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ABSTRACT

An attribution study has been performed to investigate the degree to which

the unusually cold European winter 2009-2010 was modified by anthro-

pogenic climate change. Two different methods have been included for the

attribution: one based on a large HadGEM3-A ensemble and one based on a

statistical surrogate method. Both methods are evaluated by comparing simu-

lated winter temperature means, trends, standard deviations, skewness, return

periods, and 5 % quantiles with observations. While the surrogate method

performs well, HadGEM3-A in general underestimates the trend in winter

by a factor of 2/3. It has a mean cold bias dominated by the mountainous

regions and also underestimates the cold 5 % quantile in many regions of Eu-

rope. Both methods show that the probability of experiencing a winter as cold

as 2009-2010 has been reduced by approximately a factor of two due to an-

thropogenic changes. The method based on HadGEM3-A ensembles gives

somewhat larger changes than the surrogate method because of differences

in the definition of the unperturbed climate. The results are based on two

diagnostics: the coldest day in winter and the largest continuous area with

temperatures colder than twice the local standard deviation. The results are

not sensitive to the choice of bias correction except in the mountainous re-

gions. Previous results regarding the behavior of the measures of the changed

probability have been extended. The counter-intuitive behavior for heavy-

tailed distributions is found to hold for a range of measures and for events that

become more rare in a changed climate.
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1. Introduction70

An increased frequency of occurrence of extreme events such as flooding and heat waves has71

been reported (Frich et al. 2002; Alexander et al. 2006; Meehl et al. 2009; Coumou and Rahm-72

storf 2012; Peterson et al. 2012; Fischer and Knutti 2015) and, as the potentially most adverse73

consequences of climate change are related to extremes, there has been an increased interest in74

the attribution of such events (see, e.g., Field et al. 2012; National Academies of Sciences, En-75

gineering, and Medicine 2016). A particular challenge is the attribution of single events. While76

there are a number of papers addressing event attribution of flooding and heat waves, there has77

not been much work done in this area addressing cold spells. Cold spells also increase morbidity78

and mortality, although the effect is weaker than for extreme warm events (Conlon et al. 2011).79

Furthermore, extreme winter conditions have serious detrimental effects on infrastructure such80

as damage to railways, closed airports, and frozen power lines (see, e.g., Doll et al. 2014, and81

references therein).82

Part of the lesser interest in the attribution cold spells – at least in Europe – can be found83

in a weaker change in winter temperatures than in summer temperatures (see section 4). To-84

gether with the larger natural variability in winter, this makes changes in cold spells harder to85

detect. Cold spells in Europe are closely connected to the North Atlantic Oscillation (NAO) and86

blocking (Buehler et al. 2011), with a negative NAO index suggestive of cold European winters.87

Stratospheric sudden warmings propagate downwards on sub-seasonal time-scales and lead sta-88

tistically to a negative phase of the NAO and associated colder temperatures in Europe (Baldwin89

and Dunkerton 1999; Christiansen 2001). In addition to the general warming expecting to reduce90

cold extremes (Van Oldenborgh et al. 2014), there have also been discussions about dynamical91

effects related to anthropogenic forcings that may change European winter temperatures and cold92
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spells. One proposed connection is a positive correlation between autumn sea-ice extent and the93

atmospheric circulation, e.g., the NAO, the following winter, which has been studied both in obser-94

vations (Francis et al. 2009; Overland and Wang 2010; Liu et al. 2012; Tang et al. 2013) and with95

modelling approaches (Petoukhov and Semenov 2010; Orsolini et al. 2011; Yang and Christensen96

2012; Mori et al. 2014). In another model study Sévellec et al. (2017) found a link between sea-ice97

and the Atlantic meridional overturning circulation. With retreating sea-ice due to a general warm-98

ing – and the Arctic amplification of that warming – such connections could help to explain the99

occurrence of recent cold winters in Europe. However, recent results (Li et al. 2015; Gerber et al.100

2014; Screen 2017) suggest that the relationship between sea-ice, the NAO, and cold spells may101

be a chance occurrence or at least is very fragile. Recently, Francis (2017) related the unsettled102

science to a potential combination of a low signal-to-noise ratio and deficiencies in the models,103

the experimental designs, and the metrics of circulation changes. Other broad review of the Arctic104

influence on mid-latitudes are presented by Overland et al. (2015) and Cohen et al. (2014), while105

the reviews by Vihma (2014) and Gao et al. (2014) focus on the connection between sea-ice and106

mid-latitude weather and climate. Low-frequency changes in European cold spells may also be107

related to an intensified anticyclone that drives changes in the Siberian high (Zhang et al. 2012).108

Here, we present an event attribution study of the cold European winter 2009-2010. The at-109

tribution is based on two different methods; the first is based on the ensembles produced by the110

HadGEM3-A (Hadley Centre Global Environment Model version 3) atmospheric model and the111

second on ensembles generated by a statistical surrogate method.112

The paper is organized as follows. In section 2 we describe the data and the diagnostics used113

for the event attribution of cold spells. Therein, we also briefly describe the meteorological details114

of the winter 2009-2010 (see also WMO (2010)) focusing on these diagnostics. The two methods115

for generating ensembles – the HadGEM3-A model and the statistical surrogate method – are de-116

6



scribed in section 3. In section 4 we evaluate these two methods against observations. In section 5117

we present the resulting risk ratios. In appendix A we expand the discussion of the framing issue118

of attribution of single events from Christiansen (2015) to be more relevant for the present study.119

The extension includes other measures of the risk than just the Fractional Attributable Risk and120

also the situation where the considered event becomes less frequent in the changed climate. The121

conclusions are presented in section 6.122

2. The observations, the diagnostics, and the winter 2009-2010123

For surface temperature observations we use the E-OBS (version 12) daily mean gridded data-set124

on a 0.5x0.5 longitude/latitude land-only grid (Haylock et al. 2008). Uncertainties in the E-OBS125

data and comparisons with re-analyses are presented in van der Schrier et al. (2013), who find126

good agreement between European mean trends in the different data-sets.. We also use daily zonal127

wind from the National Centers for Environmental Prediction/National Center for Atmospheric128

Research reanalysis (NCEP/NCAR) reanalysis on a 2.5×2.5 longitude/latitude grid and 17 pres-129

sure levels from 1000 to 10 hPa (Kalnay et al. 1996). To calculate the NAO index we use NCEP130

daily sea-level pressure on a 2.5x2.5 longitude/latitude grid. For all three data sets we use the 54131

year long period 1960-2013 which is also the period for which the experiments with HadGEM3-A132

have been performed (see section 3). We select E-OBS data for Europe, defined here as latitudes133

between 35 and 70◦ N and longitudes between 10◦ W and 30◦ E. For the E-OBS data we exclude134

grid-points where more than 5 % of the days are missing data. This affects only small regions on135

the African coast. Grid-points that are missing data between 0 and 5 % of the days are filled using136

nearest neighbour interpolation. This affects a few grid-points on the African coast and in Turkey.137

The NAO is calculated by empirical orthogonal function (EOF) analysis of winter (DJF) monthly138

anomalies of sea-level pressure for latitudes between 20 and 80◦ N and longitudes between 90◦ W139
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and 40 ◦ E. The anomalies are first weighted by the square-root of the cosine of the latitudes and140

linearly detrended. Daily values of the NAO index are then found by projecting the leading EOF141

onto daily sea-level pressure anomalies (see, e.g., Blessing et al. 2005).142

There are many possible diagnostics of the severity of cold winters including different combi-143

nations of the duration, extent, and intensity of the cold periods. In the following we focus on two144

diagnostics. The first diagnostic is defined on grid-cell scales as the minimum temperature over145

the whole winter. The second diagnostic, herefrom denoted the blob index, is a spatially integrated146

measure defined as the largest continuous area with temperature anomalies less than −2σ , where147

σ is the local, seasonally varying standard deviation, i.e., the standard deviation calculated for148

each grid-point and for each day of the year. Thus, the blob index is a combined measure of both149

the spatial coherence and the intensity of the cold spell. The blob index is calculated for each day150

separately and for convenience expressed as a fraction of the total European land area. Both diag-151

nostics are calculated from daily mean temperatures. The first diagnostic measures the intensity152

of the cold period while the second diagnostic also takes spatial extent into account, and is similar153

to the heat-wave diagnostic used in Christiansen (2015).154

We now briefly describe the winter 2009-2010 with focus on the chosen diagnostics; the mini-155

mum temperature over whole winter and the blob index. The winter 2009-2010 was a relatively156

cold winter with a series of strong cold spells of which the strongest appeared in the middle of157

December. The blob index reached a value of 0.38 on 19th December (Fig. 1, top panel), which158

is large but exceeded in both earlier and later winters, e.g., in the winter of 2011-2012. On 19th159

December 2009 the temperature was below normal almost everywhere except for few regions in160
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Northern Scandinavia (Fig. 2). The coldest anomalies, below -4σ , are found in the middle of161

Germany1.162

The temperature of the coldest day of the winter 2009-2010 confirms that this year was unusually163

cold in many regions of Europe (Fig. 3). In Germany, Spain, Great Britain, and Scandinavia164

temperatures as cold as in 2009-2010 are rarely found in other years in the period 1960-2013.165

The winter 2009-2010 was, as many other cold winters, dominated by a strong negative NAO166

(Wang et al. 2010; Ouzeau et al. 2011; Buchan et al. 2014) (demonstrated in the upper panel167

of Fig. S1 in the supplement). However, this winter might not have been as cold as previous168

winters with the same NAO levels, suggesting an impact of a general warming climate (Cattiaux169

et al. 2010). The negative NAO was connected to a weak stratospheric vortex (Cohen et al. 2010;170

Vargin 2015) – as demonstrated in the lower panel in Fig. S1 – although the main factor responsible171

for the strong negative NAO has been suggested to be related to internal tropospheric dynamical172

processes (Jung et al. 2011).173

3. The two ensemble methods174

To make statements about the attributable risk of the observed extreme event (the winter 2009-175

2010) we need information about the frequencies of similar events of different magnitudes in both176

the unperturbed climate and in the climate under anthropogenic forcings (Allen 2003; Stott et al.177

2004, 2013). For each of the climates the probability for finding an event at least as extreme178

as the observed event is calculated. The risk ratio is then defined as the ratio between these179

two probabilities. See also appendix A for a more precise definition of the risk ratio and other180

measures of the attributable risk. To obtain these frequencies we here use ensembles both from181

1The lead author got stuck in airports in Manchester and then Amsterdam on the way home from AGU. The meteorological conditions are

described here https://en.wikipedia.org/wiki/Winter_of_2009-2010_in_Europe
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the atmospheric general circulation model HadGEM3-A and ensembles obtained by a surrogate182

field method that produces fields with the same spatial and temporal structure as an observed target183

field. These methods complement each other as they make different assumptions about the effect of184

anthropogenic climate change. Note, that for the HadGEM3-A approach the unperturbed climate185

is represented by pre-industrial (1850) conditions while for the surrogate method it is represented186

by 1960 conditions.187

a. The dynamical model188

Two ensembles, each with 15 members, have been produced with HadGEM3-A covering the189

years 1960-2013. The horizontal resolution is N216 and the vertical resolution is L85 with 50190

tropospheric and 35 stratospheric layers. The version used here is discussed in Ciavarella et al.191

(2017) and includes the Global Atmosphere 6.0 (GA6) atmospheric science package (Walters et al.192

2016). Both ensembles were recently used for attribution analysis by Christidis et al. (2016), Eden193

et al. (2016), and Burke et al. (2016). A detailed analysis of the perturbed (historical) ensemble194

regarding the skill in extreme events is presented in Vautard et al. (2017). We further note that no195

significant correlations between the Arctic autumn sea-ice and the winter NAO are found in these196

ensembles. This holds both when total Arctic sea ice and regional sea-ice (e.g., the Kara-Barents197

Seas) is considered.198

The two ensembles differ through the external climate forcings included, one is driven with both199

natural and anthropogenic forcings (historical) and the other with only natural forcings (histnat).200

Natural external forcings are variability in total solar irradiance at the top of the atmosphere, and201

volcanic activity implemented through a latitudinal variation of stratospheric aerosol optical depth.202

Anthropogenic forcings include well-mixed greenhouse gases, zonal-mean ozone concentrations,203

aerosol emissions, and land use changes. The external forcings are obtained from sources used by204
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the Coupled Model Intercomparison Project Phase 5 (CMIP5) generation of models (Taylor et al.205

2011). In the histnat experiments, anthropogenic forcings are held at pre-industrial levels taken to206

be those of 1850. Boundary conditions at the bottom of the atmosphere are given by sea-surface207

temperatures (SST) and sea-ice concentrations fields. In the historical experiments the SSTs and208

the sea-ice are prescribed from observed values (HadISST1.1, Rayner et al. 2003) while for the209

histnat experiments an estimate of the change due to anthropogenic influence is removed from the210

observations (Christidis et al. 2013). This estimate comes from ensembles of simulations with and211

without anthropogenic forcings generated with 19 coupled models for the C20C+ detection and212

attribution project (http://portal.nersc.gov/c20c/experiment.html).213

Both ensembles share a common atmospheric initialization on 1st December 1959 from ERA-40214

reanalysis fields (Uppala et al. 2005). The differences between ensemble members are produced215

by two stochastic physics schemes that generate small differences in the physics of each simula-216

tion (Christidis et al. 2013).217

b. Ensemble surrogate field method218

The method is based on a simple algorithm to produce ensembles of surrogate fields based on219

observations. This method produces surrogate fields with the same spatial and temporal structure220

– as measured with instantaneous and lagged cross-correlations – as the original observed field of221

surface temperatures. The method was used in Christiansen (2015) for attribution of heat waves222

and in a study of the significance of the increase in warm records (Christiansen 2013). The sur-223

rogate fields are generated with a phase-scrambling procedure described in Christiansen (2007,224

2013) which is very similar to the multivariate method introduced by Prichard and Theiler (1994)225

based on the univariate amplitude adjusted Fourier transform method (AAFT) by Theiler et al.226

(1992).227
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The general outline of the procedure is familiar from bootstrap methods; first a transformation228

of the original field into stationary anomalies is performed, stationary surrogate anomalies are pro-229

duced from the original stationary anomalies, and the final surrogate field is produced by applying230

the inverse transformation to the surrogate anomalies.231

The stationary anomalies of the original observed surface temperature field are obtained by232

removing the average annual cycle and the secular variations – trends and variability on the lowest233

frequencies estimated by a 3rd order polynomial fit – at each geographical position. The resulting234

stationary anomalies are Fourier transformed, then the Fourier phases are randomized but with235

the same random phases for all grid-points, and finally inverse Fourier transforms are performed236

to get the stationary surrogate anomalies. Now the average annual cycles are restored at each237

geographical position to get a surrogate field of the unperturbed climate state, i.e., ‘the world that238

could have been without climate change’. Also adding the secular trends to this field gives us a239

surrogate of the perturbed climate.240

Repeating this process with different randomizations allows us to calculate ensembles of fields241

for both the unperturbed climate and the perturbed climate. From these ensembles the relevant242

distributions of the diagnostic can be calculated and the risk ratio for an observed event can be243

estimated.244

The surrogate method is fast and flexible and can therefore also be used for sensitivity studies245

and to test the robustness of the risk ratio to methodological choices. The method does not depend246

on physical parameterizations but only on statistical assumptions. A fundamental assumption247

is that it is possible in the observations to empirically separate internal variability from climate248

change. Here this separation is performed by assuming different temporal scales for the two types249

of variability. The method was tested in details in Christiansen (2015) and found to be adequate250

for temperature fields while problems may arise for fields which are strongly non-Gaussian. In251
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agreement with the analysis in Christiansen (2015) we find here similar results for cold spells252

when climate change is defined by 5th or 7th order polynomials.253

4. Evaluation254

In this section we investigate the extent to which HadGEM3-A and the surrogate methods repro-255

duce the relevant features of the observations. Our confidence in the calculated risk ratios depends256

on the methods ability to reproduce long-term temperature trends as well as cold extremes.257

The statistical significance of trends and differences is estimated by Monte-Carlo methods that258

take the possible serial correlations of the data into account. The statistical significance of trends259

are calculated by a phase-scrambling method (Theiler et al. 1992; Christiansen 2001) for which260

the ‘bootstrap’ members retain the full auto-correlation spectrum of the original detrended time-261

series. The significance of differences are calculated by a block-bootstrap method assuming that262

data separated by 15 days are independent. This separation corresponds to roughly twice the263

temporal decorrelation length of surface temperatures (see, e.g., Christiansen 2015).264

We will use ‘historical’ and ‘histnat’ to denote the two ensembles from HadGEM3-A. For the265

surrogate method we use ‘perturbed’ and ‘unperturbed’ ensembles. So ‘histnat’ and ‘unperturbed’266

ensembles refer to the counter-factual world that could have been.267

Some general evaluations related to cold spells were presented in Vautard et al. (2017) based268

on the historical HadGEM3-A ensemble. It was concluded that there were no major processes269

hindering the representation of cold spells. Here we will focus on quantities directly related to the270

two diagnostics and compare the evaluations of the dynamical model and the surrogate method.271
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a. The European mean perspective272

The observed spatially averaged European winter (DJF) mean temperature has a linear trend273

of 0.30 ◦C/decade (95 % confidence interval is [0.12,0.51] ◦C/decade) in the period 1960-2013274

(Fig. 4). This is somewhat larger than the ensemble mean of the HadGEM3-A historical ensemble275

which shows a trend of 0.20 ◦C/decade (95 % interval [0.12,0.28]). Both these trends are sig-276

nificant to the 5 % level while only approximately half of the individual HadGEM3-A historical277

ensemble members show significant trends. However, 3 out of the 15 ensemble members show a278

trend that is comparable to that of the observations. The trends are probably due to a combina-279

tion of increasing greenhouse gases and decreasing European aerosol emissions. However, there280

is no significant difference in the trends calculated for the whole period, the period before 1985,281

and the period after 1985, neither for observations nor models. It is also worth noting that the282

HadGEM3-A model has a negative bias which is dominated by mountainous regions as seen in283

the next sub-section.284

The ensemble mean of the perturbed ensemble of surrogates has a linear trend of 0.34 ◦C/decade285

(significant to the 5 % level, 95 % interval [0.26,0.42]) close to that of the observations as should286

be expected by construction. The ensemble of surrogates shows less variation among ensemble287

members than does the HadGEM3-A ensemble, and all of them show significant trends. The288

unperturbed ensemble mean and the histnat ensemble mean show weak and insignificant trends.289

The NAO index has a weak non-significant trend in the observations while it is almost zero in the290

two HadGEM3-A ensembles (not shown).291

The correlation of the European mean winter temperature between observations and the ensem-292

ble mean of the HadGEM3-A historical ensemble is 0.47 (95 % confidence interval is [0.15,0.71]).293

For the HadGEM3-A histnat ensemble the correlation is 0.29 ([0.01,0.53]). As expected the cor-294
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relations for the surrogate ensembles are smaller, 0.28 ([−0.14,0.60]) and 0.02 ([−0.28,0.32]),295

reflecting that for this method only the trend will contribute. For the observations the correla-296

tion between the European mean winter temperature and the NAO index is 0.67 ([0.40,0.82]),297

and similar values (0.61 and 0.63) are found for the two HadGEM3-A ensembles. Correlations298

of winter mean NAO index between observations and the two HadGEM3-A ensemble means are299

0.19 ([−0.03,0.41]) and 0.22 ([−0.03,0.46]), while the correlation between the NAO index in the300

two ensemble means is 0.52 ([0.29,0.70]). Thus, for both observations and the HadGEM3-A en-301

sembles the SSTs determine a considerable part of the average European land temperature and the302

NAO index and the land temperature are well correlated. However, the NAO itself is only to a303

limited extent determined by SSTs (see, e.g., Greatbatch 2000, and references therein).304

To get an overall impression of the changes in winter extremes we normalize the local tem-305

peratures for each grid-point with the local, seasonally varying standard deviation (calculated for306

each grid-point and for each day of the year) and pool them all together (Fig. 5). The challenge307

of detection and attribution of cold extremes becomes clear: although there is a general change308

in the distributions the changes are particularly small for the cold tail. This is quantitatively dif-309

ferent from summer temperatures (Fig. S2) which show a general shift of the whole distribution310

toward warmer values. Both the HadGEM3-A historical ensemble and the perturbed surrogate311

show changes comparable to observations. Note also that the distributions in winter are heavily312

negatively skewed so that the values in the negative tail are numerically larger than those in the313

positive tail. This is in agreement with the observation (Twardosz and Kossowska-Cezak 2016)314

that more extreme cold than extreme warm winters are observed.315

The blob diagnostic combines intensity and spatial coherence of the cold spell and requires a316

specific validation. In Fig. 1 the diagnostic is shown as function of time for a random historical317

HadGEM3-A ensemble member and for a random perturbed surrogate ensemble member. The two318
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ensemble members compare well with observations. Figure 6 shows the return periods including319

only winter days of the historical HadGEM3-A and the perturbed surrogate ensembles, as well as320

for observations. We see that both the surrogate method and HadGEM3-A reproduce the observed321

return periods of the largest continuous area very well. However, there is a tendency for the322

HadGEM3-A to overestimate the return periods for events smaller than 0.35.323

b. The local perspective324

In sub-section 1 we present an evaluation based on all winter days while we in sub-section 2325

briefly add to the evaluation of the temperatures of the coldest winter days presented in Vautard326

et al. (2017).327

1) EVALUATION BASED ON ALL WINTER DAYS328

The mean of the local temperatures over the winters 1960-2013 is relatively well modelled329

in the historical HadGEM3-A ensemble (Fig. 7), with a bias that is small (although statistically330

significant) except for the alpine region and regions in Northern Scandinavia. In these mountainous331

regions the model is up to 5◦C colder than the observations. The long term mean difference332

between the historical and histnat model is statistically significant and positive everywhere with333

the strongest warming in the north eastern part of Europe – reaching 4◦C in Finland – and the334

weakest warming in the south western part. For the surrogate method (not shown) the long term335

mean is by construction almost indistinguishable from that of the observations.336

The linear trend of the local temperatures over the winters 1960-2013 (Fig. 8) is positive nearly337

everywhere in the observations with the largest trends in the north eastern regions. The trends338

are statistically significant in large areas. The same pattern but of weaker strength and lower339

significance is found in the historical HadGEM3-A experiments (see also Vautard et al. (2017)).340
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The trends for the perturbed surrogate have the same magnitude as in observations. For the histnat341

and unperturbed ensembles the trends are close to zero everywhere. The pattern of the differences342

in the mean between HadGEM3-A historical and histnat ensembles (bottom right panel in Fig. 7)343

and the trends in observations and the HadGEM3-A historical ensembles (left panels in Fig. 8) are344

in general agreement with the expected Arctic amplification.345

The standard deviation, the skewness, and the 5 % quantile of the local temperatures are shown346

in Figs. 9, 10, and 11. These quantities are calculated from winter anomalies over the period 1960-347

2013 after removing the seasonal cycle and the secular trend in form of a 3rd order polynomial348

fit. The figures include the observations (upper panels), the historical HadGEM3-A and perturbed349

surrogate (middle panels), the difference between the historical HadGEM3-A and observations350

and the difference between the historical and histnat HadGEM3-A (lower panels).351

Compared to the observations, the standard deviation in the historical HadGEM3-A model is352

overestimated in the mountainous regions (Fig. 9). The modelled skewness is strongly overesti-353

mated compared to observations in Scandinavia, while it is underestimated in north-eastern parts354

of Europe. Only small differences are found in southern Europe (Fig. 10). The 5 % quantile is355

overestimated in the model compared to observations in parts of Northern Europe while it is un-356

derestimated in the mountainous regions (Fig. 11). This is a combination of the differences in357

standard deviation and skewness.358

Comparing the HadGEM3-A historical and histnat experiments we find smaller differences. The359

standard deviation in the historical version is larger everywhere compared to the histnat version but360

the differences are small. The 5 % quantile has increased everywhere except for Spain, although361

the differences are statistically significant only in few regions. The pattern of the changes in the 5362

% quantile is largely in agreement with the patterns of the changes in the long term means and the363

trends in the historical HadGEM3-A model.364
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The comparison above was done with a single ensemble member. But the described results are365

robust across the ensemble members and similar results are found for the ensemble mean. For the366

perturbed surrogate the long term values of standard deviations, skewness, and 5 % quantile are367

very well represented as expected.368

For a good representation of the extremes it is not only necessary that the long term values of369

the variance and skewness are well represented; also the year-to-year variations of these quantities370

should be correctly represented. The spatial averages of the winter means of temperature, the371

variance, and the skewness are shown as a function of the year in Fig. 12 for observations, for a372

historical HadGEM3-A ensemble member, and for a perturbed surrogate. It is obvious that the373

observed temporal variability of these quantities are well represented by both the HadGEM3-A374

and the surrogate. The main deviation is the cold bias in the HadGEM3-A mentioned earlier. The375

anti-correlation between winter means and variances was also observed in (Yiou et al. 2009).376

2) EVALUATION OF THE COLDEST WINTER DAYS377

Fitting a generalized extreme value (GEV) distribution to the coldest winter days Vautard et al.378

(2017) found that the historical HadGEM3-A experiments underestimate the location parameter in379

the mountainous regions. This is in agreement with the results for the 5 % quantile presented in the380

previous sub-section. The scale parameter is reasonably well represented but in Eastern Europe381

the model overestimates the shape parameter (too long cold tail). Again, this is in agreement with382

the results for the skewness shown in the previous sub-section.383

Here we use a Kolmogorov-Smirnov test to see if observed and modelled distributions of the384

temperatures of the coldest winter days are equal. We also show how different forms of bias385

correction change the results of the test. This is important when choosing the form of correction386

used when calculating the risk ratios (section 5). The test is applied to each grid-point and for387
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each grid-point the observed sample consists of 53 numbers (one value for each winter) and the388

modelled sample of 53*15 numbers (as we have 15 ensemble members). As a measure of the389

overall similarity of the observed and modelled coldest days we use the fraction of grid-points for390

which we can reject the null-hypothesis of identical distributions at the 5 % level.391

For the raw data from the HadGEM3-A historical experiments we can reject the null-hypothesis392

at the 5 % level in 71 % of the grid-points. The p-values from the test are shown in Fig. S3. For the393

perturbed surrogate ensembles the corresponding fraction is only 7.5 %, indicating that the cold394

extremes are well represented by the surrogate approach.395

If we perform a bias correction with the difference between the means over all winter days (not396

just the coldest) a small improvement is seen; now the null-hypothesis is rejected for a smaller397

fraction, 61 %, of the grid-points. If we also scale with the standard deviations of all winter days398

(so the observations and model both have same mean and same variance in each grid-point) we399

get a drastic improvement to 26 %. However, bias correction with the mean of only the coldest400

winter days brings the fraction of grid-points where we can reject the null-hypothesis down to 5.4401

%. Thus some differences in the distributions are particular to the extremes; the differences can402

not just be described as differences in the mean and standard deviations of winter days.403

Fortunately, although the different corrections have different – and in some cases substantial404

– influence on the distributions themselves we find that for the risk ratios the influence of the405

corrections are rather small (section 5).406

5. The risk ratios407

The distributions of the temperatures of the coldest winter days and of the blob index have408

been calculated for both the HadGEM3-A ensembles (historical and histnat) and the surrogate409

ensembles (perturbed and unperturbed).410
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The significance and error bars have been calculated by bootstrapping the values contributing to411

each distribution. For temperature of the coldest day this amounts to 15*53 values: one value for412

each winter in each of the 15 ensembles. For the blob index it is 15*53*90 values as we have 90413

values each winter. Note that the resulting significance and error bars only include the effects of414

finite ensemble size.415

For the temperatures of the coldest winter days the distributions are calculated for each grid-416

point. Two examples are shown in Fig. 13; a grid-point near Oslo and a grid-point near Utrecht.417

These grid-points are typical for mountainous and non-mountainous regions, respectively. Consid-418

ering first HadGEM3-A, we see that for both locations the distributions for the historical ensemble419

have moved towards warmer values compared with the histnat ensemble. For the grid-point near420

Utrecht the modeled distribution and the observations (grey vertical lines) agree well. For this421

location the risk ratio of the winter 2009-2010 is 0.44 but it should be noted this winter was not422

extreme at this location. Recall that a risk ratio less than one indicates a reduced probability for423

an event as extreme as the observed. For the grid-point near Oslo the modeled distribution and the424

observations do not agree (see discussion of model bias in section 4). The observed winter 2009-425

2010 (vertical green line) is a cold winter at this location but falls in the middle of the modelled426

distributions. Correcting the observed temperature for the mean winter bias (orange vertical line)427

improves the situation significantly. Without the bias correction the risk ratio is 0.44 and with the428

bias correction it is 0.05. Norway is the region where the bias correction has the largest impact429

followed by the Alpine region. Outside these areas the effect of the bias correction on the risk430

ratio is typically less than 0.15. Considering the surrogate method we find as expected that the431

changes in the modelled distributions are smaller and that the distributions compare well with the432

observations. Now the risk ratios are 0.71 for both locations.433
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The geographical distribution of the risk ratios for the coldest winter day is shown in Fig. 14.434

We see that the probability for a 2009-2010 event has been reduced over almost all of Europe.435

This holds for both the HadGEM3-A based analysis and the surrogate method although most val-436

ues are moderate. The HadGEM3-A based analysis in general gives larger changes (and more437

significant grid-points) than the surrogate method which can be understood from the fact that the438

histnat ensemble with HadGEM3-A represents pre-industrial conditions while the corresponding439

unperturbed ensemble with the surrogate method represents the 1960s. The mean risk ratio over440

Europe is 0.69 for HadGEM3-A. Although, as we saw in section 2, bias correction will influence441

the distributions themselves it has a smaller effect on the risk ratios outside the mountainous re-442

gions. Correcting with the mean of all winter days gives a mean risk ratio of 0.65, while correcting443

with the mean of the coldest days gives a mean risk ratio of 0.69.444

Using only data since 1985 (bottom panel of Fig. 14) we find lower risk ratios for both the445

HadGEM3-A and the surrogate methods. This should be expected as this period is warmer than446

the period 1960-1985 in the histnat and perturbed ensembles. However, the lower risk ratios may447

also partly be due to the smaller number of degrees of freedom in the shorter period (see Appendix448

A).449

The risk ratio of the 2009-2010 event measured with the blob index – which combines the450

spatial coherence and the intensity of the cold spell – is shown Fig. 15. When the whole period is451

considered the risk ratio of the 2009-2010 event is not significantly different for either HadGEM3-452

A or the surrogate method. However, when only data from 1985 are considered the risk ratio453

is 0.47 (95 % confidence interval is [0.36,0.58]) for HadGEM3-A and 0.65 ([0.50,0.82]) for the454

surrogate method, and is significantly different from 1 in both cases. Again HadGEM3-A gives455

larger and more significant changes than the surrogate method. Note that for the largest values of456

the blob index the 95 % confidence intervals are based on few events and are therefore not robust.457
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Although the result that risk ratios differ more from 1 when calculated from the period after 1985458

than when calculated from the whole period is in agreement with a stronger warming there might459

also be an effect of the selection problem. In the longer period there is more events to choose from460

(i.e., it includes more independent degrees of freedom) and the longer period will therefore favor461

risk ratios closer to 1 (see section 6 and the analytic explanation in appendix A).462

6. Conclusions463

We have investigated the possibility of attributing the cold European winter 2009-2010 to anthro-464

pogenic changes. Two different methods for event attribution have been included: one based on465

the HadGEM3-A ensembles and one based on the statistical surrogate method described in Chris-466

tiansen (2015). The surrogate method is based on a simple algorithm to produce ensembles of467

surrogate fields for both the unperturbed climate and the perturbed climate. These ensembles468

differ locally by the observed secular low-frequency variability. The method is based on observa-469

tions and the surrogate fields by construction have the same spatial and temporal structure as the470

original observed field. The HadGEM3-A ensembles differ in applied forcings, with the histnat471

ensemble including only natural forcings and the historical ensemble also including the effects of472

anthropogenic changes. While the histnat HadGEM3-A ensemble represents pre-industrial (1850)473

conditions the unperturbed surrogate ensemble represents 1960 conditions.474

Focusing the evaluation on HadGEM3-A, we found that the trend in winter means over 1960-475

2013 is in general under-estimated by a factor of 2/3 although there is a considerable spread among476

the ensemble members. HadGEM3-A also has a mean cold bias dominated by the mountainous477

regions. The modelled winter standard deviation compares well to observations except for the478

Norwegian coast and the Alpine region where it is somewhat overestimated. In observations the479

skewness is negative almost everywhere. The model underestimates the strength of the nega-480
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tive skewness in Scandinavia and many of the western parts of Europe while it overestimates the481

strength of the negative skewness in central Europe. Together this results in the cold 5 % quantile482

being overestimated in many regions of Europe except in the mountainous areas. For the extremes483

– such as the coldest day in winter – we do find some differences between the HadGEM3-A en-484

semble and the observations. Fortunately, the risk ratios are not sensitive to these deficiencies.485

For the attribution we considered two diagnostics; the coldest day in winter for each grid-point486

and the largest continuous area with temperatures more than two local standard deviations below487

the mean. The results for the risk ratio were presented using both the whole period 1960-2013 and488

the later period 1985-2013 to build the distributions. For the largest continuous area no significant489

change in the risk ratio was found for either the HadGEM3-A model or the surrogate method490

when the whole period was included. When only the briefer period was included both methods491

gave statistically significant (different from 1 at the 5 % level) risk ratios for the 2009-2010 event492

of around 0.5. For the temperature of the coldest day in winter, values less than 1 were found over493

most of Europe. Lower values were found for HadGEM3-A compared to the surrogate method.494

Smaller and more significant values were found when only the later period was considered. For495

this period the HadGEM3-A model and the surrogate method agree on the general pattern with the496

lowest values in the Western Europe (except the Norwegian coast).497

In the perturbed surrogates any low-frequency effect of retreating sea-ice would automatically be498

included while, as mentioned in section 3a, there are no significant correlations between the Arctic499

autumn sea-ice and the winter NAO in the HadGEM3-A historical ensemble. The latter observa-500

tion does not completely rule out an influence of sea-ice on the temperatures in the HadGEM3-A501

ensemble. However, the fact that we get comparable results about the risk ratios in both the sur-502

rogate method and the HadGEM3-A approach suggests that the effect of retreating sea-ice is not503

very important for the risk ratios.504
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In appendix A we addressed some issues of attribution of single events. We saw that the counter-505

intuitive behavior found for the Fractional Attributable Risk (FAR) in Christiansen (2015) also506

holds for the risk ratio and the simple ratio of probabilities; these measures do not increase mono-507

tonically with the strength of the event for heavy tailed distributions. As shown in Vautard et al.508

(2017) cold extremes might actually have distributions that are difficult to distinguish from heavy509

tailed distributions (shape parameters of GEV distributions close to 0). Note also that the risk510

ratios found with the surrogate approach (Fig. 15) do not show a clear decrease with the strength511

of the event. We also saw that all three measures are sensitive to the ‘selection problem’; they512

depend on the number of degrees of freedom and therefore on the choice of region and period513

used when counting the events that are similar to the observed extreme event. In agreement with514

the analytical results we found in section 5 that the risk ratios for the whole period were larger515

than the risk ratios for the period after 1985. Although some of the explanation can be found in the516

increased warming in the later period, it further demonstrates that the attribution of single events517

contains some amount of subjectivity. This point is emphasized by the very low risk ratios found518

when only the period 2007-2012 is considered (bottom row in Fig. 15). In fact, even lower risk519

ratios are found when only the winter 2009-2010 is considered (not shown). Finally we saw that520

the issues described in Christiansen (2015) also exist when the event under consideration becomes521

less frequent in the changed climate as for the cold events of the present study.522

However, we take some comfort in the fact that the two very different methods in general agree523

on the risk ratio. As mentioned above, the somewhat larger changes found for HadGEM3-A com-524

pared to the surrogate approach are because the histnat and the unperturbed ensembles represent525

different periods. As mentioned in Christiansen (2015) the surrogate method has both advantages526

and disadvantages, the main advantages being that it is fast and does not require extensive com-527

puter resources. The results in the present paper confirm that the surrogate method can be used as528
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an alternative for dynamical methods when considering event attribution. It is also reassuring that529

the two very different diagnostics in general agree on a reduced risk of cold spells.530
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APPENDIX538

Framing issues in attribution of single events539

There is an ongoing debate about the interpretation and usefulness of the attribution of single540

events to climate change (Bindoff et al. 2013; Hansen et al. 2014; Hannart et al. 2015; Otto et al.541

2015; Christiansen 2015; National Academies of Sciences, Engineering, and Medicine 2016). In542

particular, Christiansen (2015) studied the influence of heavy tails and the ‘selection problem’, i.e.,543

the consequence of the fact that the event under consideration is not independent but selected pre-544

cisely because it is an extreme. While Christiansen (2015) focused on the Fractional Attributable545

Risk we here expand the study to include other measures. We will also include the situation where546

the event under consideration becomes more rare in the changed climate (as expected for cold547

spells).548

The situation and notation are briefly described as follows. For an observation x we denote the549

probability density in the unperturbed climate as puc(x) and the cumulative density as Puc(x). In550
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the perturbed climate the corresponding quantities are ppc(x) and Ppc(x). Here, the perturbed551

climate refers to the climate under anthropogenic changes and the unperturbed climate to ‘the552

world that might have been’, i.e., the climate without anthropogenic changes. An often used553

measure of the increased risk for x is the Fractional Attributable Risk (FAR) defined as (P̃pc(x)−554

P̃uc(x))/P̃pc(x), where P̃ = 1−P (Allen 2003; Stott et al. 2004, 2013). Here, we assume an event555

on the right tail of the distribution. Other possible measures are the risk ratio P̃pc(x)/P̃uc(x) and556

the simple ratio of probabilities ppc(x)/puc(x).557

We first assume that climate change amounts to a simple shift ppc(x) = puc(x−c), c = 0.3. This558

is a reasonable first order approximation as discussed in Christiansen (2015). Also note that in a559

study of climate-model simulations with future levels of greenhouse gases, de Vries et al. (2012)560

finds that changes in the frequency of cold spells in Western Europe can be explained by changes561

in the mean and variance. Under this assumption, Christiansen (2015) showed that while the FAR562

increases monotonically with x when puc(x) is Gaussian, this is not the case when puc(x) has a563

heavy tail. In this case the FAR has a maximum for a finite value of x. Christiansen (2015) also564

studied the effect of the ‘selection problem’ defined above. In this case the relevant probability is565

not puc(x) but rather puc
n (xmax): the probability density of the largest value, xmax, of n variables.566

Note, that when the n variables are independent and identically distributed we have the identity567

Pn = Pn for the cumulative densities.568

While Christiansen (2015) only considered the FAR, we here show results also for the risk ratio569

and the simple ratio ppc(x)/puc(x) (Fig. A1). We see that all three measures behave similarly.570

Under Gaussianity (left panels) they all increase with x and approach infinity for large x. However,571

for the distribution with the heavy tail (right panels), they all have a maximum whereafter they572

decrease. Also note, that for a given x all measures decrease as the number of degrees of freedom573

increases.574
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The analysis above assumes that the event under consideration becomes more frequent in the575

changed climate. For the cold spells analysed in the present paper – and a few previous attribution576

studies (Christidis et al. 2013, 2014) – the situation is the opposite. The relevant assumption is577

now ppc(x) = puc(x+ c). Results for this case is shown in Fig. A2. Now the FAR and the two578

other measures decrease monotonically under Gaussianity while for distributions with heavy tails579

they reach a minimum for a finite value of x. We also see that all measures increase as the number580

of degrees of freedom increases.581

Thus, the conclusions of Christiansen (2015) based on the FAR also hold for the other measures582

and when the considered event becomes more infrequent. The ‘selection problem’ cannot be583

avoided; all three measures change drastically when the number of degrees of freedom increases.584

All three measures are sensitive to deviations from Gaussianity; for heavy-tailed distributions the585

measures do not change monotonically so for the most extreme events the measures reports less586

changes in the risk than for more intermediate values.587
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FIG. 1. Blob index as function of time. The blob index is the area of the largest continuous region with

temperature anomalies below −2σ , where σ is the local, seasonally varying standard deviation. It is normalized

with the total area of the considered region. First panel: Winter 2009-2010 from E-OBS. Second panel: 1960-

2013 from E-OBS. Third panel: 1960-2013 from a historical HadGEM3-A ensemble member. Fourth panel:

1960-2013 from a perturbed surrogate ensemble member. Three lowest panels include all year.
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FIG. 2. The temperature of 19th Dec. 2009 which is the winter day of 2009-2010 with the largest blob

index. Top left: Temperature [◦C]. Top right: Anomaly after removing annual cycle [◦C]. Bottom: Anomaly

normalized with seasonal standard deviation.
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FIG. 3. Left: Temperature [◦C] of the coldest day in winter 2009-2010 found individually for each grid-point.

Right: Fraction of winters in 1960-2013 with days colder than the coldest day in winter 2009-2010.
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FIG. 4. European mean winter temperatures [◦C] as function of time. Top: HadGEM3-A. Bottom: Surrogate.

Observations: blue curve. Historical and perturbed ensembles: black curves, Histnat and unperturbed ensembles:

red curves. Ensemble means shown with thick curves.
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FIG. 5. Local daily winter temperatures have been normalized with their seasonally varying standard deviation

and pooled. Left panel shows the distribution as function of time. Contour levels are 0.0001, 0.001, 0.01, 0.05,

0.1, 0.2, 0.3, 0.4, and 0.5. Right panel shows the distributions before (light shading) and after (dark shading)

1985. From top: Observations (E-OBS), HadGEM3-A historical, and perturbed surrogate.
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FIG. 6. Return periods of the blob index (largest continuous area) for winter. Black: observations. Blue: sur-

rogates. Red: HadGEM3-A. Thin curves are individual ensemble members, thick curves are pooled ensembles.

Only historical and perturbed ensembles shown.
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FIG. 7. Top: Long term winter means of grid-point temperatures in observations and historical HadGEM3-A.

Bottom left: Model bias. Differences in long term mean between HadGEM3-A historical and observations.

Bottom right: Differences in long term mean between HadGEM3-A historical and histnat. Unit: [◦C]. Large

dots where differences are estimated to be statistically significant at the 5 % level.

858

859

860

861

45



FIG. 8. Linear trends of grid-point temperatures in winter [◦C/decade]. Top: Observations. Middle: Historical

and histnat HadGEM3-A. Bottom: Perturbed and unperturbed surrogate. Large dots where trends are estimated

to be statistically significant at the 5 % level.
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FIG. 9. Standard deviation of winter anomalies of grid-point temperatures [◦C]. Top: Observations. Mid-

dle: Historical HadGEM3-A and perturbed surrogate. Bottom: Difference between historical HadGEM3-A

and observations and difference between historical and histnat HadGEM3-A. Large dots where differences are

estimated to be statistically significant at the 5 % level.
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FIG. 10. As Fig. 9 but for skewness of winter anomalies of grid-point temperatures.
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FIG. 11. As Fig. 9 but for the 5 % quantile of winter anomalies of grid-point temperatures [◦C].
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FIG. 12. Time development for spatial mean of temperature [◦C], standard deviation [◦C], and skewness.

Standard deviation and skewness calculated from anomalies. Observations (green), HadGEM3-A historical

(orange), surrogate perturbed (cyan).
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FIG. 13. The distributions of the temperatures [◦C] of the coldest day in winter for grid-points near Utrecht

and Oslo. Based on 15*53 winters. Historical or perturbed climate: light shading. Histnat or unperturbed

climate: dark shading. Thin vertical gray lines are the observed winters. Green vertical line is the observed

winter 2009-2010. Orange vertical line is this winter corrected with mean bias. Risk ratios are provided at the

top of the panels. For the HadGEM3-A the second number includes bias correction.
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FIG. 14. Maps of the risk ratios of the temperature of the coldest day in the winter 2009-2010. Densities

calculated over all winter days. Left: HadGEM3-A. Right: Surrogate method. Top: based on the full period

1960-2013. Bottom: Based on 1985-2013. Large dots where the ratio is estimated to be significantly different

from 1 (5 % level).
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FIG. 15. The risk ratio (thick black curve) for the blob index, i.e., the largest continuous area with temper-

ature anomalies less than −2σ . Vertical green line: observed value for winter 2009-2001. Thin black curves:

bootstraps. Black dashed curves: 95 % confidence interval. Left: HadGEM3-A. Right: Surrogate method. Top:

based on the full period 1960-2013. Middle: Based on 1985-2013. Bottom: Based on 2007-2012.
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Fig. A1. First row: Probability densities of the largest value, xmax, of n independent and identically distributed

variables for n = 1 and n = 100. Cyan: the unperturbed case, puc
1 and puc

100. Red: under climate change, p
pc
1 and

p
pc
100. The perturbed and unperturbed cases related by p

pc
1 (x) = puc

1 (x− c), c = 0.3. These curves are shown in

logarithmic scale in Fig. S4 in the supplement. Second, third and fourth rows: The ratio of probabilities p
pc
n /puc

n ,

the risk ratios RR = (1−P
pc
n )/(1−Puc

n ), and the FARs
(1−P

pc
n )−(1−Puc

n )

(1−P
pc
n )

= 1− 1/RR as function of xmax. In left

panel puc
1 is Gaussian, in right panel it is t-distributed with 5 degrees of freedom. In each panel are shown results

for n=1 (blue), 10 (green), 100 (orange), 1000 (red), 10000 (black).
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Fig. A2. As for Fig. A1 but with the perturbed climate given by p
pc
1 (x) = puc

1 (x+ c), c = 0.3, indicating

fewer positive extremes in the perturbed climate.
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