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Abstract: Real instrumentation of control systems in digital devices introduces the necessity of
considering quantization and sampling information used in the control and estimator design. The aim
of this study is designing a state estimator for uncertain second order nonlinear systems based on
the approximation enforced by differential neural networks (DNN) with quantized and time-varying
sampled output information. The effect of sampling output information is considered as a time-varying
delay. The DNN estimates the set of non-linearities in the system structure with the applications of an
adaptive approximation. A Lyapunov-Krasovskii functional served to justify the design of the law that
adjusted the weights of the DNN. The origin of the estimation error space is practically stable with the
approximation enforced by the DNN. Experimental results implement the DNN observer to reconstruct
the states of the Van Der Pol Oscillator. The estimation attained with the proposed observer is compared
with the results provided by classical linear observer. The evaluation of the least mean square error
demonstrates the superior performance of the solution suggested in this study. The Lyapunov-Krasovskii
methodology estimates the region of convergence depending on the sampled period and the level of
quantization.

© 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

The effect of sampled and quantized information in the design
of state estimators and controllers for nonlinear systems must
be considered in real applications, with channel restrictions
such as the case of networked processes (Tian et al., 2008).
When such control and estimator algorithms are implemented
in embedded devices and digital microprocessors (Wakaiki
et al., 2017), both the sampling and quantization play a relevant
role on the convergence of either the estimation or tracking
errors. The main objective of these applications is to avoid
the use of personal computers (Brockett and Liberzon, 2000)
in the real implementation of control and estimators. When
the systems are distant such as the case of networked control
systems, the sampling period is considered time-varying and
sometimes not bounded.

For linear systems, the design of sampled-data observer design
is not difficult due to the simple and exact available discretiza-
tion of such class of plants (Wang et al., 2017). However, in
nonlinear systems, the exact discretization is hardly attainable
and its explicit solution is complex. To overcome the prob-
lem of sampling in nonlinear systems, many observer design
techniques have been proposed and can be categorized into
three main directions: approximate discretization (Fu et al.,
2017), time-delay conversion, and exact discrete-time design
approaches (Bum Koo et al., 2016; Wakaiki et al., 2017).

There exist solutions/models that consider the delay as a poten-
tial tool to represent the sampling issue. Recent research consid-
ered the concept of Lyapunov-Krasovskii functionals (LKF) in-
stead of the usual Lyapunov functions to deal with the problem
of sampled available information with time varying sampled
periods (Fridman and Dambrine, 2009).

The application of LKF allows to handle the sampling operated
over the continuous-time system. This strategy can be used
in designing state estimation and control algorithms despite
the presence of discrete-time measurements. Moreover, the
solution of a Lyapunov stability analysis allows to estimate
the region of convergence for estimation and tracking errors
as a function of the quantization level and the maximum delay
between two consecutive measures (Poznyak et al., 2011).

The problem of state estimation becomes more difficult when
the mathematical description of the work is unavailable or
contains uncertainties, perturbations and the output information
is corrupted by bounded noises (Bum Koo et al., 2016).

For uncertain or no modelled system dynamics, adaptive tech-
niques have became an attractive tool to design controllers and
observers (Li et al., 2017; Folin et al., 2016). Among others,
differential neural networks (DNN) are widely used as suitable
approximation of uncertain nonlinear systems (Poznyak et al.,
2001). Moreover, recent studies deal with the problem of identi-
fication of nonlinear signals with delays in the available output.
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In this work, a stability analysis proposed a LKF to derive the
learning laws and to conclude about the zone of convergence of
the estimation error (Alfaro-Ponce et al., 2017).

This manuscript analyses the effect of sampled and quantized
output information in the observers design based on DNN for
nonlinear second order uncertain systems. The stability analysis
employs a Lyapunov-Krasovskii functional and it is capable
to obtain an estimation of the zone of convergence for the
identification error depending on the level of quantization an
the maximal allowed sampling time. Experimental results show
the behavior of the DNN observer tested on a Van Der Pol
oscillator, which is internally synchronized by a high order
sliding modes controller (Ahmed et al., 2018).

2. SECOND ORDER SYSTEMS WITH SAMPLED AND
QUANTIZED OUTPUT INFORMATION

2.1 Class of nonlinear systems

Consider the following locally stable second order system
(Khalil, 1991) system

X1 =x2, JXp=f(x1,x2,8)+gxr,x2)u, y=x1+& (1)
where x 1= [x] xz]T € 2 C R? is the state state vector for any
time ¢ > 0 with initial conditions x1(0) = x1 ¢ and x2(0) = x20,
f:RxRxR; — R is a Lipschitz function that describes
the dynamics of system (1), g : R Xx R — R is the function
associated to the input signal u € R. The variable j € R” is
the output of the system (1) corrupted by a bounded noise
represented by & € R. This paper considers that the system (1)

fulfils the following assumptions:

Al. The signal input belongs to the following admissible set
UAdm = Lu ) < x| +un) 2)

with uy,u; being two positive constants. Notice that the
admissible control set includes state feedback controllers
and even discontinuous controllers like sliding modes.
Moreover, the control signal u enforces that the equilib-
rium point of (1) is stable at least. Therefore the condition
llx||? < x* is valid

A2. The output perturbations £ are bounded and therefore,
they fulfil the next inequality

Q:E* <1, V>0, Q¢€eR" 3)
A3. The available output y is the product of applying the
operations of sampling and quantifying over the output

¥. The variable y defines the sampled output of § which
satisfies

.)_/ = Zy(tk)x[lk.lk+1) (4)
T
The function “lit1) () performs the sampling opera-
tion over the output ¥, and it is defined as

PN L A e
litics1) 0 otherwise

In consequence, y is the piece-wise constant function
obtained by sampling and holding the output y at the
discrete instants #;. The actual system output at time 7 is
y € R obtained by quantified the sampled signal ¥, that is,
y = nt(¥). Formally, let Y C R be a countable set of all
possible values of the output y and the function 7 : R — Y

. k=0,1,2,...

is defined as a projector operator, that is 7w o 7(¥) = 7 (¥).
The image of 7 is a discrete subset of R.

A4. The sampling intervals are not regular. However, there
exists a maximum sampling interval / defined as

h:= m]?x(tk—i—l,tk) 5)

AS5. The quantization error is bounded, i.e., there exists a
positive finite scalar ¢ such that

5\ _5[2
¢:=max|7T(y) — 6
may |7(¥) —¥lo, (©6)
where Q) € R is a positive scalar.

According to the assumptions A1-AS5, the objective of this
paper is to design a state observer for the partially unknown
system described in equation (1) considering a sampled and
quantized available output such that, the closed-loop trajecto-
ries of the estimation error defined as A = £ — x remains inside
a set centered at the origin in spite of the presence of noisy
quantized sampled output and uncertainties.

2.2 Neural network representation

The system in (1) can be represented as

X1 = X2, X2:f0(x,t|®)+f~(x,l|®)

F,110) = fx1.x0.0) + g — fo(x.f}@) 7

where f(x,t|®) represents the nominal dynamics selected ac-
cording to designer desires and f is a vector field correspond-
ing to the modelling error. We define the parameters © :=
[a,w},w5] (@ € R™(H1)y that shall be adjusted to enforce
the convergence of the DNN to the trajectories of system (1).
According to the DNN approach developed in (Poznyak et al.,
2001), we define the nominal dynamics as

fol,110) = ax+wio (x) +w3o (D) ®)

Here, the components of a, namely a; € R_, w] € R! and
wy € R/ are the best fitted values needed to reproduce the
dynamics of system (1). 6 : R> = R/ and ¢ : R> — R/ are the
activation functions for the DNN structure, that is:

-1
T »
oj(x) = dg; (ler(,je “oj ) +dg;,

g\
9;(x) == ag; <1+b¢_/e ! ) +dy,, 9)
j=1,2,...,1
ag,,ag,,be, by,,ds,,ds, €R, Co5Cop € R?

All the sigmoid functions considered in this study are continu-
ous and each one of them satisfies the following condition

lo(x) = o () || <Lo|lx — '
19 (x) = ¢ ()| <Ly |lx— x|

where Ls,Ly € R,. Additionally, by the nature of this class of
activation functions, the next condition is also satisfied

[cx) <o’  llo@)|<¢™, VxeZ (11)

With o*,¢" € R,. The class of no modelled dynamics are
assumed bounded, that is

IFt@), < F*

(10)

12)
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where f* € R,. In general, the weights wi (i =1,2) are
unknown. However, they are bounded as

W) TA Wi < (13)

Ay, € R™" is a known positive definite and symmetric matrix
and W; € R™" is a given matrix.

2.3 Problem formulation

The problem considered in this paper is to design an asymptotic
observer that generates the estimates £ based on the measure of
the state y with quantized and sampled output information. The
design includes the development of adaptive learning laws for
the adaptive based DNN observer. The main goal is to fulfil the
following condition
lim || £ —x|| < &, geRy (14)
t—>oo
3. DIFFERENTIAL NEURAL NETWORK OBSERVER
WITH SAMPLED AND QUANTIZED OUTPUT

3.1 DNN Observer

Following the solution proposed in (Poznyak et al., 2001), the
DNN identifier satisfies the following structure

£ =AR+Wio(R)+Wao(R)u+LGF—-y), F$= Ci (15)

with initial condition £(0) = £y € R? and the following param-
eters

A:[gcﬂ, Wi=Mwi, M=[01", peR_ (16)

Special updating (learning) laws W; = ®(W;,£) actualize the
values of the free parameters of system (15).

3.2 Learning laws for the DNN observer

Let define the output error as e = ¥ —y. Then, the adaptive
learning laws ®;(W;,£|W*) for the free parameters W; with
i = [1,2] is given by (the procedure to obtain the learning law is
given in the proof of Theorem 1)
Wi = —aW; —k;'PN; We'C"—
wle P (A, + Qw, ) PW 2,7

¥y = ¢(£)u

A7)

i:[172]7 TIZG(XA)7

Here, 0 < Qw, = Oy, € R?? and 0 < Ay, = Ay, € R”2. In
the last equation, W;(0) = W? are the known initial conditions
for the weights. The terms k; are the learning coefficient of the

DNN observer and P is the solution of the matrix inequality
(18):

[0, @, 0 —P PLC 0 0
@ —2P 0 P PLC P P
0 0 —h*s 0 0 0 0
Q=|-P -P 0 -Q; 0 0 0
PLC PLC 0 0 -0, 0 0 (18)
0o P 0 0 0 —Qw O
Lo P 0 0 0 0 —Owl

@ :=PA+A"P+PLC+C'L"P+PRP+Q,
@) = PA+PLC

With the following parameters
Q: =N, (Agl +Ag)Nu,  R=Aw, +Aw,,

N = (Bl +CCT)71 1)

and S, Q,, Wf~, Ow, and Qyw, being positive definite matrices
with dimension 2 x 2.

3.3 Estimation result

The following Lemma is used to develop the stability proof:
Lemma 1. (Jensen’s inequality)(Poznyak et al., 2011) For any
matrix R"*", scalar & > 0 and a vector function ¢ : [—h,0] —
R" such that the integrations concerned are well defined, the
following holds

0 0 -0
[ o6 Ro)as = [ oTwask [ (s)as

The next theorem summarizes the theoretical result for the state
and input identification

Theorem 1. Consider the nonlinear system defined in equation
(1) and the DNN observer defined in (15) together with the
learning laws in (17). If the matrix inequality defined in (18)
is feasible for a positive definite solution P = PT > 0, then,
the equilibrium point of the estimation error e is practically
stable with an ultimate invariant set Z centered on the origin
and defined as

==, B:=1+(W)"T¥"+ " +c,
Proof 1. Consider the following LKF
V(A,AW;) =AT PA+ kitr {WFWi} +

0 t
h / / e®6DAT (5)SA(s)dsd® (1)
=—hJs=t+6

acR, (20)

With i = 1,2. The estimation error is defined as A := £ — x. The
time derivative of the functional (21) is the following

0 ot
V(1) =2AT PA— ath / / e®6 AT (5)SA(s)dsd 0 —
—hJt+6

t
h/ e®U AT (5)SA(s)ds + h2AT (s)SA(s)+
t—h

otr {WFW,-} (22)
The dynamics of the estimation error are defined as
A=AA+W0(%) +Wa(t)d (R)u+ (W) T 6+
W3) " GutL(—y)—f (23)

In equation (23) f is the simplified notation for f(x,#|0). Let
apply the method proposed by (Fridman and Dambrine, 2009)
known as the Descriptor method which consist of adding the
following null term

G(A,A) = (2ATP+ zATP) (AA+Wy0(2) + Wa (1) ()u) +
<2ATP+ 2ATP) ((W;)T& + (W;)quu) +
(2ATP + ZATP) (LE—y)—F—4) (24)

To introduce the effect of the quantized and sampled output let
add and subtract the term ¥ into the descriptor term
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D(AA) = (ZATP+ 2ATP) (AA+ W0 () + Wa () (£)u) +
(2ATP+ 2ATP> ((Wl*)Ta + (W;)Téu) +

(2ATP ¥ 2ATP) (LCA+LCSy—f—A)  (25)

In equation (25), the term LCJy represents the difference be-
tween the real available output and the output without being
sampled and quantized as it was described in assumption AS.
Based on this result, and the addition of the term oV — «V, the
equation (22) is transformed into

V() < —aV +2AT PA+ATPA+ ak; {WJW,} -

!
h| e* AT (5)SA(s)ds +h*AT (s)SA(s)+
t—h

+ 2k {WTWip + (28T Px+2ATP) (- - 4) +
(2ATPx+ 2ATP) (AA+ W10 (%) + Wa(1)9 (£)u) +
(2ATPx + ZATP) ((Wl*)Té + (Wz*)T(ﬁu) +
(ZATPx + ZATP) (LCA+ LCSy)

By the Lemma 1 the term /4 [/ , e*5~ AT (5)SA(s)ds becomes:

t t 13
—h [ e®IAT(5)SA(s)ds < —he®™ [ AT(s5)S [ Als)

t—h 1y 1

Defining the extended state vector 1 as

mi= a7 AT ([ Awan” T T )" (v -
(AT AT (A(kt)_A(tk)T FT oyt (wie)" (Wigu)']
Equation (22) becomes into
v =—av+ ok {W, W |+ 26 { W W } +
N QN+ 24T PW o (%) +2AT PW ¢ (%)u+

2ATPW; & +2AT PW[ G +2AT PWS duWsdu  (26)
With Q; defined as
—0)11 12 0 —P PLC 0 0]
o, 2P 0 —PPLCPP
0 0 —-A*s 0 0 00
Q:=|-P —P 0 0 0 00
PLC PLC 0 0 0 00
0 P 0 0 0 00 (27)
L0 P 0 0 0 00]

o =PA+A"P+PLC+C'L'P
wo=A"P+C'L"P

To introduce the output error e(¢) := § —y in the Lyapunov
analysis, let us apply the following identity

A= NyCe+ PNy A+ N, CE (28)

With ¢ a small number and N, defined in (19). Then, the term
2AT PW 6 (%) turns into:
2ATPW6(£) =2¢ CTN,PW G (%) + AN, PW o (£)+
ETCTN, PWio (%) (29)

Assume that we may consider an off-line training that gives an
approximation of W;*. With an appropriate training, it is possi-
ble to define W, = W; — W?. Where W? are the weights obtained
from the off-line training algorithm. Adding and subtracting the
term 2AT PW? o (%), equation (29) becomes into

2ATPW 0 (%) =2¢" CT N, PWi6(%) + uATN,; PW 0 (£)+
ETCTN, PW o (%) +2AT P (WP —W;) o (%)
(30)
With the same arguments 2A " PW»¢ (£)u is described by
2ATPWy9 (£)u=2¢" CTNyPW2 g (£)u+ uAT Ny PWr (£)u+
ETCTN, PWro(£)u+2AT P (W5 —Wy) ¢ (£)u
(31)

Based on the definition of ¥ and W, as in equation (17) and
considering the application of the inequality

0
XTy + (XTY) <XTA "X +YTAY,
X, Y c Rpxs’ A c RSXS

(32)

The next result is obtained using the inequality given in (32) a
number of times

V< —aV+ak {WITW,} + 2k; {WITWI} +1'Qn+
2¢" C"NyPW; + u¥] W:PAy PW; ¥, +

+ETAG E+P (W — W) AL (W2 — W) (33)

where Ay = Ay +Ny,CApC'N, and Q, = Q,+ diag
{NJA.;IN” + PAwP,0,0,0,0,0,0}. Notice that, by assump-
tion Al the selection Ay = Q¢, ' Q& < 1 and (W7 —
Wf‘)‘I’,»Hf\,1 < (W?)"W/. Adding and subtracting the terms
w
1715,
V<—aV+ak {WTW} +2Kk; {WTWi} rnTont
2¢ " CTN,PWY; + u¥; W;PAyPW, W+
L (W) P+ R, + Ay, + (Wi,

Ay||éy, ||WZ‘I—‘,H2QW1 equation (34) turns into

(34)

where Q := Q, + diag{0,0,0, —07,—0y,— 0w, —QOw, }. Con-
sidering that for any two vectors ri,r» € R" and a matrix
A € R™" the identity rlTArg = tr(rlTArz) = tr(ArlTrz) holds,
the simplified version of inequality (34) is

Vg—aV+ﬁ+ki{WiTLWi}+nTQn (35)

where f is given by 8 := 1+ (W)"W* f+ 4+,
and Ly, by
Ly, = kWi + kW + PN Wie CT + P (A, + Qw, ) PW® T

Lets consider that Ly, = O (based on the learning laws that

adjust the weights), if the feasible matrix P = P' solution of
the matrix inequality Q < 0, then, the inequality (35) turns into
V < —aV + . By the comparison principle Khalil (1991) one
finally obtains

V(t) <e *V(0) —|—g (1—e ) (36)

Based on the previous result, the following upper limit lim;_,c
V() = g finalizes the proof.
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4. EXPERIMENTAL RESULTS

To illustrate the estimation performance of the DNN observer
under the operations of sampled and quantized output, let us
consider the Van Der Pol Oscillator given by the following set
of differential equations

x| = xp, xzz—xl—kk(l—x%)—{—u, y=2x 37

where K is the model parameter equal to 0.1. Figure 1 shows
the electronic circuit and the computer interface. The circuit
parameters can be found in (Ahmed et al., 2018). The computer
interface employs a dSPACE 1104 board. The Van Der Pol
oscillator is internally controlled by a Continuous Singular
Terminal Sliding-Mode (CSTSM) controller given by

] 2
¢©=x2—Yq+ka[x1 —ya]3

=g 4x — 0 (1-23) —ki [@) 2 +2
z=—ki[o]°

where y,; is the desired trajectory to follow, z is an extended
variable, k; = 4,k, = 3 and k3 = 2 are design parameters. The
dSPACE board runs at 5KH and the controller was imple-
mented with an Euler integration method.

(38)

Circuit diagram of Van der Pol oscillator

Xy X2
Van der Pol
Oscillator
u

Analog
u
input

dSPACE > MATIAR
- ¢

Fig. 1. Schematic overview of the practical implementation and
circuit diagram of an autonomous Van Der Pol oscillator.

The DNN observer was implemented with different sampling
times and quantization values to compare its performance.
The sampling times selected for comparison purposes were
0.0018 and 0.018 seconds. The levels of quantization were
chosen as 0.0001, 0.001 and 0.05. These values were chosen
to show a significant effect of the operations of sampling and
quantization in the experimental results. Moreover, a classical
linear observer with the following structure was proposed as
)?LL =%+ Gi(J—y) and )éz_,L = G,(§ — y). The estimates
of the states obtained by this observer are compared with

the performance of the DNN observer, where G; = —20 and
G, = —55 are the gains of the observer. The values used in the
activation functions in the DNN observer were
0.5
agl :40, bGl == 1, CGI == |:05:| 5 dcl = _0.5,
25
agz = 12, bGZ == 1, Ccz = |:25:| 5 dGz = _0.5,
ap, =10, by =1, co = {8%} . dy, =—0.65,
ag, =15, by, =1, ¢y = B%g} y o dgy =—0.1,

The matrices A and P were selected as

0 1 60 40
A= [—0.01 —1000} , P= {40 106}

The learning coefficients are chosen as k; = k; = 0.8 and
o =001, u = 0.5 Ay, = Qw, = hhxs and L = [12.5 10.9]".
Figure 2 shows the state estimation of the Van Der Pol oscillator
for different sampling times and levels of quantization, with
the values of 7 =0.00018 and ¢ = 0.0001, the DNN observer
estimates the unmeasurable states with better precision than the
linear observer.

Fig. 2. State estimation of the Van Der Pol states by means of
DNN and Luenberger observer at different sampled times
and quantization levels. The blue continuous line is the
real experimental measurement, the dashed black line is
the estimation provided by the DNN. The dotted red line
is the linear response obtained with a classical Luenberger
observer with unknowledge of the mathematical descrip-
tion.

The DNN reconstructs the states after a small period of learning
time smaller than the time of 0.1 seconds. The value of matrix
P allows to have a faster adaptation. When the sampling period
and the quantization levels are augmented by 10 times, the
evolution of time of the DNN observer and the linear observer
exhibit almost a similar behavior that in the previous case.
However, there exists oscillations with larger amplitudes in the
state estimation process with these values. This is evident when
the Euclidean norm of the estimation error is plotted.

Figure 3 shows the performance index (Euclidean norm) of
each observer at different sampling time and levels of quan-
tization. The second graph shows oscillations with larger os-
cillations as a consequence of the increment in the sampling
period as it was described before. Based on a sampling period
7 = 0.0018 and quantization level of g = 0.05, the estimation
of the unmeasured states by the DNN presents oscillations of
a very large oscillations at each measured output. At the first
sight, it seems that the linear observer has better performance.
However, is one considers a closer view (see figure 4), the state
estimation process with the DNN observer shows oscillations
with large values around the real trajectories.

Figure 4 also presents the output used in the training of the
DNN. Notice, that the DNN adapts its trajectories to the partic-
ular square shape (consequence of the sampled and quantized
output) in the available output. The linear observer has per-
manent steady state error. The experimentation shows a better
estimation when the DNN is applied.
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[le(@)1?

[le@)1?

lle(O11*

time (s)

Fig. 3. Euclidean norm of the estimation error for different sam-
pled times and quantization levels. The effect of sampling
is clearly evidenced in the oscillations of the estimated
states. The upper bound of oscillations is estimated by the
stability analysis developed in this study.

Iy

= Real
= Quantized
= =DNN

weneennes Linear

time (s)

)

....... e Rl
e (Quantized
= = DNN

wvseneens Linear

011

021

03 I I I I I |
35 4 45 5 55 6 6.5

time (s)

Fig. 4. Closer view to the state estimation process with sampled
period T = 0.0018 and quantization level g = 0.05. This
graph includes the available output used in the estimation
process. Notice that DNN is slightly affected by the sam-
pling process but still its trajectories follow the sampled
states evolution.

5. CONCLUSIONS

This manuscript presents the analysis of a DNN observer under
the operations of sampled and quantized output. The stability

analysis by LKF allows to define the zone of convergence for
the estimation error dependent of the maximal sampled time
and the admissible value of quantization. This analysis is cru-
cial in real implementations, when the observers and possible
control designs are embedded in digital processors and the
problems of digital quantization becomes a problem. Further
research has to be oriented in the design of controllers based
on the estimated states and the applications of optimization
procedures to reduce the zone of convergence for the estimation
error.

REFERENCES

Ahmed, H., Salgado, I., and Rios, H. (2018). Robust syn-
chronization of master-slave chaotic systems using approx-
imate model: An experimental study. ISA transactions. doi:
https://doi.org/10.1016/j.isatra.2018.01.009.

Alfaro-Ponce, M., Argiielles, A., and Chairez, 1. (2017).
Windowed electroencephalographic signal classifier based
on continuous neural networks with delays in the in-
put. Expert Systems with Applications, 68, 1 — 10. doi:
10.1016/j.eswa.2016.08.020.

Brockett, R. and Liberzon, D. (2000). Quantized feedback sta-
bilization of linear systems. IEEE Transactions on Automatic
Control, 45(7), 1279-1289.

Bum Koo, G., Bae Park, J., and Hoon Joo, Y. (2016). Decen-
tralized sampled-data fuzzy observer design for nonlinear in-
terconnected systems. IEEE Trans. on Fuzzy Systems, 24(3).
doi:10.1109/TFUZZ.2015.2470564.

Folin, T., Ahmed-Ali, T., Giri, F., Burlion, L., and Lamnabhi-
Lagarrique, F. (2016). Sampled-data adaptive observer for a
class of state-affine output-injection nonlinear systems. IEEE
Trans. on Aut. Ctrl., 61(2), 462-467.

Fridman, E. and Dambrine, M. (2009). Control under quanti-
zation saturation and delay: An LMI approach. Automatica,
45(10), 2258-2264. doi:j.automatica.2009.05.020.

Fu, X., Kang, Y., and Li, P. (2017). Sampled-data observer
design for a class of stochastic nonlinear systems based on
the approximate discrete-time models. IEEE/CAA journal of
automatica sinica, 4(3), 507-511.

Khalil, H. (1991). Nonlinear Systems. Prentice Hall, Upper
Saddle River, NJ.

Li, H., Bai, L., Wang, L., Zhou, Q., and Wang, H. (2017). Adap-
tive neural control of uncertain nonstrict-feedback stochastic
nonlinear systems with output constraint and unknown dead
zone. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 47(8), 2048-2059.

Poznyak, A., Sanchez, E., and Yu, W. (2001). Differential Neu-
ral Networks for robust nonlinear control. World Scientific
Publishing Co. Pre. Ltd.

Poznyak, A., Azhmyakov, V., and Mera, M. (2011). Practical
output feedback stabilisation for a class of continuous-time
dynamic systems under sample-data outputs. International
Journal of Control, 84(8), 1408—1416.

Tian, E., Yue, D., and Chen, P. (2008). Quantized output
feedback control for networked control systems. Information
Sciences, 178(12), 2734-2749.

Wakaiki, M., Zanma, T., and Liu, K.Z. (2017). Quantized out-
put feedback stabilization by Luenberger observers. IFAC-
PapersOnLine, 50(1), 2577-2582.

Wang, X., Yu, H., and Hao, F. (2017). Observer-based distur-
bance rejection for linear systems by aperiodical sampling
control. IET Ctrl. Theory and Appl., 11(10), 1561-1570.



	Coversheet Template
	1-s2.0-S2405896318310826-main

