink. The solver was the Euler’s method and the sampling frequency
was 4KHz. The used parameters for the HOSM-O and the Continuous-SMCs for the experimental realization are shown in
Table IV.
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Table IV
PARAMETERS OF THE CONTROL STRATEGIES

Parameter HOSM-O Linear Super Twisting
k̂1 / k1 6.86 1 1
k̂2 / k2 5.1962 3.6742 3.6742
k̂3 / k3 13.2 – 6.6000
ξ / ζ 12 – 6

Parameter STSMC NTSMC TC
k1 1 0.4082 23.1135
k2 3.6742 52.8308 12.2474
k3 6.6000 42 13.8000
k4 – – 6.6000
ζ 6 6 6

Remark 6. The existing literature on the SMC discretization techniques [35], [36] suggested the use of implicit Euler technique
which is computationally complex for real-time implementation. Explicit Euler technique is computationally simple and easy
to implement in real-time. In [36], it has been shown that for sufficiently small sampling frequency, the explicit Euler technique
converges to the vicinity of the origin, which is acceptable for practical application. It is to be noted here that due to the
discretization of continuous controllers, only practical finite-time stability instead of finite-time stability can be achieved in
practice.

The objective here is to track a reference signal yd = xd = sin (3t). The experimental results for sinusoidal reference
tracking are given in Fig. 6. This figure shows that all the controllers successfully tracked the time varying reference signal.
The performance of the controllers are almost identical in the steady-state. In the transient regime, Continuous-NTSMC and
compensation based linear controller behaved differently than the others. For example, the settling time of Continuous-NTSMC
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Figure 5. Experimental setup

and linear control are significantly higher than the others. Moreover, Continuous-NTSMC has large overshoot than the others.
One explanation for this particular behavior of the Continuous-NTSM is due to the control magnitude.

Figure 6. Experimental results for sinusoidal reference tracking.

The control signals for sinusoidal reference tracking can be found in Fig. 7. This figure shows that the amplitude of
Continuous-NTSMC is higher than the others. This causes the large overshoot in the transient period. If the gains of Continuous-
NTSMC are reduced, then the maximum overshoot value decreases but increases the settling time. As a result some trade-offs
have to be made for the selection of control gains of Continuous-NTSMC. The control profile of Continuous-Twisting is similar
to that of Continuous-NTSMC just the magnitude is smaller. If the gains of Continuous-Twisting are reduced following the
guidelines provided in Table II, the control profile become smoother but increases the settling time. Thus, some trade-offs have
to be made for the selection of control gains of Continuous-Twisting.
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Although Continuous-SMCs are developed for the robust output tracking Fig. 7 shows that some control signals are not very
smooth. In an experimental settings, the controller needs to compensate the nonlinearities and nonidealities of the practical
device which are not included in the mathematical model. Moreover, practical devices that implement the controller work in
discrete time time and digital domain. So, analog-to-digital and digital-to-analog conversions are required. This also introduces
conversion error and the error depends on the device being used for control implementation. All these factors contribute to the
not so smooth control profile.

In the simulation, it is observed that the convergence time of the compensation based linear control is significantly higher
than the other controllers. Same thing can be observed in the experiment also. Except Continuous-NTSMC, the other controllers
converged at a rate much faster than the compensation based linear controller. Moreover, the tracking error magnitude is also
relative high for the linear controller. This justifies the use of robust control over compensation based linear control.

To formally compare the controllers in a constructive manner, time domain performance criteria are very useful. They are
widely used in the standard literature for comparison purpose. In this work, three criteria have been selected namely - settling
time, Maximum Steady State Error (MSSE), and the energy of the control signal. The first two criteria can be found from
the Root Mean Square (RMS) plot of the tracking error signal while the third can be obtained from RMS plot of the control
signal. The following definition of RMS values will be used.

e1RMS =

√
1

∆T

∫ t

t−∆t

(x̂1(τ)− xd(τ))2dτ, (29)

uRMS =

√
1

∆T

∫ t

t−∆t

u2(τ)dτ, (30)

where ∆T is the interval over which the RMS value is computed. A 30 samples window is selected to calculate the RMS
value. The RMS profile of the tracking error and control signal can be seen in Fig. 8.
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Figure 8. R.M.S. values: a) tracking error for various SMC controllers; b) control signals for sinusoidal reference tracking.
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Time domain performance criteria of the controllers are tabulated in Table V. From Table V, it can be seen that there is no
absolute winner. The Continuous-Twisting controller has very good settling time and MSSE performance but the maximum
control energy being used in the steady state is sufficiently high. The Continuous-STSMC and Super Twisting controller both are
using same control energy but Continuous-STSMC outperform Super Twisting in other criteria. Although MSSE performance
of Continuous-NTSMC is better than linear control, this one is using double energy than the linear one. Based on Table V,
from practical point of view it can be said that Continuous-STSMC is the best performing one among the others. It has slight
higher settling time than Continuous-Twisting but the MSSE and control energy point of view the performance is very close
to the best performing controllers in each category.

Table V
TIME DOMAIN PERFORMANCE SUMMARY OF VARIOUS Continuous-SMCS

Parameter Linear Super Twisting
Settling Time 3.3 2.35

MSSE 0.132 0.025
max {uRMS} 8 8.4

Parameter STSMC NTSMC TC
Settling Time 0.3085 5.07 0.08

MSSE 0.008 0.022 0.007
max {uRMS} 8.4 16.38 9.5

Finally, based on the experimental results, it can be said that experimental results validate the theoretical developments of
Sec. IV.

VI. CONCLUSION

This paper studies the problem of tracking control design for the Van der Pol oscillator. Output feedback based robust
tracking control strategies are proposed in this work for that purpose. First, a HOSM-O is used to estimate the oscillator states
from the measurable output and to identify some type of disturbances. Then, five different Continuous-SMCs are provided to
robustly track a desired time-varying trajectory, exponentially or in a finite time, for the Van der Pol oscillator despite the
presence of external disturbances. The closed-loop stability for each Continuous-SMC is given based on ISS properties. Finally,
experimental validations are also provided to show the feasibility of the proposed controllers in real-time.
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