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Abstract. Cylindrical algebraic decompositions (CADs) are a key tool
for solving problems in real algebraic geometry and beyond. We recently
presented a new CAD algorithm combining two advances: truth-table in-
variance, making the CAD invariant with respect to the truth of logical
formulae rather than the signs of polynomials; and CAD construction by
regular chains technology, where first a complex decomposition is con-
structed by refining a tree incrementally by constraint. We here consider
how best to formulate problems for input to this algorithm. We focus
on a choice (not relevant for other CAD algorithms) about the order in
which constraints are presented. We develop new heuristics to help make
this choice and thus allow the best use of the algorithm in practice. We
also consider other choices of problem formulation for CAD, as discussed
in CICM 2013, revisiting these in the context of the new algorithm.

Keywords: cylindrical algebraic decomposition, truth table invariance,
regular chains, triangular decomposition, problem formulation

1 Introduction

A cylindrical algebraic decomposition (CAD) is: a decomposition of Rn, meaning
a collection of cells which do not intersect and whose union is Rn; cylindrical,
meaning the projections of any pair of cells with respect to a given variable
ordering are either equal or disjoint; and, (semi)-algebraic, meaning each cell
can be described using a finite sequence of polynomial relations.

CAD was introduced by Collins in [11], such that a given set of polynomials
had constant sign on each cell. This meant that a single sample point for each
cell was sufficient to conclude behaviour on the whole cell and thus it offered a
constructible solution to the problem of quantifier elimination. Since then a range
of other applications have been found for CAD including robot motion planning



[23], epidemic modelling [8], parametric optimisation [18], theorem proving [22]
and reasoning with multi-valued functions and their branch cuts [14].

In [3] the present authors presented a new CAD algorithm combining two
recent advances in CAD theory: construction by first building a cylindrical de-
composition of complex space, incrementally refining a tree by constraint [9];
and the idea of producing CADs such that given formulae has invariant truth on
each cell [4]. Experimental results in [3] showed this new algorithm to be superior
to its individual components and competitive with the state of the art. We now
investigate the choices that need to be made when using the new algorithm.

We conclude the introduction with the necessary background theory and then
in Section 2 we demonstrate how constraint ordering affects the behaviour of the
algorithm. No existing heuristics discriminate between these orderings and so we
develop new ones, which we evaluate in Section 3. In Section 4 we consider other
issues of problem formulation, revisiting [6] in the context of the new algorithm.

1.1 Background on CAD
The first CAD algorithm, introduced by Collins [11] with a full description in
[1], works in two phases. First in the projection phase a projection operator is
repeatedly applied to the set of polynomials (starting with those in the input),
each time producing another set in one fewer variables. Then in the lifting phase
CADs are built incrementally by dimension. First R1 is decomposed according to
the real roots of the univariate polynomials. Then R2 is decomposed by repeating
the process over each cell in R1 using the bivariate polynomials evaluated at a
sample point, and so on. Collins’ original projection operator was chosen so that
the CADs produced could be concluded sign-invariant with respect to the input
polynomials, meaning the sign of each polynomial on each cell is constant.

Such decompositions can contain far more information than required for most
applications, which motivated CAD algorithms which consider not just polyno-
mials but their origin. For example, when using CAD for quantifier elimination
partial CAD [13] will avoid lifting over a cell if the solution there is already ap-
parent. Another key adaptation is to make use of an equational constraint (EC):
an equation logically implied by an input formula. The algorithm in [21] ensures
sign-invariance for the polynomial defining an EC, any any other polynomials
only when that constraint is satisfied. A discussion of the first 20 years of CAD
research is given in [12]. Some of the subsequent developments are discussed
next, with others including the use of certified numerics when lifting [19,24].

1.2 TTICAD by regular chains
In [3] we presented a new CAD algorithm, referred to from now on as RC-TTICAD.
It combined the following two recent advances.
Truth-table invariant CAD: A TTICAD is a CAD produced relative to a

list of formulae such that each has constant truth value on every cell.
The first TTICAD algorithm was given in [4], where a new projection operator
was introduced which acted on a set of formulae, each with an EC.



TTICADs are useful for applications involving multiple formulae like branch
cut analysis (see for example Section 4 of [16]), but also for building truth-
invariant CADs for a single formula if it can be broken into sub-formulae with
ECs. The algorithm was extended in [5] so that not all formulae needed ECs,
with savings still achieved if at least one did. These algorithms were implemented
in the freely available Maple package ProjectionCAD [17].
CAD by regular chains technology: A CAD may be built by first forming

a complex cylindrical decomposition (CCD) of Cn using triangular decompo-
sition by regular chains, which is refined to a CAD of Rn.

This idea to break from projection and lifting was first proposed in [10]. In [9]
the approach was improved by building the CCD incrementally by constraint,
allowing for competition with the best projection and lifting implementations.
Both algorithms are implemented in the Maple RegularChains Library, with
the algorithm from [10] currently the default CAD distributed with Maple.

RC-TTICAD combined these advances by adapting the regular chains compu-
tational approach to produce truth-table invariant CCDs and hence CADs. This
new algorithm is specified in [3] where experimental results showed a Maple im-
plementation in the RegularChains Library as superior to the two advances
independently, and competitive with the state of the art. The CCD is built using
a tree structure which is incrementally refined by constraint. ECs are dealt with
first, with branches refined for other constraints in a formula only is the ECs
are satisfied. Further, when there are multiple ECs in a formula branches can be
removed when the constraints are not both satisfied. See [3, 9] for full details.

The incremental building of the CCD offers an important choice on prob-
lem formulation: in what order to present the constraints? Throughout we use
A → B to mean that A is processed before B, where A and B are polynomi-
als or constraints defined by them. Existing CAD algorithms and heuristics do
not discriminate between constraint orderings [6, 15] and so a new heuristic is
required to help make an intelligent choice.

2 Constraint ordering

The theory behind RC-TTICAD allows for the constraints to be processed in any
order. However, the algorithm as specified in [3] states that equational con-
straints should be processed first. This is logical as we need only consider
the behaviour of non-ECs when corresponding ECs are satisfied, allowing for
savings in computation.

We also advise processing all equational constraints from a formula in
turn, i.e. not processing one, then moving to a different formula before returning
to another in the first. Although not formally part of the algorithm specification,
this should avoid unnecessary computation by identifying when ECs have a
mutual solution before more branches have been created.

There remain two questions to answer with regards to constraint ordering:
Q1) In what order to process the formulae?
Q2) In what order to process the equational constraints within each formula?



Fig. 1. Visualisations of the four TTICADs which can be built using RC-TTICAD for
Example 1. The figures on the top have φ1 → φ2 and those on the bottom φ2 → φ1.
The figures on the left have f1 → f2 and those on the right f2 → f1.

2.1 Illustrative example

The following example illustrates why these questions matter.

Example 1. We assume the ordering x ≺ y and consider

f1 := x2 + y2 − 1, f2 := 2y2 − x, f3 := (x− 5)2 + (y − 1)2 − 1,
φ1 := f1 = 0 ∧ f2 = 0, φ2 := f3 = 0.

The polynomials are graphed within the plots of Figure 1 (the circle on the left
is f1, the one on the right f3 and the parabola f2). If we want to study the truth
of φ1 and φ2 (or a parent formula φ1∨φ2) we need a TTICAD to take advantage
of the ECs. There are two possible answers to each of the questions above and
so four possible inputs to RC-TTICAD. The corresponding outputs are1:
φ1 → φ2 and f1 → f2: 37 cells in 0.095 seconds.
φ1 → φ2 and f2 → f1: 81 cells in 0.118 seconds.
φ2 → φ1 and f1 → f2: 25 cells in 0.087 seconds.
φ2 → φ1 and f2 → f1: 43 cells in 0.089 seconds.
The plots in Figure 1 show the two-dimensional cells in each of these TTICADs.

First compare the induced CADs of R1 (how the real line is dissected). Ob-
serve the following similarities in all four images:

– The points 1
4 (−1∓

√
17) (approximately -1.28 and 0.78) are always identified.

The latter is at the intersection of f1 and f2 and so is essential for the output to
be correct as the truth of φ1 changes here. The former is the other root of the
resultant of f1 and f2 and so marks an intersection with complex y-value.

– The points 4 and 6 are always identified. These mark the endpoints of f3,
required for cylindricity and obtained as roots of the discriminant of f3.

1 All timings in this paper were obtained on a Linux desktop (3.1GHz Intel processor,
8.0Gb total memory) using Maple 18.



Now we observe the differences in the induced CADs of the real line:
– If f1 → f2 we identify ±1, marking the ends of the circle f1. Similarly if
f2 → f1 then we identify 0, marking the end of the parabola f2.

These are identified as the roots of a discriminant and are included to ensure
cylindricity. If f1 is processed first then f2 = 0 is only considered when f1 = 0.
Since their intersection is only a single value of x the discriminant of f2 is not
required (or more accurately it is trivial). Similarly, if we process f2 first then
the discriminant of f1 is only calculated for two values of x, where it is constant.
– If f2 → f1 then we identify the two real roots of the resultant of f2 and f3

(approximately 4.10 and 5.72) marking the real intersection of those curves.

If we process f2 first and then f1 the algorithm ensures their intersections are
identified to maintain truth-table invariance. For this example it is not necessary
since when we process f1 we find there are no intersections of the set where φ1 is
true with f3, but this was not known beforehand. If instead f1 → f2 since there
is no intersection the extra cells are avoided. However, note that the resultant of
f1 and f3 is still calculated and the complex tree is split accordingly. This may
explain why the timings for the orderings with φ2 → φ1 are so similar.

Finally compare the CADs of R2. We see that in all four TTICADs the output
is sign invariant for f3, while if φ1 → φ2 then the output is also sign invariant for
whichever of f1 and f2 was processed first. The first constraint to be processed
will always be sign-invariant for the output. The tree is initially refined into cases
where its polynomial is zero or not and although these branches are split further
that invariance is maintained. Similarly, the first constraint from a formula to be
processed will usually be sign-invariant in the output, but this may be avoided
if a formula has more than one EC. In this case the tree may be refined to the
cases where either both are satisfied or not (as with φ1 in this example).

2.2 Developing a heuristic for equational constraint ordering
The following propositions are illustrated by Example 1 and can be verified from
the algorithm specification in [3].
Proposition 1. The output of RC-TTICAD is always sign-invariant with respect
to the discriminant of the first EC in each formula.
Other discriminants will be calculated, but their impact is lesser. E.g. the dis-
criminant of the second EC in a formula will be considered modulo the first.
Proposition 2. The output of RC-TTICAD is always sign-invariant with respect
to the cross-resultants of the set of first ECs in each formula.
Other resultants will be calculated. Some of them have lesser impact, such as
the resultant of the first EC in formula A with the second in formula B which
is considered modulo the first EC in formula B. Other will be considered for all
constraint orderings, such as the resultant of a pair of ECs in a formula.

Considering (1) and (2) leads us to suggest minimising the following sets
under some measure when making a choice about constraint ordering.



Definition 1. For a given constraint ordering o let P be the set of ECs which
are ordered first in each formula. Then define the constraint ordering set Co
as the discriminants and cross resultants in the main variable of the ordering:

Co :=
(⋃

p∈P

{
disc(p)

})
∪
(⋃

p,q∈P,p6=q
{

res(p, q)
})
.

For Example 1 the constraint ordering sets are

Cf1→f2 = {discy(f1),discy(f3), resy(f1, f3)}
= {−4x2 + 4,−4x2 + 40x− 96, 104x2 − 520x+ 672},

Cf2→f1 = {discy(f2),discy(f3), resy(h, f2)}
=
{

8x,−4x2 + 40x− 96, 4x4 − 76x3 + 561x2 − 1908x+ 2500
}
.

A natural way to measure these would be to compare sotds, the sum of to-
tal degrees of each monomial in each polynomial, since this was shown to help
with other CAD choices [6,15]. For Example 1 the sets above have sotd 8 and 14
respectively and thus the ordering f1 → f2 is suggested. Regardless of which for-
mula is processed first, this is the better choice. However, the following example
demonstrates that sotd may not be so suitable in general.

Example 2. [2014 x-axis ellipse problem] A well studied test problem for
CAD is the x-axis ellipse problem defined in [2] and specialising a problem
in [20]. They concern an ellipse and seek to determine for what values of its
parameters (the principal semi-axes and centre) it lies within the unit circle.

We propose a new problem, inspired by the original but requiring multiple
formulae and hence a TTICAD. Suppose the ellipse is centred at (c, 0) with
principal semi-axes a ∈ (0, 2) and b = 1. The problem is to determine for what
values of (c, a) the ellipse intersects either of a pair of unit circles, centred on
the x-axis at ±2. Define the polynomials

f1 := (x− 2)2 + y2 − 1, f2 := (x+ 2)2 + y2 − 1, h := (x− c)2 + a2y2 − a2.

Then we seek to eliminate the quantifiers from Φ := (∃y)(∃x)φ1 ∨ φ2 where

φ1 := (f1 = 0 ∧ h = 0 ∧ a > 0 ∧ a < 2), φ2 := (f2 = 0 ∧ h = 0 ∧ a > 0 ∧ a < 2).

The problem can be solved using a TTICAD for φ1 and φ2. We assume vari-
able ordering y � x � a � c. There are eight possible constraint orderings for
RC-TTICAD as listed in Table 1. The best choice is to process h first in each for-
mula (then the formula ordering makes no difference) which is logical since h has
no intersections with itself to identify. However, using sotd as a measure on the
constraint ordering set will lead us to select the very worst ordering. Consider
the constraint ordering sets for these two cases:

Cf1→h,f2→h = {discy(f1),discy(f2), resy(f1, f2)}
= {−4x2 + 16x− 12,−4x2 − 16x− 12, 64x2},

Ch→f1,h→f2 = {discy(h), resy(h, h)} =
{

4a2(a2 − c2 + 2cx− x2), 0
}
.



Table 1. Details on the TTICADs that can be built using RC-TTICAD for Example 2.

Constraint Ordering o TTICAD Co

Formula order φ1 order φ2 order Cells Time (sec) sotd deg
φ1 → φ2 h → f1 h → f2 24545 86.082 16 2
φ1 → φ2 h → f1 f2 → h 73849 499.595 114 8
φ1 → φ2 f1 → h h → f2 67365 414.314 114 8
φ1 → φ2 f1 → h f2 → h 105045 1091.918 8 6
φ2 → φ1 h → f1 h → f2 24545 87.378 16 2
φ2 → φ1 h → f1 f2 → h 67365 401.598 114 8
φ2 → φ1 f1 → h h → f2 73849 494.888 114 8
φ2 → φ1 f1 → h f2 → h 105045 1075.568 8 6

Although the first has three polynomials and the second only one, this one has
a higher sotd than the first three summed. This is because only h contained
the parameters (a, c) while f1 and f2 did not, but their presence was not as
significant as the complexity in x alone. A more suitable measure would be the
sum of degrees in x alone (shown in the final column in Table 1) in which the
first has 6 and the second only 2.

Remark 1. It is not actually surprising that sotd is inappropriate here while
working well in [6,15]. In those studies sotd was measuring projection sets (either
the whole set or at one stage in the projection) while here we are measuring
only the subset which changes the most with the ordering. Sotd is principally
a measure of sparseness. Sparseness of the entire projection set indicates less
complexity while sparseness of one level is likely to lead to sparseness at the
next. However, the constraint ordering set being sparse does not indicate that
the other polynomials involved at that stage or subsequent ones will be.

Heuristic Definition 1 Define the EC ordering heuristic as selecting the
first EC to be processed in each formula such that the corresponding constraint
ordering set has lowest sum of degrees of the polynomials within (all taken in the
second variable of the ordering).

Heuristic 1 follows from the analysis above and we evaluate it in Section 3. We
can already see three apparent shortcomings:

(i) How to break ties if the sum of degrees are the same?
(ii) What to do if the complex geometry is different to the real geometry?
(iii) How to order remaining equational constraints?

One answer to (i) is to break ties with sotd. A tie with Heuristic 1 is a good
indication that the complex geometry in the highest dimension is of the same
complexity and so further discrimination will require lower dimensional compo-
nents. In fact, these are also needed to address (iii). Suppose a formula contained
three ECs and we had determined which to process first. Then the choice of which
is second means comparing the resultant of the first with each of the others mod-
ulo the first. In our experience such formulae tend to give similar output for the
different orderings due to the simplifications in the tree so many ECs offer.

Heuristic 1 can be misled as suggested by (ii) and demonstrated next.



Fig. 2. Visualisations of two TTICADs built using RC-TTICAD for Example 3. They
both have φ2 → φ1, with the first having f1 → f2 and the second f2 → f1.

Example 3. Consider the polynomials and formulae from Example 1 but with
f2 and g2 shifted under y 7→ y + 1. The possible outputs from RC-TTICAD are:
φ1 → φ2 and f1 → f2: 39 cells in 0.094 seconds.
φ1 → φ2 and f2 → f1: 49 cells in 0.081 seconds.
φ2 → φ1 and f1 → f2: 27 cells in 0.077 seconds.
φ2 → φ1 and f2 → f1: 23 cells in 0.073 seconds.
Since f2 no longer intersects h the best choice is the fourth instead of the third.
Figure 2 compares these two TTICADs. The only difference now is whether the
endpoints of the left circle or the parabola are identified. Since the parabola has
only one endpoint it becomes the better choice. However, the constraint ordering
set has the same degree in x or sotd and so still suggests f1 → f2.

Heuristic 1 is misled here because the degree is a measure only of the be-
haviour in complex space, which did not change significantly between the exam-
ples. In [6] we demonstrated similar issues for CAD (and TTICAD) by projection
and lifting. There we devised an alternative heuristic: the number of distinct real
roots of the univariate polynomials (ndrr) which meant essentially comparing the
induced CADs of the real line. However, RC-TTICAD does not start by directly
computing all polynomials involved in the computation (the projection phase).
Example 3 is in only two dimensions and so the ndrr could easily be applied
to the univariate constraint ordering sets to suggest the best ordering. But for
higher dimensional examples it is not so clear what or how to measure. Further,
the complex geometry does have a direct effect on RC-TTICAD not present in the
projection and lifting algorithms since we first build a CCD.

2.3 Developing a heuristic for formulae ordering

Heuristic 1 helps with ordering ECs in formulae but not how to order the for-
mulae themselves. In Example 1 the main difference between formulae orderings
was which polynomial is ensured sign-invariant in the output. In Example 1 there
was a clear choice to process φ2 first since its sole EC would be sign-invariant
regardless. In general we advise placing a formula with only one EC first.

Remark 2. In fact, the analysis so far suggests that the best choice would be
to process a non-EC from a formula with no ECs first. This is because all the
non-ECs in such a formula will always be sign-invariant in the output and so
dealing with them first would occur no cost but possibly allow savings from
another formulae with multiple ECs. The algorithm as specified in [3] does not
allow this but we intend to investigate this possibility in future work.



We now seek a heuristic to help with formulae ordering when no obvious
choice is available. Ideally, we require an (efficient) measure of how large the
(real) projection is of a polynomial out of its main variable, but such a measure
is not clear to us. Instead we explore an alternative approach. As discussed, the
CAD algorithms based on regular chains technology first build a CCD before
refining to a CAD. It has been observed that the refinement to real space usually
takes the most time (involving real root isolation), but that the timings of the
two stages are correlated. Hence, we consider building the CCD first for multiple
orderings and then choosing the smallest one.

Heuristic Definition 2 Define the CCD size heuristic as selecting a con-
straint ordering by constructing the CCD for each, extracting the set of poly-
nomials used in each tree, and choosing the one to refine to a CAD whose set
has the lowest sum of degree of the polynomials within (each taken in the main
variable of that polynomial).

We evaluate this heuristic in the next section. It clearly requires far more com-
putation than Heuristic 1 and so the relative costs will have to be considered.
This leads us to suggest a third heuristic combining the approaches.

Heuristic Definition 3 Define the constraint ordering heuristic as using
Heuristic 1 to suggest the best subset of constraint orderings and then having
Heuristic 2 pick from these, splitting any further ties by picking lexicographically.

3 Evaluating the heuristics

3.1 Experiments and data

We tested the effectiveness of the heuristic using 100 random systems of the form

φ1 := (f1 = 0 ∧ f2 = 0 ∧ g1 > 0), φ2 := (f3 = 0 ∧ f4 = 0 ∧ g2 > 0).

The polynomials were randomly generated using Maple’s randpoly command
as sparse polynomials in the ordered variables x ≺ y ≺ z with maximum degree 3
and integer coefficients . Each problem has three questions of constraint ordering:
- Process φ1 first or φ2? - Process f1 first or f2? - Process f3 first or f4?
Hence each problem has eight possible orderings. We build TTICADs using

RC-TTICAD for each ordering and compare the number of cells and computation
time. We set a time limit of 40 minutes per problem (so an average of 5 minutes
per CAD) in which 92 of the problems could be studied. The average CAD had
2018.3 cells and was computed in 36.5 seconds, but there were several outliers
bringing the average up. The median values were 1554.1 cells and 6.1 seconds.

For each problem we considered how Heuristics 1, 2 and 3 performed. We
start by comparing cell counts in Table 2. For each problem we calculated:

(a) The average cell count of the 8 TTICADs computed.
(b) The average cell count of the TTICADs selected by each heuristic (but note

that Heuristic 3 always selects only one).



Table 2. How the CADs selected by the heuristics compare on cell count.

Heuristic Cell Count Saving % Saving
Heuristic 1 1589.67 428.61 26.73
Heuristic 2 1209.10 809.18 47.70
Heuristic 3 1307.63 710.65 40.97

Table 3. How the CADs selected by the heuristics compare on timings (in seconds).

Heuristic Timing Saving % Saving Net Saving % Net Saving
Heuristic 1 14.48 22.02 37.17 22.01 37.12
Heuristic 2 9.02 27.47 49.45 -150.59 -215.31
Heuristic 3 9.42 27.08 43.84 -20.02 0.77

(c) The average saving from using each heuristic, computed as (a)−(b).
(d) The average percentage saving to the cell count, calculated as 100(c)/(a).

The figures in Table 2 show the values of (b)−(d) for each heuristic, averaged over
the 92 problems. To compare timings we calculated (a′)−(d′) as the equivalent
of (a)−(d) for timings. Then for each problem we also calculated:

(e′) The time taken to run each heuristic.
(f′) The net saving calculated as (a′)−(b′)−(e′).
(g′) The net percentage saving calculated as 100(f′)/(a′).

Table 3 shows the values of (b′)−(d′),(f′),(g′) averaged over the 92 problems.
Tables 4 and 5 shows where the selections made by each heuristic lie on the

spread of possible outputs (where 1 is the CAD with the smallest and 8 the one
with the biggest). In the event of two CADs having the same value a selection
is recorded with the higher ranking. Since Heuristics 1 and 2 can pick more
than one ordering we also display the figures as percentages. So for example, a
selection by the first heuristic was the very best ordering 24% of the time.

3.2 Interpreting the results

First we observe that all three heuristics will on average make selections on
constraint ordering with substantially lower cell counts and timings than the
problem average. As expected, the selections by Heuristic 2 are on average better
than those by Heuristic 1. In fact, the measure used by Heuristic 2 seems to be
correlated to both the cell counts and timings in the final TTICAD.

To consider the correlation we recorded the value of the measures used by
Heuristics 1 and 2 and paired these with the corresponding cell counts and
timings. This was done for each CAD computed (not just those the heuristics
selected). The values were scaled by the maximum for each problem. (Note that
Heuristic 3 did not have its own measure, it was a combination of the two.) Figure
3 shows the plots of these data. The correlation coefficients for the first measure
were 0.43 with cell count and 0.40 with timing, while for the second measure
0.78 and 0.68. Since the second measure essentially completes the first part of
the algorithm the correlation may not seem surprising. However, it suggests that



Table 4. How the heuristics selections rank out of the possible CADs for cell counts.

Heuristic 1 2 3 4 5 6 7 8 Total

Heuristic 1 # 60 46 44 26 21 17 17 15 246
% 24.39 18.70 17.89 10.57 8.54 6.91 6.91 6.10 100.01

Heuristic 2 # 55 19 12 5 5 2 0 0 98
% 56.12 19.39 12.24 5.10 5.10 2.04 0 0 99.99

Heuristic 3 # 44 22 7 6 4 4 3 2 92
% 47.83 23.91 7.61 6.52 4.35 4.35 3.26 2.17 100.00

Table 5. How the heuristics selections rank out of the possible CADs for timings.

Heuristic 1 2 3 4 5 6 7 8 Total

Heuristic 1 # 64 51 33 24 23 25 13 13 246
% 26.02 20.73 13.41 9.76 9.35 10.16 5.29 5.29 100.01

Heuristic 2 # 44 29 12 4 1 4 1 3 98
% 44.90 29.59 12.24 4.08 1.02 4.08 1.02 3.06 99.99

Heuristic 3 # 37 26 9 4 1 6 7 2 92
% 40.22 28.26 9.78 4.35 1.09 6.52 7.61 2.17 100.00

on average the geometry of the real and complex decomposition are more closely
linked than previously thought. This will be investigated in future work.

Although Heuristic 2 makes good selections, its cost is usually larger than
any potential time savings (roughly 6 times larger on average). Further, this cost
will rise with the number of orderings far quicker than the cost of the others.
We note that the magnitude of this cost is inflated by the outliers, the average
cost being 178.06 seconds while the median only 13.43. Heuristic 1 is far cheaper,
essentially zero. Although the savings were not as high they were still significant,
with most selections being among the best. We recommend Heuristic 1 as a cheap
test to use before running the algorithm and it will likely become part of the
default implementation.

The results for Heuristic 3 which used a mixture of the approaches are par-
ticularly interesting. It offers substantially more savings than Heuristic 1, almost
achieving those those Heuristic 2 but its cost is on average 47.10 seconds (with a
median value of 7.55), far less than those of Heuristic 2. On average Heuristic 3
took more time in total to compute than its time savings, but when we consider
the percentage saving the average is (just) positive. This is not a mistake: the
results are as stated because a number of outliers had a very high cost while for
most examples the cost was significantly less than the savings.

We can see situations where all three heuristics could be of use:
Use Heuristic 1 if lowest computation time is prioritised, for example if many
CADs must be computed or this is just a small step in a larger calculation.
Use Heuristic 2 if lowest cell count is prioritised, for example if only one CAD
must be computed but then much work will be performed with its cells.
Use Heuristic 3 for a mixed approach, for example if a low cell count is required
but the problem size makes Heuristic 2 infeasible.



Fig. 3. These plots compare the measures used by the heuristics with the CADs com-
puted in Section 3. The plots on the left have cell count on the vertical axis, and those
on the right timings. The horizontal axes have the sum of degrees of polynomials in a
set. On the top this is the constraint ordering set and on the bottom the polynomials
in the CCD. All values are scaled to the problem they originate from.

4 Other issues of problem formulation

For the original TTICAD algorithm (by projection and lifting) [4] the ordering of
the constraints is not important, but other issues are, as investigated in [6]. We
revisit two of those issues to see if further consideration is needed for RC-TTICAD.

4.1 Equational constraint designation

The TTICAD algorithm by projection and lifting [4] made use of a single desig-
nated EC per formula (any others were treated the same as non-ECs). Indeed,
this projection operator generalised the one in [21] for a formula with one EC
and in either case the user needs to make this designation before running the
algorithm. RC-TTICAD [3] (and the algorithm in [9]) can take advantage of more
than one EC per formula and so the user only needs to choose the order they
are used in. We observe that the choice of which EC to process first is analogous
to choosing which to designate. For example, consider two formulae of the form

φi := f1 = 0 ∧ f2 = 0 ∧ g1 < 0, φ2 := f3 = 0 ∧ g2 = 0.

Then the resultants and discriminants that must be calculated for the first pro-
jection phase using the operator in [21] are

{res(fi, fj), res(fi, g1), res(fi, f3),disc(fi),disc(f3)}

if fi is designated and fj not. All polynomials from the constraint ordering
set are contained here, as can be shown for the general case. A good choice of
designation for the projection and lifting algorithm is hence likely to correspond
to a good choice of which EC from a formula to process first in the regular chains
algorithm. We hope to investigate this further in the future.



4.2 Composing sub-formulae
Consider Φ := (f1 = 0 ∧ ψ1) ∨ (f2 = 0 ∧ ψ2). where ψ1, ψ2 are conjunctions. We
seek a truth-invariant CAD for Φ but neither of the equations are ECs (at least
not explicitly without knowledge of ψ1 and ψ2). One option would be to use
f1f2 = 0 as an EC (this is logically implied by Φ). Another option is to define

φ1 := f1 = 0 ∧ ψ1, φ2 := f2 = 0 ∧ ψ2

and construct a TTICAD for them (any TTICAD for φ1, φ2 is truth-invariant for
Φ). For the projection and lifting algorithms the second approach is preferable as
the projection set for the latter is contained in the former. RC-TTICAD requires
as input semi-algebraic systems each representing a single conjunctive formula.
Hence here there is not even an analogue of the former approach.

However, there was a similar question posed in [6, Section 4] which we now
investigate in reference to RC-TTICAD. Consider the single conjunctive formulae,
Φ̂ := f1 = 0 ∧ ψ1 ∧ f2 = 0 ∧ ψ2, where ψ1, ψ2 are again conjunctions. We could
build a CAD for Φ̂ or a TTICAD for φ1, φ2 as above. While the projection set
for the latter is in general smaller, the following example gives an exception.
Example 4 (Example 6 in [6]). Let x ≺ y and consider the formula Φ̂ above with

f1 := (y − 1)− x3 + x2 + x, ψ1 := g1 < 0, g1 := y − x
4 + 1

2 ,

f2 := (−y − 1)− x3 + x2 + x, ψ2 := g2 < 0, g2 := −y − x
4 + 1

2 .

The polynomials are plotted in the images of Figure 4 where the solid curve is
f1, the solid line g1, the dashed curve f2 and the dashed line g2. Various CADs
may be computed for this problem:
– A CAD for Φ̂ using projection and lifting with the operator from [21] desig-

nating f1: 39 cells as visualised in the first image.
– As above but designating f2: 39 cells. Similar to first image but 2 dimensional

cell divisions over f2 instead of f1.
– A TTICAD for φ1, φ2 using projection and lifting with the operator from [4]:

31 cells as visualised in the second image.
– A CAD for Φ̂ using RC-TTICAD (equivalent here to the algorithm in [9]): 9

cells (under any constraint ordering) as visualised in the third image.
– A TTICAD for φ1, φ2 using RC-TTICAD [3]: 29 cells (under any constraint

ordering) as visualised in the fourth image.
The important observation is that f1 has many intersections with g2 and

f2 many intersections with g1. The projection and lifting algorithms can avoid
considering those pairs together by splitting into sub-formulae. In the first image
only one EC is sign-invariant while in the second both are, but this was a price
worth paying to avoid the intersections. It is not necessary for RC-TTICAD as this
can take advantage of multiple ECs in a formula. It first identifies the intersection
of f1 and f2 and the non-ECs are only considered modulo this set. Hence, even
though they are in the same formula, those intersections are never computed.

In general, RC-TTICAD requires a parent formula to be broken into conjunctive
sub-formulae before use, but would never benefit from further decomposition.



Fig. 4. Visualisations of CADs that can be built for Example 4.

5 Final thoughts

We developed new heuristics to choose constraint orderings for RC-TTICAD [3],
finding that the choice of which to use may depend on the priorities of the user.
A dynamic heuristic (such as one like Heuristic 2 but making choices based on
the CCT after each increment) may offer further improvements and will be a
topic of future work.

We also revisited other questions of problem formulation questions from [6],
finding that they did not require further consideration for RC-TTICAD. However,
there was one important issue we did not address, the variable ordering, for
which there may be a free or constrained choice. For example, when using CAD
for quantifier elimination we must order the variables as they are quantified but
we may change the ordering within quantifier blocks. It has long been noted that
problems which are easy in one variable ordering can be infeasible in another,
with [7] giving problems where one variable ordering leads to a CAD with a
cell count constant in the number of variables and another a cell count doubly
exponential. The analysis was valid for any CAD regardless of the algorithm
that produced it and so affects RC-TTICAD. A key area of our future work will
be to analyse how best to choose a variable ordering, and to investigate whether
an existing heuristic, or the new ones developed here can help.
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