

Program verification in the presence of
complex numbers, functions with
branch cuts etc

Davenport, J. H., Bradford, R., England, M. & Wilson, D.

Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:

Davenport, JH, Bradford, R, England, M & Wilson, D 2012, Program verification in the
presence of complex numbers, functions with branch cuts etc. in Proceedings - 14th
International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing, SYNASC 2012., 6481015, IEEE, pp. 83-88, 14th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2012,
Timisoara, Romania, 26/09/12.
https://dx.doi.org/10.1109/SYNASC.2012.68

DOI 10.1109/SYNASC.2012.68

Publisher: IEEE

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

https://dx.doi.org/10.1109/SYNASC.2012.68

Program Verification in the presence of complex numbers, functions with branch
cuts etc.

James H. Davenport, Russell Bradford, Matthew England & David Wilson
Department of Computer Science

University of Bath
Bath, BA2 7AY, U.K.

Email: {J.H.Davenport,R.J.Bradford,M.England,D.J.Wilson}@bath.ac.uk

Abstract—In considering the reliability of numerical pro-
grams, it is normal to “limit our study to the semantics
dealing with numerical precision” (Martel, 2005). On the other
hand, there is a great deal of work on the reliability of
programs that essentially ignores the numerics. The thesis
of this paper is that there is a class of problems that fall
between these two, which could be described as “does the low-
level arithmetic implement the high-level mathematics”. Many
of these problems arise because mathematics, particularly
the mathematics of the complex numbers, is more difficult
than expected: for example the complex function log is not
continuous, writing down a program to compute an inverse
function is more complicated than just solving an equation,
and many algebraic simplification rules are not universally
valid.

The good news is that these problems aretheoretically
capable of being solved, and arepracticallyclose to being solved,
but not yet solved, in several real-world examples. However,
there is still a long way to go before implementations match
the theoretical possibilities.

Keywords-Verification; algebra; branch cut; singularity;

I. I NTRODUCTION

It is customary, even though not often explicitly stated, to
think that programming errors in numerical programs come
in three distinct flavours, which we can categorise as follows.

1. Blunder (of the coding variety) This is the sort
of error traditionally addressed in “program verifi-
cation”: are all array elements properly initialised
before use, “fence post” errors1, are array bounds
always respected etc.? These problems are essen-
tially independent of the numerics of the problem,
and indeed are normally taught/described in integer
contexts.

2. Parallelism Issues of deadlocks or races occur-
ring due to the parallelisation of an otherwise
correct sequential program. Again, these problems
are essentially independent of the numerics of the
problem.

1From the old puzzle “A farmer wishes to make a 100-metre fencewith
supporting posts every 10 metres — how many posts are needed”, to which
the answer is 11, since each end needs a post.

3. Numerical Do truncation and round-off errors,
individually or combined, mean that the program
computes approximations to the “true” answers
which are out of tolerance. This is the area tra-
ditionally addressed in Numerical Analysis. There
are really two subquestions here: the rounding
question, i.e. doesRIEEE (or whatever other arith-
metic we are using) approximateR sufficiently
well, and the truncation error question, e.g. is
the discretisationh small enough that it is the
mathematicalǫ or is

∑N
1 equivalent to

∑∞
1 . Un-

fortunately the two interact; for example reducing
h in f ′(x) ≈ f(x+h)−f(x)

h to reduce the truncation
error increases the rounding problems.

We note that [1], taken as a specimen of the verification
literature, contains 30 papers, of which only [2] deals with
strictly numerical issues, four with parallelism issues, and
the rest (83%) with the first kind.

It is the thesis of this paper that there is a fourth kind of
error, which we can describe as follows

4. Manipulation A piece of algebra, which is “obvi-
ously correct”, turns out not to be correct when
interpreted, not as abstract algebra, but as the
manipulation of functionsR → R or C → C.

Note: throughout this paper we take the standard definitions
of the branch cuts of the elementary functions from [3], [4]
(as tightened in [5]). Other definitions would have different,
but not fewer, problems. We also use the Anglo-Saxon con-
vention thatlog etc. (and√) denote single-valued functions
(log 1 = 0,

√
4 = 2), whereasLog etc. denote multi-valued

functions (Log(1) = {2kπi : k ∈ Z}, Sqrt(4) = {2,−2}).
The problems we are going to describe arise largely

(though not entirely2) from complex numbers, and it is
sometimes said “real programs don’t use complex numbers”,
despite the fact that the introduction ofCOMPLEX into
Fortran II was probably the first instance of a language data
type that did not correspond to a machine data type. The
authors know of several major uses of complex numbers
and complex analysis, in particular many problems which

2See section IV for a counter-example.

arise in fluid dynamics, where two-dimensional real space
R

2 = {(x, y)} is viewed as the complex planeC = {z =
x + iy}. It is then normal to map this copy ofC to another
(in which the variable is traditionally denotedw or ζ) where
the problem is easier to solve. Such an analytic mapz 7→ w
is termed aconformalmap.

II. T HE KAHAN EXAMPLE

This example comes from [6, pp. 187–189], and the
ultimate motivation is fluid flow in a slotted strip (z space),
which we wish to transform to a more convenient shape (w
space).

With the usual definitions, the necessary conformal map

w = g(z) := 2 arccosh

(

1 +
2z

3

)

− arccosh

(
5z + 12

3(z + 4)

)

(1)
is only the same as the ostensibly more efficient

w
?
=q(z) := 2 arccosh

(

2(z + 3)

√

z + 3

27(z + 4)

)

, (2)

if we avoid the teardrop shaped area
{

z = x+iy : |y| ≤
√

−(x + 3)2(2x + 9)

2x + 5
,−9

2
≤ x ≤ −3

}

(3)
as shown by Figure 1

Figure 1. Plots of the real and imaginary parts ofg(z) − q(z).

In fact, most computer algebra systems will refuse, these
days, to convert one into the other, but this does not
constitute a proof of difference.

Challenge 1:Demonstrate automatically thatg andq are
not equal, by producing az at which they give different
results.
The technology described in [7] would answer this question
by decomposing the complex plane into regions, via means
of cylindrical algebraic decomposition (CAD) with respect
to the branch cuts of the functions, and testing the identity
at a sample point in each region

A fully-automated implementation for this example has
yet to be produced since the geometry can be quite involved.
(See section II for details.) However, progress is currently
being made on the problem. TheBranchCuts package [8]

developed at Bath and to be included with Maple 17 does
isolate the curve

y = ±
√

(x + 3)2(−2x − 9)

2x + 5
(4)

with the appropriatex range as a potential obstacle (it is
the branch cut ofq). However, it is just one of a set of cuts
returned by the code. The plotting option in the package
produces Figure 2 which presents the teardrop and the entire
real axis as potential cuts.

Figure 2. Plot of the potential branch cuts forg(z) = q(z) produced by
the BranchCuts package.

The package calculates cuts for functions by mapping the
defining branch cuts of a function by the argument. The
output is generated using Maple’ssolve facilities, and
the user can choose to look for solutions in the complex
variable, or to first split into real and imaginary parts and
work over the reals. The first method is quicker and more
widely applicable, but the second produces more intuitive
output including the algebraic description of the teardropin
equation (4).

The package identifies the potential branch cuts of a
composition of functions (a sum, a product or an equality)
as the union of the cuts for individual components. Hence
the identification of the real axis as a potential obstacle is
not surprising since the individual terms do have branch cuts
here, with the resulting discontinuities happening to cancel
out in the composition.

However, the output described here would not be suitable
for the technology of [7] since the input into CAD must be
semi-algebraic. We can modify the code to just return the
polynomial equalities and inequalities that define each setof
cuts. For this example, there are 7 such sets, one of which
consists of the three relations below.

4y(2y2x + 2x3 + 5y2 + 21x2 + 72x + 81) = 0

4(y4 − x4 + 3y2x − 13x3

+9y2 − 63x2 − 135x − 108) < 0

4x4 − 4y4 − 12y2x + 52x3

−63y2 + 225x2 + 324x < 0 (5)

Figure 3 gives a plot of these three curves. By testing sample
points we see where the inequalities are satisfied and infer
that the branch cut defined is the teardrop along with the
real axis above−3. These issues and the implementation of
the BranchCuts package are discussed further in [8].

Figure 3. Plot of the information in (5). The solid line is theequality, the
dashed line the first inequality and the dotted line the second.

If we pass the full set of polynomials to CAD (ignoring
whether they are equalities or inequalities) then clearly
a lot more information will be processed than required.
Using the variable orderingy > x and the command
CylindricalAlgebraicDecompose within Maple 16
[9], this produces a CAD of 409 cells. Given (3) we might
hope for a minimal CAD of 13 cells, or if we accept that
the real axis must be included in any calculations then a
minimal CAD of 19 cells, (see Figure 4).

Figure 4. Possible minimal CADs for Kahan’s example. The dots indicate
sample points for a cell.

Note that there is a simplification ofg valid over the whole
complex plane: g can legitimately be rewritten to

w = h(z) := 2 ln

(

1

3

√
3 z + 12

(√
z + 3 +

√
z
)2

2
√

z + 3 +
√

z

)

, (6)

The technology in [7] can show this, i.e.∀z ∈ C g(z) =
h(z), but there are multiple square roots requiring denesting
[26, §4.3] and (as formulated) square roots in the denomina-
tor. Indeed the standard tools of Maple 16 currently get this
wrong:coulditbe(g<>h); returnstrue, which ought
to indicate that there is a counter-example.

Challenge 2:Demonstrate automatically thatg andh are
equal.

Although the technology in [7], implemented in a mixture
of Maple and QEPCAD (though we are working on a purely
Maple implementation based on [9]), may be able to meet
this challenge in time, we would be left with the problem
of trusting the underlying demonstration code. So there is
the additional problem of translating this methodology into
a tool such as MetiTarski [10].

III. JOUKOWSKI EXAMPLES

Consider the Joukowski map [11, pp. 294–298]:

f : z 7→ 1

2

(

z +
1

z

)

. (7)

A. Joukowski (a)

Lemma 1:f is injective as a function fromD := {z :
|z| > 1}.
If z 7→ ζ then1/z 7→ ζ, and there are no other pre-images
of ζ (since the algebraic inverse of (7) is the solution of a
quadratic). If|z| > 1, then |1/z| < 1, so z is unique inD.

In fact f is a bijection fromD to C
‡ := C \ [−1, 1], and

hence has an inverse.
Of course, (7) is the conformal mapC → C that equates

to the map

fR : (x, y) 7→
(

1

2
x +

1

2

x

x2 + y2
,
1

2
y − 1

2

y

x2 + y2

)

(8)

R
2 → R

2. However, it is not obvious from (8) alone that
fR is a bijectionD → C

‡, i.e. that

∀x1∀x2∀y1∀y2

(

x2
1 + y2

1 > 1 ∧ x2
2 + y2

2 > 1∧
x1 + x1

x2
1+y2

1
= x2 + x2

x2
2+y2

2
∧

y1 − y1

x2
1+y2

1
= y2 − y2

x2
2+y2

2

)

⇒
(
x1 = x2 ∧ y1 = y2

)
.

(9)

Challenge 3:Demonstrate automatically the truth of (9),
which is also [12, (49)].
We have been unable to do this with either the QEPCAD
[13] implementation of Partial Cylindrical Algebraic De-
composition [14] or the Maple implementation of Cylindri-
cal Algebraic Decomposition via triangular decomposition
[9].

Brown [15] suggested writing problems of the form
∀vA → (f = 0 ∧ g = 0) as¬∃vA ∧ ¬(f = 0 ∧ g = 0) .
This splits into two clauses: [12,§7.2], which can be seen
to have equational constraints [16].

Figure 5. Maple’ssolve on inverting Joukowski

> [solve(zeta = 1/2*(z+1/z), z)];
[

ζ +
√

ζ2 − 1, ζ −
√

ζ2 − 1
]

Figure 6. Maple’s actualsolve on inverting injective Joukowski

> [solve(zeta = 1/2*(z+1/z), z)]\
assuming abs(z) > 1

[

ζ +
√

ζ2 − 1, ζ −
√

ζ2 − 1
]

Even these are beyond QEPCAD and Maple currently.
However, Brown [15] has been able to recast these clauses
(manually) to make them amenable to QEPCAD, and indeed
solved the problem in under 12 seconds.

Challenge 4:Automate these techniques and transforms.
Having established (or not) thatf is a bijectionD → C

‡,
we want its inverse. Formally, this is trivial, as one referee
said

The inverse of Joukowski is the solution of a
quadratic with the usual sign ambiguity:

if ζ = 1
2

(
z + 1

z

)
, then2zζ = z2 + 1 andz = ζ ±

√

ζ2 − 1.
This is easily within the grasp of computer algebra, as seen
in Figure 5. The only challenge might be the choice implicit
in the± symbol: which do we choose?

Unfortunately, the answer is “neither”, or at least “neither,
uniformly”. The true answer is that, forf a bijection from
{z : |z| > 1} to C \ [−1, 1], its inverse is

f1(ζ) = ζ







+
√

ζ2 − 1 ℑ(ζ) > 0

−
√

ζ2 − 1 ℑζ) < 0

+
√

ζ2 − 1 ℑ(ζ) = 0 ∧ ℜ(ζ) > 1

−
√

ζ2 − 1 ℑ(ζ) = 0 ∧ ℜ(ζ) < −1

(10)

In fact, a better (at least, free of case distinctions) definition
is

f2(ζ) = ζ +
√

ζ − 1
√

ζ + 1. (11)

The techniques of [7] are able toverify (11), in the sense
of showing thatf2(f(z)) − z is the zero function on{z :
|z| > 1}.

Challenge 5:Derive automatically, and demonstrate the
validity of, either (10) or (11). In terms of Maple, we would
want to see Figure 7, rather than the actual Figure 6.

Figure 7. Ideal Maplesolve on inverting injective Joukowski

> solve(zeta = 1/2*(z+1/z), z)\
assuming abs(z) > 1

ζ +
√

ζ − 1
√

ζ + 1

In terms of derivation, the techniques of [17] seem worthy
of investigation, but the first author has been unable to do
this derivation satisfactorily by this route.

B. Joukowski (b)

Here the function is again given by (7).
Lemma 2:f is injective as a function fromH := {z :

ℑz > 0}.
As in Lemma 1, ifz 7→ ζ then1/z 7→ ζ, and there are no
other pre-images ofζ. If ℑ(z) > 0, ℑ(1/z) < 0, andf in
therefore injective fromH .

In fact,f is a bijection fromH to C\((−∞,−1]∪[1,∞)),
and hence has an inverse.

Again, it is not obvious from (8) alone thatfR is a
bijection, now from{(x, y)|y > 0}, i.e. that

∀x1∀x2∀y1∀y2

(

y1 > 0 ∧ y2 > 0∧
x1 + x1

x2
1+y2

1
= x2 + x2

x2
2+y2

2
∧

y1 − y1

x2
1+y2

1
= y2 − y2

x2
2+y2

2

)

⇒
(
x1 = x2 ∧ y1 = y2

)
.

(12)

Challenge 6:Demonstrate automatically the truth of (12).
It is likely that the ideas of [15] can do this, but again these
need automation.

We have the same challenge over the inverse off : again
formally it is f−1 ?

=ζ ±
√

ζ2 − 1, and the only challenge is
the± symbol: which do we choose? Here [11, (5.1-13), p.
298] argues for

f3(ζ) = ζ +
√

ζ − 1
︸ ︷︷ ︸

arg∈(−π/2,π/2]

√

ζ + 1
︸ ︷︷ ︸

arg∈(0,π]

. (13)

Challenge 7:Find a way to represent functions such as√

ζ + 1
︸ ︷︷ ︸

arg∈(0,π]

Fortunately this one is soluble in this case3, we can write√

ζ + 1
︸ ︷︷ ︸

arg∈(0,π]

= i
√

−ζ − 1
︸ ︷︷ ︸

arg∈(−π/2,π/2]

, and the latter is the normal

sqrt function of [3]. Hence we have an inverse function

f4(ζ) = ζ +
√

ζ − 1i
√

−ζ − 1. (14)

Challenge 8:Demonstrate automatically that this is an
inverse tof on {z : ℑz > 0}.
There is also the problem of deducing (14). One could try
automatic deduction on the lines of [17], but there is another
possibility: heuristic search followed by verificationif the
verification were feasible [18].

3And is probably soluble more generally, but the authors knowof no
general work on “alternative formulations”.

IV. A R EAL EXAMPLE

Just in case the reader thinks that the real numbers are
immune from these problems, consider the addition rule for
the inverse tangent, quoted as ([3, (4.4.34)] [4, (4.24.15)])

Arctan(x) ± Arctan(y) = Arctan

(
x ± y

1 ∓ xy

)

.

Despite the caveat in [4] that “The above equations are
interpreted in the sense that every value of the left-hand
side is a value of the right-hand side and vice versa”, it is
in fact the case that the ‘obvious’ two equations are true
separately,viz.

Arctan(x) + Arctan(y) = Arctan

(
x + y

1 − xy

)

(15)

Arctan(x) − Arctan(y) = Arctan

(
x − y

1 + xy

)

(16)

Consider (15): This is valid for the multi-valuedArctan,
but for the single-valuedarctan only when |1 − xy| < 1,
due to a “branch cut at infinity” ofarctan. Nevertheless, the
single-valued version of (15) is often cited as true: see for
example [19, (5.2.5)].

Over the reals, this is a non-challenge, the techniques of
[7] do solve it easily, and produce a counterexample.

V. SO WHY ARE THESE CHALLENGES?

A. Complex functions and branch cuts

These are difficult subjects, which have tended to be
brushed under the carpet. The first truly algorithmic ap-
proach is ten years old ([20], refined in [7]), and has various
difficulties.

1) At its core is the use of Cylindrical Algebraic De-
composition ofRN to find the connected components
of C

N/2 \ {branch cuts}. The complexity of this is
doubly exponential inN : upper bound ofdO(2N) [21]
and lower bounds of22(N−1)/3

[22], [23]. While better
algorithms for the connected components problem are
in principle known ([24] isdO(N

√
N)), we do not

know of any accessible implementations.
Furthermore, we are clearly limited to small values of
N , at which point looking atO(. . .) complexity is of
limited use. We note that the cross-over point between
2(N−1)/3 and N

√
N is at N = 21. A more detailed

comparison is given in [21]. Hence there is a need
for practical research on low-N Cylindrical Algebraic
Decomposition.

2) While the fundamental branch cut oflog is simple
enough, being{z = x + iy|y = 0 ∧ x < 0}, actual
branch cuts are messier. Part of the branch cut of (2)
is

2x3 + 21x2 + 72x + 2xy2 + 5y2 + 81 = 0 ∧
other conditions,

whose solution accounts for the curious expression in
(3). While there has been some progress in manipulat-
ing such images of half-lines (described in [25], [26]),
there is almost certainly more to be done.

B. Injectivity

Lemmas 1 and 2 might seem to be statements about
complex functions of one variable, so why do we need to
handle (or fail to handle) statements about four real variables
to prove them? There are three, rather distinct, reasons for
this.

1) The statements require the| · | function (Lemma 1)
or the ℑ function (Lemma 2), neither of which are
complex analytic functions. Hence some recourse to
real analysis (and therefore twice as many variables)
seems inevitable, though it would be nice to have a
more formal statement and proof of this.

2) Equations (9) and (12) are the direct translations of
the basic definition of injectivity. In practice, certainly
if we were looking at functionsR → R, we would
want to use the fact that the function concerned was
continuous.
Challenge 9: Find a better formulation of injectivity
questionsRN → R

N , making use of the properties of
the functions concerned (certainly continuity, possibly
rationality).

3) While equations (9) and (12) are statements from the
existential theory of the reals, and so the theoreti-
cally more efficient algorithms quoted in [21] are in
principle applicable, the more modern developments
described in [27] do not seem to be directly applicable.
However, we can transform then into a disjunction of
statements to each of which the Weak Positivstellen-
satz [27, Theorem 1] is applicable.
Challenge 10:Solve these problems using the tech-
niques of [27],

VI. CONCLUSIONS

The aim of this paper has been to demonstrate that
translating mathematical problems into programs may re-
quire some algebraic manipulations whose accuracy is not
as obvious as one might think, and whose verification is
currently not as straightforward as we would like, despite
the fact that their correctness is, in principle, decidable. A
summary is given in Table I.
These are, largely, concrete challenges that, we hope, will
spur practical advances in this domain.

ACKNOWLEDGEMENT

The authors would like to thank Acyr Locatelli, Gregory
Sankaran and Nicolai Vorobjov of the Bath Triangular Sets
seminar, as well as Scott McCallum (Macquarie U.) who
kindly visited us, for their input, Chris Brown (U.S. Naval
Academy) for [15], and the referees for their comments, but
the errors and omissions are all the authors.

Table I
CURRENT STATE OF THESE CHALLENGES

Challenge State
1 Mathematically solved by [7],

geometry taxes current solvers.
2 Mathematically solved by [7],

branch cut determination
not yet implemented.

3/6 Mathematically solved by [28, etc.],
geometry defeats current solvers.

4 Under development.
5/8 Mathematically solved [7], geometry defeats current

solvers, and is probably significantly harder than
in the previous problems.

7 Unknown: probably straightforward research project.
9 Unknown: research project.
10 Unknown: project for the authors of [27].

REFERENCES

[1] R. Cousot (Ed.), “Verification, Model Checking, and Abstract
Interpretation,”Springer Lecture Notes in Computer Science
3385, 2005.

[2] M. Martel, “An Overview of Semantics for the Validation
of Numerical Programs,” inProceedings Verification Model
Checking and Abstract Interpretation. Springer Lecture Notes
in Computer Science 3385, 2005, pp. 59–77.

[3] M. Abramowitz and I. Stegun, “Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables,
9th printing,” US Government Printing Office, 1964.

[4] National Institute for Standards and Technology, “The
NIST Digital Library of Mathematical Functions,”
http://dlmf.nist.gov, 2010.

[5] R. Corless, J. Davenport, D. Jeffrey, and S. Watt, “According
to Abramowitz and Stegun, or arccoth needn’t be uncouth,”
SIGSAM Bulletin 2, vol. 34, pp. 58–65, 2000.

[6] W. Kahan, “Branch Cuts for Complex Elementary Func-
tions,” in Proceedings The State of Art in Numerical Analysis,
A. Iserles and M. Powell, Eds., 1987, pp. 165–211.

[7] J. Beaumont, R. Bradford, J. Davenport, and N. Phisan-
but, “Testing Elementary Function Identities Using CAD,”
AAECC, vol. 18, pp. 513–543, 2007.

[8] M. England, R. Bradford, J. Davenport and D. Wilson, “Un-
derstanding branch cuts of expressions,”in preparation, 2013,
http://opus.bath.ac.uk/32511/.

[9] C. Chen, M. Moreno Maza, B. Xia, and L. Yang, “Computing
Cylindrical Algebraic Decomposition via Triangular Decom-
position,” in Proceedings ISSAC 2009, J. May, Ed., 2009, pp.
95–102.

[10] L. Paulson, “MetiTarski: Past and Future,” inProceedings
Interactive Theorem Proving, 2012, pp. 1–10.

[11] P. Henrici, “Applied and Computational Complex Analysis
I,” Wiley, 1974.

[12] D. Wilson, “Polynomial System Example Bank,”
http://opus.bath.ac.uk/29503, 2012.

[13] C. Brown, “QEPCAD B: a program for computing with semi-
algebraic sets using CADs,”ACM SIGSAM Bulletin 4, vol. 37,
pp. 97–108, 2003.

[14] G. Collins and H. Hong, “Partial Cylindrical AlgebraicDe-
composition for Quantifier Elimination,”J. Symbolic Comp.,
vol. 12, pp. 299–328, 1991.

[15] C. Brown, “Re: Query about QEPCAD,”Personal Commni-
cation to David Wilson, 2012.

[16] S. McCallum, “On Projection in CAD-Based Quantifier Elim-
ination with Equational Constraints,” inProceedings ISSAC
’99, S. Dooley, Ed., 1999, pp. 145–149.

[17] R. Corless and D. Jeffrey, “The Unwinding Number,”
SIGSAM Bulletin 2, vol. 30, pp. 28–35, 1996.

[18] S. Gulwani, “Why not use Heuristics?” Question at SYNASC
2012, 2012.

[19] D. Terr, “Math is Amazingly Powerful,”
http://www.mathamazement.com/Lessons/Pre-Calculus/05 ,
Analytic-Trigonometry/sum-and-difference-formulas.html,
2012.

[20] R. Bradford, R. Corless, J. Davenport, D. Jeffrey, and S. Watt,
“Reasoning about the Elementary Functions of Complex
Analysis,” Annals of Mathematics and Artificial Intelligence,
vol. 36, pp. 303–318, 2002.

[21] H. Hong, “Comparison of several decision algorithms for the
existential theory of the reals,” Tech. Rep. 91-41, 1991.

[22] C. Brown and J. Davenport, “The Complexity of Quanti-
fier Elimination and Cylindrical Algebraic Decomposition,”
in Proceedings ISSAC 2007, C. Brown, Ed., 2007, pp. 54–
60.

[23] J. Davenport and J. Heintz, “Real Quantifier Elimination is
Doubly Exponential,”J. Symbolic Comp., vol. 5, pp. 29–35,
1988.

[24] S. Basu, M.-F. Roy, M. Safey El Din, and E. Schost, “A baby
step-giant step roadmap algorithm for general algebraic sets,”
http://arxiv.org/abs/1201.6439, 2012.

[25] N. Phisanbut, R. Bradford, and J. Davenport, “Geometryof
Branch Cuts,”Communications in Computer Algebra, vol. 44,
pp. 132–135, 2010.

[26] N. Phisanbut, “Practical Simplification of ElementaryFunc-
tions using Cylindrical Algebraic Decomposition,” Ph.D. dis-
sertation, University of Bath, 2011.

[27] G. Passmore and P. Jackson, “Combined Decision Techniques
for the Existential Theory of the Reals,” inProceedings In-
telligent Computer Mathematics, J. C.et al., Ed., 2009, pp.
122–137.

[28] G. Collins, “Quantifier Elimination for Real Closed Fields by
Cylindrical Algebraic Decomposition,” inProceedings 2nd.
GI Conference Automata Theory & Formal Languages, 1975,
pp. 134–183.

http://dlmf.nist.gov
http://opus.bath.ac.uk/32511/
http://opus.bath.ac.uk/29503
http://www.mathamazement.com/Lessons/Pre-Calculus/05_Analytic-Trigonometry/sum-and-difference-formulas.html
http://www.mathamazement.com/Lessons/Pre-Calculus/05_Analytic-Trigonometry/sum-and-difference-formulas.html
http://arxiv.org/abs/1201.6439

	Post-Print Coversheet - IEEE
	DBEW12v2

