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Abstract 
 
Urban drainage is being affected by Climate Change, whose effects are likely to alter the 
intensity of rainfall events and result in variations in peak discharges and runoff volumes 
which stationary-based designs might not be capable of dealing with. Therefore, there is 
a need to have an accurate and reliable means to model the response of urban catchments 
under extreme precipitation events produced by Climate Change. This research aimed at 
optimizing the stormwater modelling of urban catchments using Design of Experiments 
(DOE), in order to identify the parameters that most influenced their discharge and sim-
ulate their response to severe storms events projected for Representative Concentration 
Pathways (RCPs) using a statistics-based Climate Change methodology. The application 
of this approach to an urban catchment located in Espoo (southern Finland) demonstrated 
its capability to optimize the calibration of stormwater simulations and provide robust 
models for the prediction of extreme precipitation under Climate Change. 
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1. Introduction 
 
Urban growth during the second half of the 20th century exacerbated deficiencies in terms 
of rainwater drainage and led to increased flooding and diffuse pollution (Bayon et al., 
2015). Urban development upstream of a catchment alters its inflow hydrograph increas-
ing runoff volume and flow (Sloat and Hwang, 1989), whilst the time elapsed from the 
onset of rainfall until peak flow (i.e. the time of concentration) decreases. This results in 
water being conveyed and discharged more rapidly than happens naturally (Perales-
Momparler et al., 2015). Traditionally, drainage systems capture water to minimize runoff 
accumulation and then quickly transfer it to a sewer network formed of a series of con-
nected pipes and manholes. However, urbanization results in a series of hydrological al-
terations whose impact often exceeds the capacity of these systems. Nordic countries like 
Finland are particularly struggling to cope with these alterations, which include earlier 
spring snowmelt and increased runoff depths and peak flows (Valtanen et al., 2014; Sil-
lanpää and Koivusalo, 2015).  
 
Furthermore, the effect of urban development on drainage is expected to be aggravated 
by Climate Change (CC), due to its potential impact on rainfall. Although no global trends 
have been detected so far in this respect and the projected changes in different regions do 
not follow the same directions (IPCC, 2007; Zhang et al., 2007), precipitation has in-
creased at high latitudes due to changing climate (IPCC, 2007). Consequently, no global 
evidence has been found in relation to the impact of CC on flood frequency (Kundzewicz 
and Schellnhuber, 2004; Huntington, 2006), but positive trends in winter and spring dis-
charge have been reported in Nordic countries (Wilson et al., 2010), as well as increases 
in annual discharge at regional scales in south-western Norway and northern Sweden 
(Lindström and Bergström, 2004). Furthermore, Korhonen and Kuusisto (2010) identi-
fied earlier spring peak flows and clear increases in winter and spring discharge in Fin-
land.  
 
Due to their complex interactions with drainage patterns, both urbanization and CC have 
been addressed in the literature with the support of numerical models to simulate water 
and climate-related processes. Stormwater models emerged in the early 1970s to facilitate 
the simulation and analysis of hydrological processes in urban catchments (Whipple et 
al., 1982). These models can be classified into different groups according to input man-
agement (deterministic or stochastic), physical foundations (conceptual or empirical), 
simulation (event or continuous), spatial variability (distributed or lumped), infiltration 
(physical, empirical or hydrological) and routing (hydrological, hydraulic, empirical or 
statistical) (Zoppou, 2001). General Circulation Models (GCMs) have been developed by 
different research centers worldwide (IPCC, 2007) to simulate and project climate pro-
cesses. However, since the impact of such processes is expected to occur at more regional 
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scales (Giorgi et al., 2009), dynamical and statistical techniques have been developed to 
downscale GCMs, either producing Regional Climate Models (RCMs) with finer resolu-
tions (10-50 km) (IPCC, 2007) or finding relationships between local and large-scale cli-
mate variables (Fowler et al., 2007).  
 
Simulating hydrological processes associated with the transformation of rainfall into run-
off in urban catchments is a widely studied topic, which provides much evidence of the 
application of stormwater models for assessing the impact of different rainfall events 
(Knebl et al., 2005; Temprano et al., 2006; Barco et al., 2008; Dongquan et al., 2009; Qin 
et al., 2013; Guan et al., 2015). The general trend of these approaches revealed that the 
calibration of stormwater simulations can be enhanced and automated using statistical 
techniques to obtain rigorous and accurate hydrological models based on solid mathemat-
ical foundations, determined according to different goodness-of-fit measures, and con-
sistent physical relationships related to the morphology and geometry of urban catch-
ments. Furthermore, this previous research was developed under the stationarity assump-
tion, whereby the mean, variance and autocorrelation of precipitation do not vary over 
time. 
 
Instead, there are several studies which have focused on the projection of future values of 
precipitation under CC and the analysis of their impact on discharge at large catchment 
scales (Dibike and Coulibaly, 2005; Kleinn et al., 2005; Charles et al., 2007; Abdo et al., 
2009; Ouyang et al., 2015; Pumo et al., 2016). The overall tendency in these studies high-
lighted the lack of CC models aimed at projecting annual extreme precipitation values, 
which is the variable according to which urban drainage systems must be designed. Be-
sides, most of previous methodologies were based either on the use of RCMs or the ap-
plication of statistical downscaling from GCMs. Although RCMs have been proposed by 
several authors for developing studies at the catchment scale (Hassan et al., 2015; Kay et 
al., 2015; Wang et al., 2015), sometimes higher precision is needed, because high resolu-
tion grids (~12.5 km) are still 1,000 times larger than the common magnitude of urban 
catchments (few hectares). Therefore, the transition from CC models to local meteoro-
logical observations might be smoothed if both approaches are merged and statistical 
downscaling is applied to RCMs (“further downscaling”). 
 
The aim of this research was therefore to design a simulation-optimization methodology 
to model the hydrological behavior of urban catchments through the application of Design 
of Experiments (DOE), in order to assess the impact of non-stationary extreme rainfall 
events on their response using statistical techniques to relate CC and local variables. The 
achievement of this objective included relevant contributions to knowledge beyond the 
existing literature, since they involved a DOE-based stormwater calibration procedure to 
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maximize the fit between simulated and observed catchment discharge based on statisti-
cally significant parameters and a simple and reliable downscaling methodology to model 
annual extreme rainfall events under CC scenarios using descriptive statistics. The use-
fulness of the proposed approach was tested through a case study of a real catchment 
located in Espoo, southern Finland. The trends observed in this country in relation to both 
urbanization and CC justified the interest in studying the hydrological response of urban 
catchments under non-stationary conditions in this region. A monitoring campaign re-
cording the values of discharge at the outlet of this catchment enabled the calibration and 
validation of the stormwater simulations, whereas the reliability of the CC methodology 
was tested using three different weather stations located near the study area: Otaniemi, 
Nupuri and Nuuksio. 
 

2. Methodology 
 
The methodology behind this research consisted of a sequence of steps grouped into two 
modules as illustrated in Figure 1, each of them related to the aims being sought: Module 
I optimized the hydrological modelling of urban catchments in terms of runoff using 
DOE, whilst Module II developed a descriptive statistical methodology for the projection 
of extreme rainfall events under CC. Hence, Module I maximized the fit between ob-
served and simulated discharge based on identifying the most influential parameters in 
the response of urban catchments, in order to guarantee that their modelling under CC, 
which was carried out from the extreme storm events projected in Module II, was sup-
ported by solid statistical and physical relationships. The details related to each of the 
steps included in both modules are provided in the following subsections. 
 



 

 
Figure 1. Outline of the two-module proposed methodology 

 
2.1. Module I: Hydrological modelling of urban catchments 
 
The first module developed a three-step methodology to optimize the hydrological mod-
elling of urban catchments. The initial step was the delineation of the urban catchment 
based on three inputs: Digital Elevation Model (DEM), flow direction map and sewer 
network. The processing and combination of these inputs was performed using version 
10.1 of ArcGIS for Desktop (2013). Next was the characterization and simulation of hy-
drological processes (infiltration and routing) and visual objects (subcatchments, man-
holes and pipes) through SWMM 5.1.010 (2015). The module concluded with the incor-
poration of DOE methods into the calibration procedure of the simulations run in the 
previous step. The desirability function approach was used to optimize the values of those 
parameters which were found to influence the behavior of urban catchments based on the 
results provided by a combination of factorial design and response surface methods. 
Minitab 17 (2014) was the statistical package chosen to carry out the analyses derived 
from the application of DOE. 
 
2.1.1. Catchment delineation 
 



 

Catchment areas were delineated from a flow direction map and stream network defined 
according to the cells in which flow accumulated. Flow direction was calculated using 
the eight direction (D8) flow model proposed by Jenson and Domingue (1988) from a 
hydro-DEM, which was determined through the smoothing of imperfections contained in 
the DEM, often including some cells inconsistent with neighboring pixels (Tarboton et 
al., 1991). In turn, the DEM was created by combining a Digital Terrain Model (DTM) 
and a shapefile which located buildings (Jato-Espino et al., 2016). 
 
2.1.2. Runoff estimation 
 
Runoff generated after the occurrence of a rainfall event in an urban catchment depends 
on the hydrological processes and entities that characterize it: infiltration, visual objects 
(subcatchments, manholes and pipes) and routing. 
 
2.1.2.1. Infiltration 
 
The Soil Conservation Service (SCS) Curve Number Method (Mockus, 1964) relates run-
off (𝑅𝑅, mm) produced by a rainfall event (𝑃𝑃, mm) to the potential maximum retention of 
the surface after runoff begins (𝑆𝑆, mm) through the curve number (𝐶𝐶𝐶𝐶) (see Eqs. (1) and 
(2)), an empirical parameter that ranges from 0 to 100 and predicts runoff production from 
rainfall excess. These equations assume that the relationship between initial abstraction 
(𝐼𝐼𝑎𝑎, mm) and 𝑆𝑆 is 𝐼𝐼𝑎𝑎 = 𝜆𝜆 · 𝑆𝑆, so that 𝜆𝜆 = 0.2 (Cronshey et al., 1986). Although Woodward 
et al. (2003) pointed out that a value of 𝜆𝜆 = 0.05 might be more accurate for runoff cal-
culations, the Natural Resources Conservation Service (NRCS), formerly SCS, has made 
no decision on changing 𝜆𝜆 yet (NRCS, 2015). 
 

𝑅𝑅 =
(𝑃𝑃 − 0.2𝑆𝑆)2

𝑃𝑃 + 0.8 · 𝑆𝑆  (1) 

 

𝐶𝐶𝐶𝐶 =
25,400
254 + 𝑆𝑆 (2) 

 
This method was found to be the most suitable model to characterize runoff production 
in urban catchments, since it can be applied using ortophotos to delineate pervious and 
impervious areas and determine their 𝐶𝐶𝐶𝐶 with high accuracy. The main factors that influ-
ence 𝐶𝐶𝐶𝐶 are: hydrologic soil group (HSG), cover type, hydrologic condition, antecedent 
runoff condition and connectivity of impervious areas to drainage systems (Cronshey et 
al., 1986). The solution of Eqs. (1) and (2) considering these factors and different combi-
nations of 𝑆𝑆 and 𝑃𝑃 yields a series of values of 𝐶𝐶𝐶𝐶 that can be consulted in Cronshey et al. 
(1986).  
 



 

2.1.2.2. Visual objects 
 
Visual objects are those required by SWMM to represent a stormwater drainage system, 
which includes subcatchments, conduits (pipes) and nodes (manholes). Manholes were 
introduced in SWMM through their elevation and depth, whilst pipes were defined using 
their diameter, length and roughness. SWMM applies Manning’s equation to set the rela-
tionship between flow rate, cross-sectional area, hydraulic radius and slope through the 
pipelines. Common values for the Manning’s roughness coefficient for closed conduits 
are given in ASCE (1982).  
 
Subcatchments were defined according to nine parameters, some of which (Area, Width, 
Slope and % of Imperviousness) were determined using GIS-based editing and zonal sta-
tistics tools. The remaining parameters were related to the Manning’s roughness coeffi-
cient and depth of depression storage of impervious and pervious areas. Typical values 
for these parameters can be found in McCuen et al. (1996) and ASCE (1992), respectively 
 
2.1.2.3. Routing 
 
Flow routing through a conduit link is governed by the conservation of mass and momen-
tum equations for both gradually varied flow and unsteady flow (i.e., the Saint Venant 
equations) (Rossman, 2010). From less to more complex, three different models are avail-
able in SWMM to solve these equations: steady flow, kinematic wave and dynamic wave. 
Since the focus of this part of the study was simulating the response of urban catchments 
to extreme rainfall events likely to produce flooding, the routing model was selected to 
keep a balance between being conservative and precise, allowing both risk management 
and replicating observations accurately.  
 
Therefore, although the dynamic wave model is more correct from a theoretical point of 
view, the aim of the current research was to present a new stormwater simulation-optimi-
zation methodology for flood planning and not the exact replication of flow routing within 
the sewer system. For this reason, the kinematic wave model, which is a simplification of 
the dynamic wave model that ignores inertial terms in the momentum equation (Novak et 
al., 2010) and whose suitability for rainfall-runoff simulation at the same study catchment 
has been demonstrated in previous studies (Guan et al., 2015), was proposed to solve the 
conservation of mass and momentum equations. Besides, significant downstream flow 
restrictions or regulation were not expected to occur, so that the capacity of the dynamic 
wave model to account for back-flow effects would not make a difference.   
 
2.1.3. Design of Experiments (DOE) for calibration 
 



 

Design of Experiments (DOE) analyzes the effect of input variables (factors) on an output 
variable (response) through a series of tests where the values of the factors are modified 
to check which are more influential on the response (Montgomery, 2004). A combination 
of two DOE types was proposed to develop calibration of the hydrological simulations 
carried out in SWMM: factorial and response surface designs. Factorial design was used 
to determine which catchment parameters were influential on discharge values, whilst a 
central composite design was applied to build the equations that optimized the values of 
such parameters in relation to the fitted response.  
 
In addition to the linear and interaction terms contained in a factorial design equation, the 
relationship between the factors and the response in a surface design also includes quad-
ratic terms (see Eq. (3)): 
 

𝑌𝑌 = 𝛽𝛽0 + �𝛽𝛽𝑖𝑖 · 𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ �𝛽𝛽𝑖𝑖𝑖𝑖 · 𝑋𝑋𝑖𝑖 · 𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ ��𝛽𝛽𝑖𝑖𝑖𝑖 · 𝑋𝑋𝑖𝑖 · 𝑋𝑋𝑖𝑖 + 𝜀𝜀
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

 (3) 

 
where 𝑌𝑌 is the response expressed as a non-linear combination of a set of 𝑛𝑛 factors 𝑋𝑋𝑛𝑛 
multiplied by a series of coefficients 𝛽𝛽𝑛𝑛 that indicate the relative weight of each term in 
the equation. 𝜀𝜀 represents random components (the residuals) that explain everything that 
cannot be interpreted from the factors. 
 
The goodness-of-fit of these equations is traditionally calculated through a single measure 
such as the R-squared (𝑅𝑅2) coefficient (Hirsch et al., 1993). However, Jain and Sudheer 
(2008) suggested that the use of a single measure for hydrological modelling can be mis-
leading. Therefore, two additional measures were considered for testing the efficiency of 
the response surface equations: the Nash-Sutcliffe model efficiency coefficient (𝐸𝐸) (Nash 
and Sutcliffe, 1970) and the Root-Sum Squared Error (𝑅𝑅𝑆𝑆𝑆𝑆𝐸𝐸). 𝑅𝑅2 is the proportion of the 
response variation explained by the factors in the model. 𝑅𝑅2 = 1 and 𝐸𝐸 = 1 refer to a 
perfect match of the modelled discharge to the observed data, whilst 𝑅𝑅𝑆𝑆𝑆𝑆𝐸𝐸 represents the 
deviation between observed and simulated discharges. 
 
These measures allowed the evaluation of how well the simulations fitted the observed 
data for different configurations of factors. Therefore, response optimization was given 
by combining factors that jointly minimized 𝑅𝑅𝑆𝑆𝑆𝑆𝐸𝐸 and maximized 𝑅𝑅2 and 𝐸𝐸, with the 
limitation that the factors must remain within their lower and upper bounds. The desira-
bility function approach was used to assess how well the combinations of factors fitted 
the response. Desirability ranges from 0 to 1, with 0 representing a completely undesira-
ble value and 1 indicating an ideal response value. Derringer and Suich (1980) formulated 
two individual desirability functions (𝑑𝑑𝑖𝑖) depending on whether the fitted response value 
𝑌𝑌�𝑖𝑖 must be maximised (Eq. (4)) or minimized (Eq. (5)): 
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 (4) 
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0, 𝑖𝑖𝑖𝑖 𝑌𝑌�𝑖𝑖 > 𝑈𝑈𝑖𝑖

 (5) 

 
where 𝐿𝐿𝑖𝑖 and 𝑈𝑈𝑖𝑖 are the lower and upper response values and 𝑇𝑇𝑖𝑖 is a large enough value 
and a small enough value for the response when the model must be maximized and min-
imized, respectively. 𝑤𝑤 determines how the desirability is distributed along the interval 
between 𝐿𝐿𝑖𝑖 (or 𝑈𝑈𝑖𝑖) and 𝑇𝑇𝑖𝑖. The composed desirability (𝐶𝐶𝐷𝐷) of 𝑛𝑛 individual desirability 
values 𝑑𝑑𝑖𝑖 was calculated using the geometric mean (see Eq. (6)):  
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Therefore, the inclusion of DOE in the calibration of stormwater simulations maximized 
𝐶𝐶𝐷𝐷, in order to determine the configuration of catchment parameters that best fitted the 
monitored discharge values. The simulation-optimization of the modelling of urban 
catchments carried out in Module I ensured that the simulations of their response to the 
non-stationary storms projected in Module II were based on consistent mathematical re-
lationships. 
 
2.2. Module II: Climate Change methodology 
 
This module built a methodology for projecting variations in extreme precipitation due to 
CC, in order to simulate them in SWMM according to the influential calibrated parame-
ters identified in Module I. GCMs were considered unsuitable for CC modelling due to 
the huge difference in spatial resolution between their data and local observations, which 
facilitates the occurrence of bias in the results derived from their application. In contrast, 
the RCMs framed within the EURO-CORDEX initiative provide simulations with about 
15 times higher resolution than GCMs. Considering that the proposed methodology was 
tested in Espoo (Finland), HIRHAM5 was the RCM used to project CC for being devel-
oped by the Danish Meteorological Institute, which might have a better understanding of 
the climate patterns in Nordic countries.  



 

 
A statistics-based methodology was conceived to downscale the HIRHAM5 model to the 
extent of local precipitation measures, in order to model the variations in maximum rain-
fall due to two different Representative Concentration Pathways (RCPs) representing ra-
diative forcing levels of 4.5 and 8.5 W/m2: RCP4.5 and RCP8.5 (Moss et al., 2008). These 
scenarios were modelled in relation to a stationary scenario characterized according to 
historical rainfall datasets, in which precipitation was assumed to remain constant over 
time.  
 
Since urban drainage systems are commonly designed to deal with the greatest 24-hour 
rainfall amount for certain return periods, the CC methodology was developed using an-
nual data. Therefore, the first step was the characterization of the variables contained in 
the HIRHAM5 model through parametric or non-parametric measures of dispersion, in 
order to use them as predictors to estimate the values of Annual Maximum Daily Precip-
itation (AMDP) for each scenario (historical or stationary, RCP4.5 and RCP8.5). The 
predictands to estimate through multiple linear regression were the values of AMDP rec-
orded in several stations located near the study area. Regression models were built from 
the stationary scenario using real observations of AMDP to validate them according to 
different goodness-of-fit tests, so that they were applied to the variables included in the 
HIRHAM5 model for the RCPs to determine the values of AMDP under CC. Again, all 
statistical procedures carried out in this section were performed using Minitab 17 (2014). 
The last operation in Module II was the design of the synthetic hydrographs correspond-
ing to the stationary and RCP scenarios based on the combination of Intensity-Duration-
Frequency (IDF) and the Alternating Block Method. 
 
2.2.1. Measures of dispersion 
 
Since the predictand was a yearly measured value such as AMDP, the variables included 
in the HIRHAM5 model to perform as predictors were represented using annual data too. 
Hence, two standardized measures of dispersion (𝑀𝑀𝐷𝐷) were proposed to characterize 
them depending on whether their annual datasets were normally distributed or not: coef-
ficient of variation (𝐶𝐶𝐶𝐶) and interquartile ratio (𝐼𝐼𝑅𝑅) (see Eq. (7)): 
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 (7) 

 
where �̅�𝑥 is the mean, 𝑥𝑥� is the median, 𝜎𝜎 is the standard deviation and 𝐼𝐼𝐼𝐼𝑅𝑅 is the interquar-
tile range of the dataset. These measures of dispersion are useful to capture the overall 
distribution of a variable throughout a year, since they include information on both its 



 

spread and central values. This representativeness enabled their use as predictors to set 
correlations with other summary statistics such as the maximum annual value of a sample 
(AMDP). 
 
The choice between 𝐶𝐶𝐶𝐶 and 𝐼𝐼𝑅𝑅 was approached using normality tests. The Shapiro-Wilk 
test, which has been found to be more reliable when checking normality than Kolmogo-
rov-Smirnov or Lilliefors tests (Shapiro et al., 1968), was selected for checking normality. 
A value of 𝛼𝛼 equal to 0.05 was chosen for statistical testing, indicating whether 𝐶𝐶𝐶𝐶 (𝛼𝛼 >
0.05) or 𝐼𝐼𝑅𝑅 (𝛼𝛼 < 0.05) had to be chosen for characterizing the predictors required to esti-
mate AMDP. 
 
2.2.2. Multiple linear regression 
 
The concept of regression was already introduced in a polynomial form in Eq. (3). Mul-
tiple linear regression is simpler, since it models the relationship between two or more 
explanatory predictors and a response through a linear equation (see Eq. (8)). In the con-
text of Module II, multiple linear regression was used to create equations for the estima-
tion of AMDP from a series of CC variables included in the HIRHAM5 model. 
 
𝑌𝑌 =  𝛽𝛽0 + 𝛽𝛽1 ∙ 𝑋𝑋1 + 𝛽𝛽2 ∙ 𝑋𝑋2 + ⋯+ 𝛽𝛽𝑘𝑘 ∙ 𝑋𝑋𝑘𝑘 + 𝜀𝜀  (8) 

 
where 𝑌𝑌 is the predictand expressed as a linear combination of 𝑘𝑘 predictors 𝑋𝑋𝑘𝑘 which are 
multiplied by weights 𝛽𝛽𝑘𝑘 that indicate their importance in the model. The equation also 
includes a constant 𝛽𝛽0 and the residuals 𝜀𝜀, which complete the information provided by 
the independent variables. 
 
The standard 𝑅𝑅2 has several limitations that compromise its validity to measure the good-
ness-of-fit of regression models for making new estimates. Although the adjusted 𝑅𝑅2, 
which emerged as a modified version of the standard 𝑅𝑅2, improves its reliability by cap-
turing the influence of the number of predictors on the fitting of the model, its ability to 
provide accurate predictions of new data is still limited. Hence, the predicted 𝑅𝑅2 and the 
standard error of the regression (𝑆𝑆), whose combination overcomes this drawback and can 
make reliable predictions for new observations, were used for assessing the goodness-of-
fit of regression models. 
 
Cook’s distance (𝑑𝑑𝑖𝑖) was used to show the influence of each observation 𝑖𝑖 on the pre-
dictand and identify outliers in the regression models. According to Eq. (9), an observa-
tion with a value of 𝑑𝑑𝑖𝑖 larger than three times the mean Cook’s distance of the whole 
dataset is considered an outlier (Stevens, 2009): 
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where 𝑀𝑀𝑆𝑆𝐸𝐸 is the mean squared error of the regression model, 𝑛𝑛𝑖𝑖 is the 𝑗𝑗th fitted pre-
dictand value and 𝑛𝑛�𝑖𝑖 is the 𝑗𝑗th fitted predictand value where the fit omits observation 𝑖𝑖. 
 
Multiple linear regression is based on four assumptions that must be verified to ensure its 
validity. These assumptions are related to the analysis of the residuals of the regression 
models and can be divided into four (Tabachnick and Fidell, 1989): linearity, independ-
ence, homoscedasticity and normality. Violation to these assumptions was diagnosed 
through the p-value of the Analysis of Variance (ANOVA) (Fisher, 1925), the Durbin 
Watson statistic (Durbin and Watson, 1950; Durbin and Watson, 1951) and the Levene’s 
(Levene, 1960) and Shapiro-Wilk tests, respectively.  
 
2.2.3. Design hyetographs 
 
Design hyetographs, which are representations of the distribution of rainfall over time, 
were determined to simulate the hydrological response of urban catchments after the oc-
currence of extreme storms caused by CC. They were created using the Alternating Block 
Method from IDF curves calculated for different values of fitted annual precipitation. 
 
2.2.3.1. Fitting of probability distributions to rainfall data 
 
Rainfall data consisted of a set of daily precipitation measures arranged according to un-
known distribution patterns which were processed to obtain the values of AMDP associ-
ated with the return periods used to design the hyetographs with which to test the response 
of urban catchments under the stationary and RCP scenarios. The Anderson-Darling test 
(Anderson and Darling, 1954), which has been proved to be more powerful than the Kol-
mogorov-Smirnov test for this purpose (Shapiro et al., 1968), was used to find the prob-
ability distribution that best fitted patterns of precipitation. This test considers the specific 
distributions being tested in the calculation of its critical values, which increases the sen-
sitivity of results (Stephens, 1974).  
 
2.2.3.2. Intensity-Duration-Frequency (IDF) curves 
 
IDF curves were built using representative points of the average intensity of precipitation 
for different durations corresponding to the same frequency of return period (Témez, 
1978). The modelling of IDF curves began by relating the values of AMDP obtained in 
the previous step for different return periods according to the Anderson-Darling statistic 
to a series of rainfall durations (𝐷𝐷) less than or equal to 24 hours through the coefficients 
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of relationship (𝑅𝑅) proposed by Campos Aranda (1998) in Table 1, which enabled deter-
mining values of maximum precipitation (𝑃𝑃) per duration. These values are conservative 
and therefore result in storms that lead to be in the safe side in terms of design, which is 
consistent with the strategy followed for the routing model. 
 

Table 1. Coefficients of relationship to determine precipitation for different rainfall durations 

𝑫𝑫 (h) 1 2 3 4 5 6 8 12 18 24 
𝑹𝑹 0.30 0.39 0.46 0.52 0.57 0.61 0.68 0.80 0.91 1.00 

 
The intensity 𝐼𝐼 was calculated as the ratio between each pair of values of 𝑃𝑃 and 𝐷𝐷. The 
approach proposed by Aparicio (1997) (see Eq. (10)) was chosen for the analytical rep-
resentation of the IDF curves, because of its relationship to the statistical methods already 
used in the methodology. 
 

𝐼𝐼 =  
𝐾𝐾 · 𝑇𝑇𝑚𝑚

𝐷𝐷𝑛𝑛   (10) 

 
where 𝐼𝐼, 𝑇𝑇 and 𝐷𝐷 are expressed in mm/h, years and hours, respectively, and 𝐾𝐾, 𝑛𝑛 and 𝑛𝑛 
are parameters to estimate through multiple linear regression analysis (see Eq. (11)). 
Thus, the terms shown in Eq. (8) are replaced according to Eq. (10) as follows: 
 

log 𝐼𝐼 = log𝐾𝐾 + 𝑛𝑛 · log𝑇𝑇 − 𝑛𝑛 · log𝐷𝐷 + 𝜀𝜀  (11) 
 
such that log 𝐼𝐼 = 𝑌𝑌, log𝑇𝑇 = 𝑋𝑋1, log𝐷𝐷 = 𝑋𝑋2, log𝐾𝐾 = 𝛽𝛽0, 𝑛𝑛 = 𝛽𝛽1 and n = 𝛽𝛽2 in relation to 
Eq. (8). Hence, the values of the parameters that characterize the IDF curves were deter-
mined from the regression coefficients.  
 
2.2.3.3. Alternating Block Method 
 
The Alternating Block Method (Chow et al., 1988) was used for designing synthetic 
storms from IDF curves according to 𝑛𝑛 time intervals ∆𝑡𝑡, such that the total duration 𝐷𝐷 of 
the storm event is equal to 𝑛𝑛 · ∆𝑡𝑡. 𝐷𝐷 was assumed to be the lag time of the longest flow 
path in the catchment. 
 
For a given return period, the procedure consisted of the determination of the intensity 
for the durations ∆𝑡𝑡, 2∆𝑡𝑡, … ,𝑛𝑛∆𝑡𝑡 using Eq. (10) to obtain total precipitation by multiplying 
intensities by durations (Gómez Valentín, 2007). Once the process was applied to every 
interval into which the storm duration was divided, the values of precipitation were ar-
ranged in descending order alternately to the right and left of the central block to form the 
design hyetograph. 
 



 

3. Results and discussion: a case study in Espoo, Finland 
 
The results were obtained by applying the methodology to a real catchment located in 
Espoo, southern Finland. Figure 2a) shows the location of the study catchment and the 
geometrical arrangement of its sewer network. The study catchment rapidly evolved from 
a coniferous forest in 2001 to a residential area in 2006, when the construction of the 
sewer network and buildings finished (Sillanpää, 2013; Guan et al., 2015; Sillanpää and 
Koivusalo, 2015). The geometrical arrangement of the sewer network and the permission 
to use it were provided by the Helsinki Region Environmental Services Authority HSY. 
 
Figure 2a) also includes the ortophoto of the catchment area when a degree of fully 
development in late 2006 was reached, obtained via WMS (Web Map Service) through 
the Map Service of Espoo (espoo.fi, 2016). A Digital Terrain Model (DTM) was acquired 
from the National Land Survey of Finland in ASCII format with a cell size of 2 m (NLS, 
2016). Information from the Geological Survey of Finland revealed that the study catch-
ment was covered by a layer of sandy till with bedrock below it (Guan et al., 2015), which 
corresponds to a HSG of A or at least B (Cronshey et al., 1986). 
 

 
Figure 2. a) Location of the study catchment and its drainage network b) Spatial arrangement of the da-

tasets required to develop the Climate Change model  
 
The remaining datasets required to apply the methods included in Module I were the val-
ues of precipitation and flow in the outlet of the catchment, which were monitored during 



 

2006 (Sillanpää, 2013). Precipitation was recorded every 2 minutes using a weather sta-
tion with an ARG100 tipping bucket rain gauge, which enabled reaching a volume reso-
lution of 0.2 mm. Water depth was monitored at a v-notch weir located at the catchment 
outlet with the same temporal resolution than precipitation, so that flow rates were calcu-
lated using a stage-discharge curve for the weir based on the amount of water measured. 
Table 2 summarizes the main characteristics of the set of rainfall-runoff events chosen 
for calibration and validation, which were selected to have a representative sample of 
durations and intensities. 
 

Table 2. Summary of the rainfall events used for simulation 

Event Duration (h) Depth (mm) 
CAL 1 5:52 5.0 
CAL 2 11:26 37.4 
CAL 3 6:58 12.2 
VAL 1 6:36 5.2 
VAL 2 4:48 9.0 
VAL 3 6:48 23.4 

 
Regarding Module II, Figure 2b) provides a scheme of the spatial arrangement of the grid 
with the 56 CC variables included in the HIRHAM5 model, as well as the location of the 
three weather stations with historical rainfall data and the study catchment. The polygons 
in Figure 2b), which stand for the influential areas associated with each point in the HIR-
HAM5 grid, were drawn to relate each weather station to its nearest CC point. Hence, the 
regression models built for each station were calculated from the CC datasets correspond-
ing to their closest points in the grid. These datasets covered periods of 55 (1951-2005) 
and 95 (2006-2100) years for the stationary and RCP scenarios, respectively. In accord-
ance with the upper limit of the stationary scenario (2005), the historical rainfall daily 
datasets available for the weather stations in Otaniemi, Nupuri and Nuuksio consisted of 
55, 45 and 40 years (Klein Tank et al., 2002). 
 
3.1. Module I: Hydrological modelling of urban catchments 
 
The datasets with georeferenced information on the DTM, buildings and sewer network 
were used to delineate the study catchment. Figure 3a) represents the DEM produced after 
merging the original DTM and the vector layer of buildings in the area, as well as the 
subcatchments obtained through the combination of the sewer network with the flow di-
rection map. The whole catchment covered a total area of 10.535 ha, including 79 sub-
catchments with an average area of 0.133 ha. Both percentage of imperviousness and 𝐶𝐶𝐶𝐶 
were calculated from the ortophoto of the study area, which was used to delineate pervi-
ous and impervious areas within the catchment and, by extension, identify the cover types 
and hydrologic condition that defined their 𝐶𝐶𝐶𝐶 (see Figure 3b)). The application of zonal 



 

statistics based on the relationship between these values and the area of the subcatchments 
yielded the inputs required for parameterizing these visual objects in SWMM. 
 

 
Figure 3. a) Digital Elevation Model (m) and catchment delination b) 𝑪𝑪𝑪𝑪 values in the catchment area 

 
The number of stormwater simulation runs was determined using DOE. The set of 9 pa-
rameters or factors introduced in SWMM were: percentage of imperviousness (𝑑𝑑, %), 
width (𝑑𝑑, m), slope (𝑐𝑐, %), Manning’s roughness for impervious area (𝑑𝑑), depth of de-
pression storage on impervious area (𝑒𝑒, mm), Manning’s roughness for conduits (𝑖𝑖), Man-
ning’s roughness for pervious area (𝑔𝑔), depth of depression storage on pervious area (ℎ, 
mm) and curve number (𝑖𝑖). Since the number of factors was high, a factorial design was 
used as an exploratory analysis to identify which parameters had a statistically significant 
influence in the results of the simulations. 
 
The experiment consisted of a 1/4 fractional design at 2 levels, reaching the highest pos-
sible resolution for this combination of levels and factors. The design was developed for 
the first calibration event (CAL 1) exclusively (see Table 2), because its aim was not the 
calibration of the simulations itself but only the determination of significant predictors. 
Although the intensity of the effect of the predictors on the predictand might vary de-
pending on the characteristics of the event, the presence of interactions was assumed to 
be constant. All factors were introduced as continuous variables, except 𝑖𝑖, which was 
incorporated into the design as a dichotomous variable, such that 0 and 1 related to HSGs 
equal to A and B, respectively. Factors from 𝑑𝑑 to ℎ were defined according to their lower 
and upper bounds according to values found in specialized literature (McCuen et al., 



 

1996); ASCE, 1992), whereas factors 𝑑𝑑, 𝑑𝑑 and 𝑐𝑐 represented the error in GIS-based pa-
rameters, so that deviations up to 20% in both directions set their limits.  
 
The combination of these factors resulted in 130 runs which demonstrated that variations 
in three of them (𝑔𝑔, ℎ and 𝑖𝑖) did not have a statistically significant impact on the simula-
tions, which was consistent with the results obtained by Krebs et al. (2013) in Finnish 
urban catchments. Influential factors were identified according to the p-value of the terms 
in the regression models obtained for the three goodness-of-fit measures considered: 𝑅𝑅2, 
𝐸𝐸 and 𝑅𝑅𝑆𝑆𝑆𝑆𝐸𝐸. Since the p-values of factors 𝑔𝑔, ℎ or 𝑖𝑖 were above 0.05, they were discarded 
for further calculations. The most influential predictors were found to be those related to 
the imperviousness of the catchment area (𝑑𝑑 and 𝑒𝑒), contributing more than 70% to esti-
mate 𝑅𝑅2, 𝐸𝐸 and 𝑅𝑅𝑆𝑆𝑆𝑆𝐸𝐸. Moreover, the excellent values of predictive 𝑅𝑅2 (0.997, 0.999 and 
0.980) reached for the three goodness-of-fit measures supported the assumption that the 
significance of the interactions between the predictors and the responses could be extrap-
olated to other rainfall events.   
 
The information inferred from the factorial design enabled characterizing the central com-
posite design for calibrating the simulations. This experiment consisted of a 6-factor 1/2 
central composite design, which resulted in 45 runs that were simulated for three calibra-
tion events: CAL 1, CAL 2 and CAL 3 (see Table 2). Figure 4 represents the results 
obtained for these events through boxplots according to the values of 𝑅𝑅2, 𝐸𝐸 and 𝑅𝑅𝑆𝑆𝑆𝑆𝐸𝐸 
reached, proving the importance of using more than one goodness-of-fit measure for hy-
drological modelling. 𝑅𝑅2, which is the most widely used coefficient for this purpose, was 
found to yield especially misleading values for CAL 2 and CAL 3. In contrast, 𝐸𝐸 demon-
strated to be very sensitive to the variations in the parameters involved by the different 
runs designed.  
 

 
Figure 4. Boxplots with the 45 values of a) 𝑅𝑅𝑆𝑆𝑆𝑆𝐸𝐸 b) 𝑅𝑅2 c) 𝐸𝐸 obtained for the three calibration events  

 
The values depicted in Figure 4 were used to build multiple linear regression models for 
the events CAL 1, CAL 2 and CAL 3 as shown in Table 3, confirming that 𝑑𝑑 and 𝑒𝑒 were 
the main contributing factors to the calibration of the simulations run in SWMM. CAL 1 



 

was the event that resulted in the lowest 𝑆𝑆 values (7.792, 0.014 and 0.034), which vali-
dated its selection as a representative and demanding event for the factorial design. In 
general, all coefficients of determination were close to 1, which guaranteed that the 6 
factors selected from the factorial design enabled an accurate modelling of the hydrolog-
ical response of the study catchment. The only exception to this trend was found in the 
values reached for 𝑅𝑅2 in the event CAL 3, which barely reached coefficients of determi-
nation of 0.5, due to its little sensitivity to the variations in the factors (see Figure 4b)). 
This circumstance highlighted the importance of considering the standard error of the 
regression as an alternative measure of the quality of regression models, because 𝑆𝑆 pre-
cisely reached its best value (0.003) for 𝑅𝑅2 in this calibration event. 
 

Table 3. Multiple linear regression models obtained with the 6-factor 1/2 central composite design 

Event Goodness-of fit measure 𝑺𝑺 𝑹𝑹𝟐𝟐 Adj. 𝑹𝑹𝟐𝟐 Pred. 𝑹𝑹𝟐𝟐 
CAL 1 𝑅𝑅𝑆𝑆𝑆𝑆𝐸𝐸 7.792 0.878 0.859 0.766 
 𝑅𝑅2 0.014 0.965 0.960 0.915 
 𝐸𝐸 0.034 0.909 0.895 0.830 
CAL 2 𝑅𝑅𝑆𝑆𝑆𝑆𝐸𝐸 3.818 0.997 0.996 0.993 
 𝑅𝑅2 0.004 0.932 0.925 0.771 
 𝐸𝐸 0.005 0.998 0.998 0.997 
CAL 3 𝑅𝑅𝑆𝑆𝑆𝑆𝐸𝐸 1.636 0.999 0.998 0.997 
 𝑅𝑅2 0.003 0.554 0.509 0.409 
 𝐸𝐸 0.005 0.999 0.999 0.997 

 
The information compiled in Table 3 was used to determine the desirability functions for 
maximizing 𝑅𝑅2 and 𝐸𝐸 and minimizing 𝑅𝑅𝑆𝑆𝑆𝑆𝐸𝐸 through the application of Eqs. (4) and (5). 
Table 4 shows the calibrated values for the six significant parameters, as well as the initial 
values with which the optimization process was started, which coincided with the mean 
of the ranges considered. Similar previous studies (Guan et al., 2015) did not considered 
percentage of imperviousness (𝑑𝑑) for calibration; however, the use of DOE proved that 
this parameter had a major impact on the simulations. Moreover, its calibrated value (see 
Table 4) was consistent with the results achieved by Sillanpää (2013), who concluded that 
the effective impervious fraction for the study catchment was about 74% of its total im-
pervious area. 
 
Despite the individual variations in the factors included in Table 4, the combined effect 
of the calibration enabled their balance. Hence, both percentage of imperviousness (𝑑𝑑) 
and depth of depression storage on impervious area (𝑒𝑒) were reduced in relation to their 
initial values, so that the increase in pervious area (𝑑𝑑) was compensated by the decrease 
of volume to be filled prior the occurrence of runoff (𝑒𝑒). Similarly, a decrease in width 
(𝑑𝑑) resulted in longer flow paths, whereas steeper slope (𝑐𝑐) produced an increase in the 



 

velocity at which water was conveyed. The Manning’s roughness coefficient for imper-
vious area (𝑑𝑑) did not vary in relation to its initial value,      
 

Table 4. Calibration of the six parameters that had significant interactions with the response variable 

Term Factor Min Max Initial value Calibrated value 
𝑑𝑑 Percentage of imperviousness 0.800 1.200 1.000 0.800 
𝑑𝑑 Width 0.800 1.200 1.000 0.804 
𝑐𝑐 Slope 0.800 1.200 1.000 1.151 
𝑑𝑑 Manning’s roughness for impervious area 0.011 0.016 0.014 0.014 
𝑒𝑒 Depth of depression storage on impervious areas 0.000 2.500 1.250 0.379 
𝑖𝑖 Manning’s roughness for conduits 0.011 0.015 0.013 0.015 

 
The integration of the individual desirability values obtained from the three calibration 
events using the parameters shown in Table 4 through Eq. (6) yielded the results shown 
in Table 5. The value of 𝐶𝐶𝐷𝐷, which was almost 1, indicated that the use of these calibrated 
values provided a very accurate modelling of the real hydrological response of the study 
catchment. The interpretation of these values in terms of the results obtained for the runs 
in the central composite design (see Figure 4) suggested a slight overfit in some of the 
goodness-of-fit measures, due to the errors in the regression models. 
 

Table 5. Composed desirability and values of 𝑅𝑅2, 𝐸𝐸 and 𝑅𝑅𝑆𝑆𝑆𝑆𝐸𝐸 achieved using DOE 

𝑪𝑪.𝑫𝑫. 
CAL 1 CAL 2 CAL 3 
𝑹𝑹𝑺𝑺𝑺𝑺𝑹𝑹 𝑹𝑹𝟐𝟐 𝑹𝑹 𝑹𝑹𝑺𝑺𝑺𝑺𝑹𝑹 𝑹𝑹𝟐𝟐 𝑹𝑹 𝑹𝑹𝑺𝑺𝑺𝑺𝑹𝑹 𝑹𝑹𝟐𝟐 𝑹𝑹 

0.996 62.115 0.919 0.911 118.830 0.959 0.946 90.172 0.957 0.938 
 
The validation events VAL 1, VAL 2 and VAL 3 (see Table 2) were simulated using the 
calibrated parameters compiled in Table 4, in order to ensure their reliability. Figure 5 
depicts the hydrographs corresponding to the application of these values to both the cali-
bration and validation events. The mere visual inspection of these plots demonstrated the 
accuracy of the proposed DOE-based methodology for calibrating urban catchments. 
Moreover, the comparison between the values of 𝑅𝑅2, 𝐸𝐸 and 𝑅𝑅𝑆𝑆𝑆𝑆𝐸𝐸 obtained for the cali-
bration events (see Table 6) and those represented by the boxplots in Figure 4 proved the 
optimality of the results. The differences between the values shown in Table 5 and Table 
6 confirmed the overfit in the results obtained using the desirability function approach, 
which resulted in more conservative hydrographs (slight overestimation of the volume of 
water accumulated). Furthermore, the validation events reached even higher values in the 
goodness-of-fit measures than the calibration events, which demonstrated the validity of 
the results for modelling new events. 
 



 

 
Figure 5. Fitting between observed and predicted hydrographs for the calibration and validation events a) 

CAL 1 b) CAL 2 c) CAL 3 d) VAL 1 e) VAL 2 f) VAL 3 
 

Table 6. Values of 𝑅𝑅𝑆𝑆𝑆𝑆𝐸𝐸, 𝑅𝑅2 and 𝐸𝐸 obtained for the calibration and validation events using DOE 

Event 𝑹𝑹𝑺𝑺𝑺𝑺𝑹𝑹 𝑹𝑹𝟐𝟐 𝑹𝑹 
CAL 1 81.937 0.905 0.845 
CAL 2 212.805 0.928 0.855 
CAL 3 92.666 0.959 0.927 
VAL 1 42.465 0.973 0.973 
VAL 2 68.256 0.952 0.921 
VAL 3 115.639 0.974 0.960 

 
3.2. Module II: Climate Change methodology 
 
Normality of the CC variables contained in the HIRHAM5 model was checked for each 
year in the closest grid points to the weather stations (see Figure 2b)) using the Shapiro-



 

Wilk test, in order to determine whether 𝐶𝐶𝐶𝐶 or 𝐼𝐼𝑅𝑅 was the most suitable measure of dis-
persion to characterize them using Eq. (7). The results proved that only 13% of the vari-
ables followed normal distributions for the years and meteorological stations considered. 
Error checking in the daily rainfall datasets of Otaniemi, Nupuri and Nuuksio demon-
strated that these stations contained 55, 42 and 39 valid years for modelling, respectively. 
Values of AMDP were calculated for these valid years to determine the predictands with 
which to build the regression models. Table 7 summarizes the main characteristics of the 
models built for the three stations. Again, these regression models were built stepwise to 
select those predictors that were statistically significant at the 95% confidence level (p-
value < 0.05). The calculation of the Cook’s distance (see Eq. (9)) highlighted some out-
liers in all three cases, which were discarded to avoid bias and unrepresentativeness. How-
ever, the regression models shown in Table 7 were still valid for 47, 36 and 33 points, 
which means more than 85% of the initial sample for the three stations. 
 
The results included 19, 17 and 18 of the 56 variables available in the HIRHAM5 model 
for estimating AMDP in Otaniemi, Nupuri and Nuuksio, respectively, so that the rela-
tionships between predictors and predictand were supported by physical foundations. Pre-
cipitation stands for any product of atmospheric water vapor (prw) (Glickman, 2000) that 
falls due to gravity from clouds (clt) and consists of water and ice crystals (clivi, clwvi) 
(Matveev and Matveev, 2009). The formation of clouds from which precipitation falls is 
preceded by the processes of evaporation (evspsbl) and transpiration, which contribute to 
increase the amount of water in the air and the cooling of air to the dew point due to its 
rise (zg200) (Menzhulin, 2009). The incident solar radiation on Earth (rlus, rlut, rsds, rsdt, 
rsut) heats its surface (hfls, sund, tasmax) and air, which enables the rise (ta200, ta500, 
ta850), expansion and cooling of this warm air (Chapin et al., 2011). Wind (sfcWind, 
sfcWindmax, uas, vas) in low pressure areas (ps) is another phenomenon that forces air 
to rise (ua850, va500, va850) and create turbulences in the air (Ahrens and Samson, 
2011a). Mountains and similar landforms that make topography slopes upwards can also 
induce wind stress (tauu, tauv) (Schwab and Beletsky, 2003). Warm and cold weather 
fronts, which usually delimit the threshold from which air differs in temperature and hu-
midity (huss), have an impact on the formation of clouds too, because they lead to situa-
tions in which warm air rises above cold air and cold air moves warm air up (hus850), 
respectively (Ahrens and Samson, 2011b). Finally, the links between the predictand and 
the infiltration (mrro, mrso) and precipitation-related CC variables (pr, prc, prhmax) are 
given by causal relationships, since surface moisture depends on the amount of rainfall 
and different types of precipitation are all related to each other.  



 

Table 7. Multiple linear regression models to predict AMDP in the three weather stations 

Term 
Otaniemi  Nupuri  Nuuksio  
Coef p-value Coef p-value Coef p-value 

Regression - 0.000 - 0.000 - 0.000 
Constant -45.50 0.007 -1866.00 0.000 -76.50 0.000 
Column Ice Water Content (clivi) 10.44 0.000 -14.14 0.000 - - 
Total Cloud Cover clt -17.49 0.000 - - 30.20 0.000 
Column Condensed Water Content (clwvi) -10.42 0.000 - - -17.34 0.000 
Surface Evaporation (evspsbl) - - - - -341.70 0.000 
Surface Latent Heat Flux (hfls) - - - - 385.30 0.000 
Specific Humidity at 850 hPa (hus850) 49.92 0.000 - - - - 
Near-Surface* Specific Humidity (huss) -61.50 0.000 -61.04 0.000 66.51 0.000 
Total Runoff (mrro) 1.92 0.000 0.76 0.000 -1.78 0.000 
Total Soil Moisture Content (mrso) - - -119.10 0.000 -59.46 0.000 
Precipitation (pr)   3.96 0.000 - - 
Convective Precipitation (prc) -1.28 0.000 -5.02 0.000 - - 
Daily-Max. 1-hour Precipitation Rate (prhmax) - - 2.89 0.001 - - 
Column Water Vapor (prw) - - - - -24.06 0.000 
Surface Pressure (ps) - - -971.00 0.005 - - 
Upwelling Longwave radiation (rlus) 177.20 0.000 - - - - 
TOA Outgoing Longwave Radiation (rlut) 179.00 0.000 - - 215.90 0.000 
Surface Downwelling Shortwave Radiation (rsds) - - - - 16.62 0.000 
TOA Incident Shortwave Radiation (rsdt) - - 1217.00 0.000 - - 
TOA Outgoing Shortwave Radiation (rsut) 13.55 0.049 - - -10.05 0.010 
Near-Surface* Wind Speed (sfcWind) -110.73 0.000 - - 17.46 0.010 
Daily-Max. Near-Surface* Wind Speed (sfcWindmax) - - - - -843.00 0.000 
Sunshine Hours (sund) 11.32 0.000 29.37 0.000 - - 
Temperature at 200 hPa (ta200) 1132.00 0.000 690.20 0.000 662.10 0.000 
Temperature at 500 hPa (ta500) 1277.00 0.000 1049.00 0.000 - - 
Temperature at 850 hPa (ta850) -1464.00 0.000 -1099.00 0.000 - - 
Daily-Max. Near-Surface* Air Temperature (tasmax) - - 1745.00 0.000 - - 
Surface Downward Eastward Wind Stress (tauu) - - -0.21 0.000 0.18 0.000 
Surface Downward Northward Wind Stress (tauv) -0.47 0.000 - - - - 
Zonal (Eastward) Wind at 850 hPa (ua850) - - - - 5.41 0.000 
Eastward Near-Surface* Wind (uas) -0.02 0.000 - - - - 
Meridional (Northward) Wind at 500 hPa (va500) -0.06 0.000 - - - - 
Meridional (Northward) Wind at 850 hPa (va850) - - - - -0.07 0.000 
Northward Near-Surface* Wind (vas) 0.39 0.000 -0.09 0.000 - - 
Geopotential Height at 200 hPa (zg200) - - 433.00 0.011 -1005.80 0.000 
𝑺𝑺  2.552  2.592  1.168 
𝑹𝑹𝟐𝟐  0.957  0.975  0.993 
Adj. 𝑹𝑹𝟐𝟐  0.927  0.952  0.983 
Pred. 𝑹𝑹𝟐𝟐   0.792   0.892   0.942 
* Near-Surface means at a height between 1.5 to 10.0 m. 

 



 

The standard 𝑅𝑅2 coefficients included in Table 7 indicated that 95.7%, 97.5% and 99.3% 
of the variation of AMDP was explained by the variables extracted from the HIRHAM5 
model. The adjusted 𝑅𝑅2 values proved that the number of predictors chosen was adequate 
in each case, which ensured that the models were not overfitted. In fact, the homogeneity 
in the Variance Inflation Factor (VIF) obtained for the predictors, which was always be-
low 6, ensured that they were not highly correlated to each other and multicollinearity 
was not an issue. Furthermore, the high and low values of predicted 𝑅𝑅2 and 𝑆𝑆 guaranteed 
the reliability of the regression models for making new estimates and therefore validated 
them to predict the values of AMDP associated with the RCP scenarios. 
 
The p-value of the regression models, which was always below the significance level (see 
Table 7), confirmed the linearity of residuals. Furthermore, the values reached regarding 
the Shapiro-Wilk and Levene’s statistics enabled accepting the null hypotheses in all 
cases (p-values > 0.05), which involved that the residuals were normally distributed and 
had homogeneous variances. The Durbin-Watson statistic was found to be inconclusive 
for evaluating the independence of residuals, since the values reached for all three cases 
were within their lower and upper critical values. Therefore, this assumption was exclu-
sively checked through the visual inspection provided by the standardized residuals ver-
sus order plots depicted in Figure 6. The absence of time trends and positive and negative 
serial correlations provided more than enough evidence of the independence of residuals. 
 

 
Figure 6. Standardized residuals versus order of data for the three stations a) Otaniemi b) Nupuri c) 

Nuuksio 
 
Since Nupuri was the closest meteorological station to both the study catchment and the 
HIRHAM5 grid (see Figure 2b)) and recorded the most extreme rainfall measures, sub-
sequent calculations were particularized to its regression model. The period of analysis 
selected for the RCP scenarios was 2059-2100 (42 years), in order to replicate the same 
initial conditions under which the regression model for Nupuri was built and represent 
the worst situation in terms of greenhouse gas concentration, since the RCPs simulations 
of the HIRHAM5 model cover the period from 2006 to 2100. As in the stationary sce-
nario, the general trend for the RCP scenarios indicated that 𝐼𝐼𝑅𝑅 was the adequate measure 
of dispersion to model most of the predictors (p-values < 0.05). In this case, about 18% 
of the variables were normally distributed for the years considered in the modelling of 



 

RCPs. Based on this information, the set of 17 predictors for Nupuri (see Table 7) were 
characterized using Eq. (7), which resulted in the time series shown in Figure 7 for both 
the stationary and RCP scenarios. Figure 7a) exhibits the great capability of the model to 
fit a variety of values of AMDP, including pronounced peaks and sinks. In overall terms, 
the excellent results provided by the three models certified the suitability of the proposed 
methodology to predict extreme precipitation and the usefulness of the two measures of 
dispersion to capture the overall behavior of CC variables and set relationships to the real 
values of AMDP measured in the stations. The time series for the RCPs depicted in Figure 
7b) excludes the six values that were farthest from the median in both datasets (not nec-
essarily outliers), in order to include the same final number of points (36) for which the 
regression model associated with Nupuri was valid.  
 

 
Figure 7. Annual Maximum Daily Precipitation (AMDP) time series in the weather station in Nupuri a) 

Stationary b) RCPs 
 
The values in these time series were used to find the probability distributions that best 
fitted them and obtain the values of AMDP listed in Table 8. According to the Anderson-
Darling statistic, the Burr distribution (Shao et al., 2004) and the Wakeby function 
(Houghton, 1978) provided the best fit for the stationary and RCP scenarios, respectively. 
The almost perfect match between observed and predicted stationary values of AMDP, 
especially for short return periods, confirmed the validity of the proposed regression-
based methodology for projecting CC. The RCPs involved increases of 20-30% and 60-
80% in AMDP in comparison with the stationary values, which supported the interest in 
studying the effects of CC on the hydrological response of urban catchments. 
 



 

Table 8. Values of AMDP (mm) fitted with the Burr and Wakeby distributions for the scenarios and re-
turn periods (T) under consideration 

Return 
Period 

Stat. Obs. Stat. Pred. RCP4.5 RCP8.5 
Burr Burr Wakeby Wakeby 

2 31.161 31.260 38.987 49.628 
5 40.207 40.011 51.441 68.599 
10 46.819 46.357 60.188 84.044 
25 56.412 55.506 73.283 106.22 
50 64.674 63.339 84.656 124.420 
100 74.033 72.170 97.483 143.970 

 
IDF curves were determined from these values of AMDP through Eqs. (10) and (11), 
resulting in predicted 𝑅𝑅2 coefficients of 0.998, 0.998, 0.997 and 0.993 for Stat. Obs., Stat. 
Pred., RCP4.5 and RCP8.5, respectively. Since the predictors 𝐷𝐷 and 𝑇𝑇 consisted of 10 
and 6 values (see Table 1 and Table 8) repeated and combined for each value of 𝐼𝐼, the 
information contained in the residuals was meaningless, because all the assumptions were 
distorted due to the stepped arrangement of the individual points used to build the models. 
Therefore, these results were accepted as valid based on the almost perfect fit indicated 
by the predicted 𝑅𝑅2. 
 
The duration of the study catchment, calculated as the longest sewer travel time, resulted 
in 106 minutes, which was consistent with the trend of the rainfall events monitored in 
2006. Its division into several intervals and the application of the Alternating Block 
Method provided the hyetographs required to model the climatological conditions that 
defined the stationary and RCP scenarios. Their representation, as well as those of the 
hydrographs obtained from their simulation in SWMM using the calibrated parameters 
listed in Table 4, is given in Figure 8.  
 



 

 
Figure 8. Design hydrographs for the return periods and scenarios under analysis a) Stat. b) RCP4.5 c) 

RCP8.5 d) Flooded nodes and surcharged pipes for a return period of 2 years under the RCPs 
 
The peaks and overall volumes associated with the RCP hydrographs indicated the great 
increase in drainage requirements involved by CC. The simulations proved that the RCP 
hyetographs for a return period of 2 years were enough to produce floods and surcharges 
in some nodes and conduits of the sewer network (see Figure 8d)). In fact, the peak flows 
obtained for the RCP8.5 scenario were almost identical for all the return periods in the 
range between 2 and 100 years. This situation was associated with the most extreme rain-
fall conditions, which favored the occurrence of node flooding and pipe surcharge even 
for short return periods, reaching the full capacity of the sewer system and producing very 
similar peak flow rates at its outlet. In other words, the shape of the hydrographs resem-
bled the pattern of rainfall intensities up to the point when the capacity of the sewer sys-
tem was reached, after which peak flows equalled the maximum flow rate allowed by its 
geometry. Still, higher return periods resulted in higher flow rates at the rising and reced-
ing limbs of the hydrograph and, consequently, greater runoff volumes at the outlet of the 
catchment. The return period had to increase up to 10 years to produce the same effect in 
the stationary scenario, which demonstrated the importance of considering the effect of 
CC and the increase in drainage capacity required by RCPs. Consequently, future drain-
age designs should be adapted to the high water volumes and flows involved by changing 
climate. Measures to compensate these impacts might consist of increasing the size of 
sewers and/or implementing Sustainable Drainage Systems (SuDS), which have also been 
found to provide additional benefits in terms of CC, such as carbon sequestration, miti-
gation of the Urban Heat Island effect and urban cooling (Charlesworth, 2010). 
 



 

4. Conclusions 
 
This paper developed, applied and validated a methodology to evaluate the response of 
urban catchments to extreme rainfall events produced by CC using optimized stormwater 
simulation models. This optimization process, which was developed under the assump-
tion of stationary precipitation using DOE, enabled the design of a reliable statistics-based 
CC methodology for the projection of future severe storms under RCP scenarios. The 
results obtained through the application of these methods to a Finnish urban catchment 
demonstrated its validity to model real case studies. The mathematical and statistical 
foundations on which the methods were based, as well as the consistent morphologic and 
climate relationships that supported the results, guaranteed the reliability of the proposed 
framework for modelling the water balance of new urban environments under the effects 
of CC, in order to enhance the resilience of cities to flooding phenomena produced by 
extreme rainfall events. 
 
The results achieved provided evidence of the reliability and precision of the DOE-based 
methodology to model a real urban catchment. The combination of factorial and response 
surface designs proved to be capable of both identifying the most influential parameters 
on the response of the catchment and maximizing the fit between observed and monitored 
discharge values. The desirability function approach enabled the jointly optimization of 
three different goodness-of-fit measures, which guaranteed the accuracy of the calibrated 
catchment parameters. Moreover, the measures of dispersion proposed to characterize CC 
variables were found to be suitable for representing both their central and extreme values 
throughout a year, which ensured their usefulness for building multiple regression models 
to predict AMDP at local weather stations. The results derived from these models reached 
high coefficients of determination and met the four hypotheses related to their residuals, 
which validated them for making new estimates. Furthermore, they were based on phys-
ical relationships between the CC variables and the values of extreme precipitation, which 
certified their legitimacy in the future.  
 
The hydrographs obtained for the CC scenarios according to the calibrated catchment 
parameters resulted in an important increase in both peak flow and volume in relation to 
the stationary situation. As a result, the probability of flood risk throughout a year in-
creased up to five times when considering the effects of CC, which highlighted the im-
portance of developing accurate and reliable hydrological modelling methodologies to 
adapt urban drainage designs to the increasingly demanding challenges posed by CC. 
Therefore, the findings of this research can help to better design drainage strategies to 
ensure that cities become more resilient to alterations in climate patterns. The flexibility 
of the methodology, which consists of two interacting modules, further increases its ap-



 

plicability and enables its stepwise implementation either in isolation or as part of differ-
ent wholes. Although the validity of the proposed methodology is not limited by the lo-
cation of the case study, further research should focus on its implementation to other ur-
ban catchments with different sizes, drainage systems and weather patterns. Besides, the 
simulation and analysis of the impact of SuDS on the response of urban catchments under 
non-stationary extreme rainfall events, as well as the simplification of the integration of 
DOE in the calibration of stormwater models, are identified as the two other main future 
line of research to explore in the future.  
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