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Abstract 

There is ample evidence that stock returns exhibit non-normal distributions with high skewness 

and excess kurtosis. Experimental evidence has shown that investors like positive skewness, 

dislike extreme losses and show high levels of prudence. This has motivated the introduction 

of the four-moment Capital Asset Pricing Model (CAPM). This extension, however, has not 

been able to successfully explain average returns. Our paper argues that a number of pitfalls 

may have contributed to the weak and conflicting empirical results found in the literature. We 

investigate whether conditional models, whether models that use individual stocks rather than 

portfolios, and whether models that extend both the moment and factor dimension can improve 

on more traditional static, portfolio-based, mean-variance models. More importantly, we find 

that the use of a scaled co-skewness measure in cross section regression is likely to be spurious 

because of the possibility for the market skewness to be close to zero, at least for some periods. 

We provide a simple solution to this problem. 
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Some Extensions of the CAPM for Individual Assets 

1. Introduction 

The Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965) has been                          

a major player in empirical asset pricing for more than half a century. Its simplicity and 

theoretical appeal appear to have strongly outweighed the paucity of empirical evidence in its 

favour. The extant body of existing empirical work has largely rejected the CAPM (Lintner, 

1965; Douglas, 1969; Black, Jensen and Scholes, 1972; Fama and MacBeth, 1973; Fama and 

French, 1992). Of course there is no shortage of explanations. One of these is that beta is not 

the only relevant systematic risk. Basu (1977) finds that the earnings-price ratio has additional 

explanatory power for average returns. Similar conclusions were reached by Banz (1981) for 

market capitalization, Bhandari (1988) for leverage, and Rosenberg et al. (1985) for the book-

to-market ratio. 

The quest for explaining average stock returns has led to extensions of the traditional CAPM 

in two main directions. The first was based on the fact that the CAPM is actually a conditional 

model. As Jagannathan and Wang (1996) emphasise, the CAPM may not hold unconditionally 

even if the CAPM held conditionally. Conditional versions of the CAPM have had limited 

incremental success (Lettau and Ludvigson, 2002). 

A second direction focused on the specification of the empirical model by adding more proxies 

for systematic risks. The most notable study in this direction is Fama and French (1993), who 

introduce a three-factor model with the market portfolio and two other factors: SMB (the return 

of a portfolio of small minus big capitalisation stocks) and HML (the return of a portfolio of 

high minus low book-to-market ratio stocks). Carhart (1997) extends the Fama and French 

three factor model by adding a momentum factor based on previous stock performance, thereby 

providing the most popular model in empirical asset pricing. Carhart’s  model is criticised by 

Lewellen et al. (2006) who observe that the abundance of models capable of explaining the 

CAPM’s empirical failures suggests that it is relatively easy to discover variables correlated 

with size and book-to-market ratio, and also that the R-squared is an inappropriate model test 

measure. 

While the Fama-French-Carhart approach extension focuses on using portfolios other than the 

market, some studies argued that the problem lies in the limits of covariance (beta) risk to fully 

represent systematic risk and not in the choice of the market or non-market portfolios. Kraus 
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and Litzenberger (1976) pioneered extensions based on increasing the moments of the investor 

optimisation problem, and introduced skewness into the CAPM. Harvey and Siddique (2000) 

used a conditional skewness formulation. The fourth moment, kurtosis, was introduced by 

Dittmar (2002). 

Single factor (market portfolio) multi-moment models are theoretically more appealing than 

multi-factor single moment models. Multi-moments models are grounded in theory, and can 

be derived either from a utility optimisation or a statistical optimisation perspective. A stylized 

fact in finance is that stock returns are far from normally distributed. There is evidence that 

returns are both skewed and leptokurtic (Taylor, 2005). However, the standard CAPM implies 

elliptically distributed returns and/or investors that have a quadratic utility function. 

Consequently, the inclusion of skewness and kurtosis in asset pricing models should help 

investigators mitigate the limitations of the mean-variance only approach. Adopting a multi-

moment approach, therefore, enriches the internal validity of asset pricing models by allowing 

for a richer set of systematic risks. In other words, the traditional CAPM might be misspecified, 

and thus might not be able to explain satisfactorily the cross-section of average stock returns.  

From a utility theory perspective, the standard CAPM imposes a quadratic utility function on 

investors. Theoretical arguments suggest the preference of economic agents for positive 

skewness and aversion to large losses (Fang and Lai, 1997; Kahneman and Tversky, 1979). In 

Kahneman and Tversky (1979) prospect theory investors attribute more weight to losses than 

to gains. More flexible utility functions have been shown to be consistent with skewness 

preference and kurtosis aversion (Dittmar, 2002; Kraus and Litzenberger, 1976; Arditti, 1967).  

In practice, the distribution of returns and the shape of the tails of such a distribution have 

become a matter of concern for investors and regulators in recent years. Indeed, since the 

October 1987 stock market crash, extreme gains and losses have become common features of 

financial markets. The world has seen major crises in 1997 (the Asian financial crisis), 2000 

(the high-tech bubble crisis), 2008 (the credit crunch), and 2010 (the sovereign debt crisis). 

Higher moments based models are therefore more likely to capture the crises-related systematic 

risks exhibited by modern financial markets. 

Our contribution is twofold. First, we integrate both directions, extending the factors as well as 

the moments, and use these in a conditional setting. We recognise that the truth can be complex. 

First, the true market portfolio is unobservable and replacing it with a proxy can lead to missing 

factors that may well be correlated with portfolios such as Fama and French (1993) small-



 

5 
 

minus-big (SMB) and high-minus-low (HML) portfolios. Second, using a static 

(unconditional) CAPM when the true model is conditional can also give rise to a second factor 

(Jagannathan and Wang, 1996). Thus, even if investors were optimising in a mean-variance 

world, beta alone may not be sufficient to explain average returns. Third, investors may well 

be optimising in a mean-variance-skewness-kurtosis world, which would give rise to missing 

systematic risks from the empirical CAPM. Using a four-moment CAPM would therefore 

mitigate this limitation. 

Our second contribution is to demonstrate the advantage of using individual stocks, rather than 

portfolios of stocks, in empirical tests of asset pricing models. The common practice when 

testing asset pricing models is to build portfolios of stocks and then investigate the return-beta 

relationship in cross-sectional regressions. More recently, Ang, Liu, and Schwarz (2008) 

suggest that focusing instead on individual stocks leads to more efficient tests of factor pricing. 

The common practice in empirical asset pricing of forming portfolios has been motivated by 

an attempt to reduce beta estimation errors, as doing so reduces idiosyncratic risk. However, 

Ang et al. (2008) argue that the reduction in standard errors of the estimated betas does not lead 

to more precise estimates of the risk premia. Rather, forming portfolios causes a lower 

dispersion of the estimated betas and a loss of information that, together, result in higher 

standard errors in the premia estimates. These authors find that the annualized beta premium is 

significant and positive when testing for individual stocks, whereas the construction of 

portfolios results in a negative and insignificant beta premium. Furthermore, with individual 

assets there is greater beta dispersion and therefore more information available for the cross-

sectional estimation of the risk premium, leading to better precision (Kim, 1995). Finally, the 

focus on individual assets is more consistent with the single period investment assumed in the 

CAPM.  

Our paper is similar in its purpose to Chung et al. (2006) and Lambert and Hubner (2013). 

Chung et al. (2006) use up to 10 higher co-moments using portfolios as test assets. We take a 

different route by limiting ourselves to co-skewness and co-kurtosis. These moments are 

intuitive and easily interpretable from an investor’s perspective. Our choice is also driven by 

the need to achieve parsimony -- which helps alleviate error-in-variable and multicollinearity 

problems. Like our paper, Lambert and Hubner (2013) avoid using moments higher than the 

fourth, but use portfolios rather than individual assets. Their approach is based on building 

mimicking portfolios that represent investment strategies in a similar fashion to Fama and 

French (1993). Although this approach has its merits, we believe our individual asset testing 
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approach avoids the limitations associated with building portfolios, such as transaction cost 

and liquidity considerations. Moreover, our contribution is in the spirit that the existence of 

competing approaches can enrich the asset pricing literature by providing alternative ways of 

testing asset pricing models. 

The remainder of the paper is structured as follows. In section 2 the general four-moment 

CAPM is briefly outlined. Section 3 discusses the literature underpinning the higher moment 

CAPM. In sections 4 and 5 respectively, the data and the methodology are introduced. Section 

6 presents the empirical results. Finally, section 7 summarises and concludes. 

 

2. The four-moment CAPM 

The CAPM states that the expected excess return on any stock 𝑖 is proportional to systematic 

risk (beta)  

𝐸(𝑅𝑖) = 𝑅𝑓 + [𝐸(𝑅𝑚) − 𝑅𝑓]𝛽𝑖,𝑚               (1) 

where 𝐸 is the expectation operator, 𝑅𝑖 is the return to stock 𝑖, 𝑅𝑚 is the return to the market 

portfolio, 𝑅𝑓 is the risk-free rate, and 𝛽𝑖,𝑚 is the scaled covariance between the returns of stock 

𝑖 and the market.   

The four-moment CAPM has been derived in a variety of ways (see for example Fang and Lai, 

1997; and Jurczenko and Maillet, 2001). Both expected utility optimisation (Jurczenko and 

Maillet, 2001) and mean-variance-skewness-kurtosis frontier optimisation (Athayde and 

Flores, 1997) have been employed. Let 𝑅𝑖𝑡 be the simple return of asset or portfolio i at time t 

and 𝑅𝑓𝑡 be the return to the risk free asset at time t. Denote the mean return of portfolio p as 

𝐸(𝑅𝑝𝑡). Then the variance, skewness and kurtosis of a portfolio p are given, respectively, by 

      𝜎2(𝑅𝑝) = 𝐸[𝑅𝑝 − 𝐸(𝑅𝑝)]
2

        (2) 

𝑠3(𝑅𝑝) = 𝐸[𝑅𝑝 − 𝐸(𝑅𝑝)]
3
 (3) 

𝑘4(𝑅𝑝) = 𝐸[𝑅𝑝 − 𝐸(𝑅𝑝)]
4
 (4) 

 

We may also be interested in the contribution of a given asset to total (portfolio) skewness and 

kurtosis. Coskewness and cokurtosis are the counterparts of covariance. The coskewness and 

cokurtosis between asset i and portfolio p are defined as follows: 
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𝐶𝑜𝑠(𝑅𝑖, 𝑅𝑝) = 𝐸 {[𝑅𝑖 − 𝐸(𝑅𝑖)][𝑅𝑝 − 𝐸(𝑅𝑝)]
2

} (5) 

𝐶𝑜𝑘(𝑅𝑖, 𝑅𝑝) = 𝐸 {[𝑅𝑖 − 𝐸(𝑅𝑖)][𝑅𝑝 − 𝐸(𝑅𝑝)]
3

} (6) 

An asset that exhibits positive coskewness tends to perform well during volatile periods and is 

therefore considered less risky, whereas an asset with positive cokurtosis tends to suffer larger 

losses when the market is volatile and is therefore considered more risky. A mean-variance-

skewness-kurtosis optimisation (see for example Jurczenko and Maillet, 2001) implies the 

following four-moment CAPM 

𝐸(𝑅𝑖) − 𝑅𝑓 = 𝜆𝛽

𝐸(𝑟𝑖 ∙ 𝑟𝑚)

𝐸(𝑟𝑚
2)

+ 𝜆𝑠

𝐸(𝑟𝑖 ∙ 𝑟𝑚
2)

𝐸(𝑟𝑚
3)

+ 𝜆𝑘

𝐸(𝑟𝑖 ∙ 𝑟𝑚
3)

𝐸(𝑟𝑚
4)

= 𝜆𝛽𝛽𝑖 + 𝜆𝑠𝛾𝑖 + 𝜆𝑘𝛿𝑖       

     

(7) 

where 𝑟 ≡ 𝑅 − 𝐸(𝑅).  

It follows that for every security i, the expected excess return can be written as a linear function 

of the three co-moments of the asset returns with the market portfolio: 𝛽, 𝛾, and 𝛿. The 

coefficients 𝜆𝛽, 𝜆𝑠 and 𝜆𝑘 are interpreted as risk premia. A positive risk premium for beta is 

expected as investors require higher returns for higher systematic beta risk. As for gamma, if 

the market portfolio returns have negative skewness, investors should prefer assets with lower 

coskewness and dislike assets with higher coskewness. If market portfolio returns have positive 

skewness, investors prefer assets with high coskewness which as a result become more valuable 

and therefore a negative coefficient for 𝜆𝑠 is expected as investors are willing to forego some 

returns for positive skewness. Finally, a positive risk premium is expected for systematic 

kurtosis as investors require higher compensation for assets with a greater probability of 

extreme outcomes (Fang and Lai, 1997).  

 

3. CAPM extensions in the literature  

Extensions of the mean variance framework have a long history in the academic literature. 

Arditti and Levy (1972) show that non-increasing absolute risk aversion implies investor 

preference for positive skewness, while Rubinstein (1973) provides a model in which expected 

returns are equal to the weighted sum of higher co-moments. Horvath (1980) shows that risk 

averse investors with decreasing marginal utility have a positive preference for mean and 

skewness and a negative preference for variance and kurtosis, and thus risk-averse investors 

prefer higher returns and skewness, and lower variance and kurtosis. 
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Kraus and Litzenberger (1976) derive a three-moment CAPM by adding coskewness risk to 

the standard CAPM and apply it for portfolios of stocks double-sorted on beta and systematic 

coskewness over the period 1936-1970 using the Fama and MacBeth (1973) methodology. 

They find an insignificant negative intercept, a significant positive beta premium (larger than 

that obtained in a model when beta is the only explanatory), and a market premium for gamma 

which is significant and negative, consistent with expectations. However, Friend and 

Westerfield (1980) find results that partly contradict the findings of Kraus and Litzenberger, 

with a significant non-zero intercept and a time-varying coefficient for co-skewness.  

Lim (1989) tests the three-moment CAPM using a generalised method of moments (GMM) 

approach and shows that investors prefer coskewness when market returns are positively 

skewed, and dislike coskewness when market returns are negatively skewed. Harvey and 

Siddique (2000) test whether the inclusion of various measures of conditional co-skewness 

improves the pricing errors in the three-factor model of Fama and French and the standard 

CAPM. They show that the adjusted R-squared statistics of both models improve. 

Fang and Lai (1997) test the four-moment CAPM on portfolios triple-sorted on beta, 

coskewness, and cokurtosis over three distinct five-year periods where the factor loadings are 

estimated using time series regressions of the cubic market model.1 The results show a 

substantial improvement in R-squared for the four-moment CAPM compared to the two- and 

three-moment CAPM. Most importantly, the risk premia for beta and cokurtosis are significant 

and positive for the three sub-periods. Athayde and Flores (1997) test a four-moment CAPM 

for Brazilian stocks using GMM over the period 1996-1997. They conclude that skewness, 

rather than kurtosis, plays the most important role for the Brazilian stocks. Hwang and Satchell 

(1998) estimate an unconditional four-moment CAPM for emerging market stocks over the 

period 1985-1997 using GMM and conclude that higher moments can add explanatory power 

to model returns for emerging markets, though with variations across countries.  

Dittmar (2002) estimates a conditional four-moment CAPM using a stochastic discount factor 

approach. Two models are implemented: one with the equity market index as a market proxy 

of wealth and another including human labour wealth. The model terms are found significant 

and the pricing errors are significantly reduced when human capital is included in the four-

                                                           
1 The cubic model assumes that excess returns are generated by 𝑅𝑖𝑡 = 𝛼0 + 𝛼1𝑖𝑅𝑚𝑡 + 𝛼2𝑖𝑅𝑚𝑡

2 + 𝛼3𝑖𝑅𝑚𝑡
3 , where 

𝑅𝑖𝑡 and 𝑅𝑚𝑡 are excess returns, 𝑅𝑚𝑡
2 = (𝑅𝑚𝑡 − 𝐸(𝑅𝑚𝑡))2 and 𝑅𝑚𝑡

3 = (𝑅𝑚𝑡 − 𝐸(𝑅𝑚𝑡))3. 
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moment CAPM. Tan (1991) applies a three-moment CAPM on a sample of mutual funds and 

finds results that do not support the three-moment CAPM (an intercept significantly greater 

than zero, an insignificant beta risk premium, and an incorrect positive sign for coskewness). 

Hasan and Kamil (2013) test a higher-moment CAPM with coskewness, cokurtosis, market 

capitalization and book-to-market to model stock returns in Bangladesh, and find that 

coskewness and cokurtosis are weakly negatively and positively related to returns, respectively. 

Lambert and Hubner (2013) test an extension of the four-moment CAPM for US returns over 

the period 1989-2008. When testing an augmented three-factor model of Fama and French with 

coskewness and cokurtosis on the 25 portfolios sorted on size and book-to-market, they find 

that low book-to-market portfolios are positively related to high cokurtosis risk and small sized 

portfolios are positively related to low coskewness, that is, they are more exposed to 

coskewness risk. In the cross-section they find that the augmented model reduces the pricing 

errors and has a higher R-squared than the simple CAPM. Kostakis et al. (2011) test the higher-

moment CAPM for UK stocks over the period 1986-2008 and find that coskewness demands 

a negative risk premium whereas stocks with higher cokurtosis yield higher returns on average. 

In particular, coskewness and cokurtosis have additional explanatory power to covariance risk, 

size, book-to-market and momentum factors. The alpha or unexplained return of portfolios with 

negative coskewness and positive cokurtosis is not eliminated in time series after controlling 

for size, value and the momentum factors of Carhart (1997).  

Young et al. (2010) examine a higher-moment CAPM in which the moments are estimated 

using daily data for S&P500 index options. They find that stocks with high exposure to change 

in implied market volatility and market skewness yield lower returns whereas stocks with 

higher sensitivity to kurtosis yield higher returns. Heaney et al. (2012) test whether coskewness 

and cokurtosis are priced for US equity returns over the period 1963-2010, using individual 

assets as opposed to portfolios. They find little evidence that the higher moments are priced 

and show that these are encompassed by size and book-to-market factors. In particular, size 

tends to eliminate the significance of cokurtosis, which is found unexpectedly to be negatively 

rewarded, and coskewness varies over time. Furthermore, Moreno and Rodriguez (2009) 

analyse the returns of US mutual funds over the period 1962-2006 and find that coskewness is 

a priced risk factor for mutual funds. The findings show that funds that invest in stocks with 

more negative coskewness tend to yield higher average returns. Finally, Doan et al. (2008) 

analyse a higher-moment CAPM for US and Australian stocks and find that returns are 

sensitive to higher moments, and that higher moments explain a portion of returns not explained 
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by the Fama and French factors. Thus, there is now a significant body of literature on the higher 

moment CAPM which underpins the importance of considering skewness and kurtosis when 

modelling asset returns, though the results of empirical studies do not as yet offer conclusive 

support for the model. 

4. Data and method 

We use the monthly returns CRSP data for all common stocks listed on the NYSE, AMEX and 

NASDAQ exchanges for the period January 1926 to December 2010 (NASDAQ from January 

1972). The empirical tests are conducted for the sample 1930-2010, and for the subsample 

1980-2010. In the cross-sectional regressions used in the empirical tests, only stocks with 24 

months of returns are included, as this is required for our short window beta computation. 

Table 1 reports summary statistics for the cross section of stock returns at 10 year intervals 

over the sample period. The number of stocks increased over the years from less than 1,000 

stocks before 1950 to a peak of 9,681 in December 2000. The number of stocks appears to be 

driven by the trend of industrialization and the economic boom period from the 1980 to 2000. 

We also observe that the standard deviation of the returns across stocks has increased since the 

1980s, thus suggesting two distinct volatility regimes: before and after 1980. The normality of 

the distribution of returns, that is the joint hypothesis that skewness and excess kurtosis are 

equal to zero, is rejected in the cross-section for each period in the table.  

 

[Insert Table 1 here] 

 

The testing of the CAPM is straightforward. Re-writing Equation 1 as  

𝐸(𝑅𝑖) − 𝑅𝑓 = 𝛼 + 𝜆𝛽𝛽𝑖,𝑚   (8) 

where 𝜆𝛽 = 𝐸[(𝑅𝑚) − 𝑅𝑓] is the risk premium, the null hypotheses to test are that the intercept 

is zero and that the risk premium is positive and approximately equal to the average historical 

market excess return. 

{

𝛼 = 0
𝜆𝛽 > 0

𝜆𝛽 = [(𝑅𝑚) − 𝑅𝑓
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]

   (9) 
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Testing the four-moment CAPM requires a small modification of Equation 7. As 𝐸(𝑟𝑚
3) may 

be zero (the distribution of the market portfolio can be symmetric), to avoid dividing by zero 

the model is represented as: 

𝐸[(𝑅𝑖) − 𝑅𝑓] = 𝜆∗

𝐸(𝑟𝑖. 𝑟𝑚)

𝐸(𝑟𝑚
2)

+ 𝜆𝑠𝐸(𝑟𝑖. 𝑟𝑚
2) + 𝜆𝑘

𝐸(𝑟𝑖. 𝑟𝑚
3)

𝐸(𝑟𝑚
4)

 

= 𝜆∗𝛽𝑖 + 𝜆𝑠𝑠𝑖 + 𝜆𝑘𝑘𝑖     (10) 

where 𝜆𝑠 is the premium for coskewness, rather than standardized coskewness.  

For the market portfolio: 

𝐸[(𝑅𝑚) − 𝑅𝑓] = 𝜆∗ + 𝜆𝑠𝑠𝑚 + 𝜆𝑘     (11) 

which implies 𝜆∗ = 𝐸[(𝑅𝑚) − 𝑅𝑓] − 𝜆𝑠𝑠𝑚 − 𝜆𝑘. Substituting 𝜆∗ in Equation 11, the final 

model obtains: 

𝐸[(𝑅𝑖) − 𝑅𝑓] = 𝜆𝛽𝛽𝑖 + 𝜆𝑠(𝑠𝑖 − 𝑠𝑚𝛽𝑖) + 𝜆𝑘(𝑘𝑖 − 𝛽𝑖)        (12) 

where 𝜆𝛽 = 𝐸[(𝑅𝑚) − 𝑅𝑓]. This model has the advantage that it nests the CAPM. The main 

hypotheses to be tested for this model are that the price of beta is positive and equal to the 

market risk premium, the premium for (excess) coskewness is negative, and the premium for 

(excess) cokurtosis is positive, that is: 

{

𝜆𝛽 > 0

𝜆𝑠 < 0
𝜆𝑘 > 0

     

The advantage of this formulation is that it can be compared with the standard CAPM, since 

the CAPM is a special case of the four-moment CAPM.  

The CAPM and the four-moment CAPM are typically tested on portfolios. However, many 

authors (see, for instance, Ang et al., 2008; and Kim, 1995) have criticized the use of portfolios 

to estimate the market premium, arguing that the spread in betas is effectively too small when 

portfolios are formed, leading to very large standard errors in the estimation of the risk 

premium. Further, Kim (1995) argues that when portfolios are formed, the behaviour of 

individual stocks is smoothed out, losing important information for the estimation of the risk 

premium in the process. We therefore use individual assets in our tests.  
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We address the limitations of static models by adopting the approach of Lewellen and Nagel 

(2006). We thus employ a two-step method. First, we conduct short-window (24 month) time 

series regressions of monthly individual asset excess returns over the market excess return to 

estimate conditional betas, coskewness, and cokurtosis as in Kraus and Litzenberger (1976). 

The average excess return for the individual stocks over the short windows is assumed to be 

their (conditional) expected excess return. In the second step, the average excess returns of 

individual stocks are regressed in the cross section over the conditional co-moments (calculated 

over the same window as in the first step) to estimate the risk premia. The monthly conditional 

risk premia are then treated as time series observations, and hence tested using the Fama and 

MacBeth (1973) approach, i.e. the monthly conditional risk premia for each factor and the 

overall monthly conditional risk premia are averaged. However, because of potential 

autocorrelation and heteroscedasticity problems in the monthly risk premia, we also show 

results based on intercept only GMM estimation with Newey-West heteroscedasticity and 

autocorrelation consistent (HAC) standard errors. The models are conditional in so far as the 

factor loadings are obtained using rolling short windows.  

The Fama and French factor augmented four-moment CAPM 

The four-moment CAPM can be extended to include the effect of the Fama and French (1993) 

SMB and HML factors. The SMB factor represents the return of a portfolio of small-

capitalization stocks minus the return on a portfolio of large-capitalization stocks. The HML 

factor represents the returns of a portfolio of high book-to-market stocks minus the return on a 

portfolio of low book-to-market stocks. The three-factor model of Fama and French is widely 

used in empirical studies of asset pricing. Therefore it would be interesting to augment the 

conditional four-moment CAPM with the SMB and HML factors in order to determine whether 

the Fama-French factors remain relevant in an asset pricing model once we correct for 

additional moment sensitivities.  

The model adopted here is similar to that of Smith (2006) and Engle and Bali (2010), and is 

given by 

𝑅𝑖 − 𝑅𝑓 = 𝜆𝛽𝛽𝑖 + 𝜆𝑠(𝑠𝑖 − 𝑠𝑚𝛽𝑖) + 𝜆𝑘(𝑘𝑖 − 𝛽𝑖) + 𝜆𝑠𝑚𝑏

𝐸(𝑟𝑖. 𝑠𝑚𝑏)

𝐸(𝑠𝑚𝑏2)

+ 𝜆ℎ𝑚𝑙

𝐸(𝑟𝑖. ℎ𝑚𝑙)

𝐸(ℎ𝑚𝑙2)
+ 𝜀𝑖 

(13) 
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The standardized covariances between the returns of stocks with the SMB and HML factors 

are obtained from univariate regressions. 

5. Results  

Our main results are summarised in Tables 2 to 4. The main highlight of these results is the 

sharp contrast between the conventional t-statistics and the HAC t-statistics. All corrected 

statistics are around half or less the value of standard t-statistics. As can be seen from the tables, 

this has major implications for the significance of the intercept term in the CAPM and extended 

CAPM models. All but one of the intercepts become insignificant once we correct the t-

statistics.2 More importantly, some risk premia also become insignificant after adjustment. 

Therefore, in the following discussion we will rely solely on the HAC t-statistics to decide 

upon the significance of estimated risk premia. 

5.1. Results of the test of the conditional CAPM on individual assets 

The results for the conditional CAPM based on the full sample are given in Table 2. Two 

interesting points emerge. First, the conventional t-statistic suggests that the intercept is highly 

significant, thus leading to a rejection of the CAPM. But taking into account potential 

heteroscedasticity and autocorrelation shows that the intercept is insignificant. Given that the 

estimated market premium is positive and significant (0.67% per month, which is equivalent 

to 8.34% per year), the CAPM cannot be rejected. For the subsample of 1980-2010 shown in 

Table 3, the intercept remains insignificant and the beta premium has a positive and significant 

coefficient (0.59% per month), equal to a compounded return of 7.31% per year. The risk 

premium thus appears to have declined over the second period when compared to the first. 

Thus, the CAPM appears to hold quite well for individual assets as the estimated risk premium 

is consistent with theory. 

[Insert Tables 2 and 3 here] 

5.2. Results of the test of the conditional four-moment CAPM on individual assets 

All higher moment CAPM models have insignificant intercepts (based on HAC standard 

errors). However, although beta is priced, the price skewness is also significant and has the 

expected sign in most cases. This rejects the standard CAPM in favour of a higher moment 

                                                           
2 The constant reported in the tables is the average of the monthly conditional intercepts. 
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CAPM. For the full sample shown in Table 2, the kurtosis premium of the four-moment CAPM 

is not significantly different from zero for both the adjusted and unadjusted models. This 

suggests that a three-moment CAPM is more appropriate. This finding differs from the results 

of Heaney et al. (2012) who find significant coskewness and cokurtosis prices but an 

insignificant beta price. The result for the adjusted three-moment CAPM is shown in the fourth 

column of Table 2. The results do not differ substantially from those of the four-moment model, 

with an insignificant intercept, a beta price of 0.68%, and a negative coskewness price of -

70.41. The overall market premium is estimated at 0.76% per month, or 9.51% per year, which 

is larger than the 8.34% estimated for the simple CAPM. 

As shown in Table 3, the risk premia declined over the period 1980-2010. Both beta and 

coskewness prices fell, but remain significant and with the expected sign. The market risk 

premium is also lower at 0.55% per month, or 6.80% per year. The market premium suggested 

by the higher moment CAPM is now lower than that of the simple CAPM (0.59%). 

It is worth noting the importance of employing unscaled coskewness (that is, using the adjusted 

model). Although both adjusted and unadjusted models are equivalent mathematically, the 

model results are rather different. For example, in the last two columns of Table 2 the 

coskewness premium for the adjusted model is negative as expected, while it is positive and 

surprisingly significant in the unadjusted model (in the four-moment model it is positive but 

insignificant). We believe that such a result is due to the possible low market skewness at least 

for some periods, which could inflate the scale coskewness and hence produce erratic 

coskewness coefficients in the cross sectional regression. For the subsample of 1980-2010 

shown in Table 3, all skewness coefficients are negative, but are significant only for the 

adjusted models. In sum, the results show that both beta and coskewness are priced risks, but 

cokurtosis is not.  
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5.3. Results for the four-moment CAPM augmented with SMB and HML factors 

The results for the augmented four-moment CAPM as well as the three-factor model of Fama 

and French (FF) are reported in Table 4. The models are tested for the full sample period of 

1930-2010 and for the subsample period of 1980-2010. For the full sample period, the intercept 

is insignificant in the augmented model but significant in the FF model. This could be 

symptomatic of the missing coskewness in the FF model, which perhaps led to a greater and 

significant intercept. The beta price is significant in both models, but larger under the 

augmented four-moment CAPM specification. Again, the omitted skewness factor may have 

biased the beta coefficient. The SMB price is identical and significant in both models, whereas 

the HML price is insignificant in both cases. Finally, the skewness price is negative and 

significant as expected, whereas kurtosis in not priced. Overall, the results for the full sample 

show that the size factor remains an important addition to the four-moment CAPM. In other 

words, coskewness and cokurtosis do not seem to be able to capture the size effect.  

 [Insert Table 4 here] 

The subsample period leads to similar conclusions in terms of the significance of beta, 

coskewness and size. However, the scale of the risk prices appears to have changed in the 

subsample period. The price of beta declined from 0.58% to 0.43% (in the augmented four-

moment CAPM), and the reward for skewness has declined in scale value from -49.47 to -

10.32. The size premium has however increased from 0.16% to 0.28%. Overall, our results are 

not consistent with the findings of Heaney et al. (2012) who find that the higher moments are 

encompassed by SMB and HML. 

 

6. The impact of using portfolios 

In order to confirm the problems discussed above regarding empirical tests that use portfolios 

instead of individual assets, we repeated the above analysis using 25 ME/MB sorted portfolios 

obtained from French website. The results are summarised in Table 5, which shows the Fama-

MacBeth estimated average risk premia calculated using the same procedure as before. 

However, we only provide standard t-statistics since the statistics are based on a sample of 25 

observations. Sul et al. (2005) pointed out that the HAC estimators may be biased for small 

samples.   

[Insert Table 5 here] 
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We estimate the simple CAPM, the adjusted four-moment CAPM, the FF augmented model 

and the simple FF model. All models are clearly rejected, having high and significant values 

of the intercept. These are abnormally large, reaching 1.43% in the case of the augmented four-

moment CAPM for the period 1980-2010. Almost all of the premia are insignificant. The 

exceptions are the HML premium for the full sample under the FF model (although the 

premium is very low, it is highly significant with a t-statistic of 3.82), and the beta risk premium 

for the sub-period under the augmented four-moment CAPM, which is significant but 

(spuriously) negative. The results for the other specifications are similar and are available upon 

request. The portfolio results are thus interesting in their own right as they appear to explain 

the difficulties found in the literature to confirm different versions of the CAPM or multifactor 

model.   

7. Conclusion 

The results of the empirical tests of the conditional CAPM and conditional four-moment 

CAPM, along with tests of some alternative models, show that when modelling the returns of 

individual stocks, the risk premium is positive and significant, as expected from the CAPM, 

and that coskewness is significant and has the expected negative sign. The best model results 

are obtained when the four-moment CAPM is augmented to include the Fama-French small-

minus-big (SMB) factor, such that all of the factors are significant and have the signs expected 

from theory, with sensitivity to the SMB factor exerting an important positive effect on the 

cross-section of returns. This suggests that the four-moment CAPM can indeed improve the 

performance of the standard CAPM. In particular, SMB sensitivity significantly improves the 

explanation of the cross section of expected returns.  

The use of individual assets in empirical asset pricing tests allows for a larger spread in 

systematic measures of risk such as beta. Researchers are therefore able to obtain more precise 

estimates of risk premia than is the case for portfolios of stocks. Furthermore, the use of a 

moving average to proxy for expected returns appears to improve the performance of asset 

pricing models. While far from perfect, this proxy appears to be a distinct improvement on 

realized returns. Indeed, the main reason why conditional models fail appears to be the use of 

realized returns as a proxy for expected returns. The use of conditional models highlights the 

need for a better proxy of expected returns in asset pricing.  

Interestingly, the results support the simple CAPM when tested on individual stocks over the 

last 30 years. Furthermore, the four-moment CAPM appears to work well when the SMB factor 



 

17 
 

is added. We find that all of the factors in such a model have the expected sign: beta demands 

a positive premium, coskewness has a negative premium, and cokurtosis has a positive 

premium. Interestingly, SMB retains its significance and has a positive risk premium in this 

model specification, and thus small stocks tend to earn higher returns even after accounting for 

the co-moments. Therefore, it appears that small stocks are characterised by some incremental 

risk such as a liquidity risk (though this is not tested in our paper). However, the HML factor 

has no relevance when testing individual stocks. 

The results of our paper confirm the argument of Ang et al. (2008) and Avramov and Chordia 

(2005) that a conditional version of asset pricing models conducted for individual assets 

confirms a rational explanation of the cross-section of returns. Intriguingly, when considered 

together with higher moments, SMB is priced and perhaps related to a liquidity premium, 

whereas HML is not priced. 
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Table 1 

Summary statistics for the cross section of stock returns over the period 1930-2010  

 
December Year 1940 1950 1960 1970 1980 1990 2000 2010 

Number of 

stocks 
852 986 1,159 2,242 4,733 7,507 9,681 7,820 

Mean Excess 

Return 
0.54% 2.00% 0.39% -1.55% 1.63% -0.50% 0.62% 1.84% 

t-statistic 7.17*** 50.02*** 7.03*** -36.0*** 40.72*** -15.34*** 16.11*** 42.85*** 

Standard 

deviation 
0.022 0.013 0.019 0.020 0.028 0.028 0.038 0.038 

Skewness 1.14 0.28 -7.10 -0.70 1.18 0.47 1.34 0.71 

Kurtosis 

(excess) 
9.46 0.65 146.79 1.06 3.04 20.09 9.65 18.77 

Notes: This table reports summary statistics for the cross-sectional regression of stocks in December of the years 

1940, 1950, 1960, 1970, 1980, 1990, 2000 and 2010, showing the number of stocks, the mean excess return, t-

statistics, standard deviations, skewness and excess kurtosis. 
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Table 2 

Test of the CAPM over the period 1930-2010 

 
 

CAPM 4 Moment CAPM 

(Adjusted) 

4 Moment CAPM 

(Unadjusted) 

3 Moment CAPM 

(Adjusted) 

3 Moment CAPM 

(Unadjusted) 

𝛂 0.0007  

(3.80)***/[1.74]* 

0.0006 

(3.33)***/[1.53] 

0.0006 

(3.33)***/[1.53] 

0.0006 

(2.91)***/[1.33] 

0.0006 

(2.91)***/[1.33] 

𝛌𝛃 0.0067 

(22.14)***/[10.32]*** 

0.0067 

(23.88)***/[11.15]*** 

0.0062 

(11.78)***/[5.60]*** 

0.0068 

(23.14)***/[10.79]*** 

0.0061 

(17.10)***/[8.07]*** 

𝛌𝐬 
 

-73.16  

(-14.27)***/[-

7.00]*** 

0.0010 

(3.41)***/[1.73]* 

-70.4126 

(-17.08)***/[-

8.01]*** 

0.0008 

(5.63)***/[2.81]*** 

𝛌𝐤 
 -0.0004  

(-0.90)/[-0.45] 

-0.0004 

(-0.90)/[-0.45] 

  

Market Risk premium 

(𝛌𝛃 + 𝛌𝐬𝐬𝐦 + 𝛌𝐤) 

 
0.0073 

(19.43)***/[9.58]*** 

 
0.0076 

(25.84)***/[12.20]*** 

 

Market Risk premium 

(𝛌𝛃 + 𝛌𝐬 + 𝛌𝐤) 

  
0.0067 

(23.88)***/[11.15]*** 

 
0.0068 

(23.14)***/[10.79]*** 
 

Notes: This table reports the results of monthly cross-sectional regressions of average stock returns (over 24 months) on the three factors of the four-moment CAPM, and on 

the single factor of the CAPM over the period 1930-2010. The coefficients are reported for the conditional alpha, the conditional beta, the conditional coskewness, the conditional 

cokurtosis, and the conditional overall risk premium. Conventional t-statistics are reported in parentheses, while HAC t-statistics are given in square brackets. Significant 

coefficients at the 1, 5 and 10% levels are indicated with ***, ** and *.  Beta, coskewness and cokurtosis are obtained as in Kraus and Litzenberger (1976). 

 

Results are obtained from the following models: 

𝑅𝑖,𝑡 − 𝑅𝑓,𝑡 = 𝛼𝑡 + 𝜆𝛽𝑡 𝛽̂𝑖,𝑡−1                             CAPM 

𝑅𝑖,𝑡 − 𝑅𝑓,𝑡 = 𝛼𝑡 + 𝜆𝛽𝑡  𝛽𝑖,𝑡−1 + 𝜆𝑠𝑡(𝑠𝑖,𝑡−1 − 𝑠𝑚,𝑡−1𝛽𝑖,𝑡−1) + 𝜆𝑘𝑡(𝑘𝑖,𝑡−1 − 𝛽𝑖,𝑡−1)          Adjusted 4-moment CAPM 

𝑅𝑖,𝑡 − 𝑅𝑓,𝑡 = 𝛼𝑡 + 𝜆𝛽𝑡𝛽𝑖,𝑡−1 + 𝜆𝑠𝑡(𝑠𝑖,𝑡−1 𝑠𝑚,𝑡−1)⁄ + 𝜆𝑘𝑡𝑘𝑖,𝑡−1    Unadjusted 4-moment CAPM 
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Table 3 

Test of the CAPM over the subsample period of 1980-2010 

 
 

CAPM 4 Moment CAPM 

(Adjusted) 

4 Moment CAPM 

(Unadjusted) 

3 Moment CAPM 

(Adjusted) 

3 Moment CAPM 

(Unadjusted) 

𝛂 0.0008  

(4.03)***/[1.92]* 
0.0004 

(2.77)***/[1.32] 
0.0004 

(2.77)***/[1.32] 
0.0004 

(2.48)**/[1.18] 
0.0004  

(2.48)**/[1.18] 

𝛌𝛃 0.0059 

(18.98)***/[8.94]*** 
0.0059 

(19.10)***/[9.00]*** 
0.0063 

(15.48)***/[7.50]*** 
0.0059 

(19.19)***/[9.03]*** 
0.0064 

(22.01)***/[10.47]*** 

𝛌𝐬 
 

-32.79  

(-6.61)***/[-3.15]*** 
-0.0011 

(-3.15)***/[-1.60] 
-35.57 

(-8.99)***/[-4.38]*** 
-0.0004 

(-3.36)***/[-1.63] 

𝛌𝐤 
 

0.0007  

(1.44)/[0.72] 

0.0007  

(1.44)/[0.72] 
  

Market Risk premium 

(𝛌𝛃 + 𝛌𝐬𝐬𝐦 + 𝛌𝐤) 

 
0.0056 

(10.61)***/[5.02]*** 

 
0.0055 

(14.45)***/[6.82]*** 

 

Market Risk premium 

(𝛌𝛃 + 𝛌𝐬 + 𝛌𝐤) 

  
0.0059 

(19.11)***/[9.00]*** 

 
0.0059 

(19.18)***/[9.03]*** 

Notes: This table reports the results of monthly cross-sectional regressions of average stock returns (over 24 months) on the three factors of the four-moment CAPM, and on 

the single factor of the CAPM over the period 1980-2010. The coefficients are reported for the conditional alpha, the conditional beta, the conditional coskewness, the conditional 

cokurtosis, and the conditional overall risk premium. Conventional t-statistics are reported in parentheses, while HAC t-statistics are given in square brackets. Significant 

coefficients at the 1, 5 and 10% levels are indicated with ***, ** and *. Beta, coskewness and cokurtosis are obtained as in Kraus and Litzenberger (1976). 

 

Results are obtained from the following models: 

𝑅𝑖,𝑡 − 𝑅𝑓,𝑡 = 𝛼𝑡 + 𝜆𝛽𝑡 𝛽̂𝑖,𝑡−1                             CAPM 

𝑅𝑖,𝑡 − 𝑅𝑓,𝑡 = 𝛼𝑡 + 𝜆𝛽𝑡  𝛽𝑖,𝑡−1 + 𝜆𝑠𝑡(𝑠𝑖,𝑡−1 − 𝑠𝑚,𝑡−1𝛽𝑖,𝑡−1) + 𝜆𝑘𝑡(𝑘𝑖,𝑡−1 − 𝛽𝑖,𝑡−1)          Adjusted 4-moment CAPM 

𝑅𝑖,𝑡 − 𝑅𝑓,𝑡 = 𝛼𝑡 + 𝜆𝛽𝑡𝛽𝑖,𝑡−1 + 𝜆𝑠𝑡(𝑠𝑖,𝑡−1 𝑠𝑚,𝑡−1)⁄ + 𝜆𝑘𝑡𝑘𝑖,𝑡−1    Unadjusted 4-moment CAPM 
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Table 4 

Tests of the adjusted four-moment CAPM augmented with SMB and HML, and the three-factor model of Fama and French using short-window 

regressions, on individual assets over the period 1930-2010 and 1980-2010 

 
 (1930-2010) (1980-2010) 

 Adjusted 4M-CAPM with 

FF Factors 

Fama-French  

3-Factor Model 

Adjusted 4M-CAPM with 

FF Factors 

Fama-French  

3-Factor Model 

𝛂 
0.0007 

(3.77)***/[1.72]* 
0.0009 

(4.65)***/[2.13]** 
0.0002 

(1.17)/[0.56] 
0.0003 

(1.69)*/[0.81] 

𝛌𝛃 
0.0058 

(22.83)***/[11.00]*** 
0.0053 

(20.00)***/[9.50]*** 
0.0043 

(14.78)***/[7.10]*** 
0.0041 

(15.28)***/[7.35]*** 

𝛌𝐬 
-49.4709 

(-11.70)***/[-5.64]*** 
 -10.32 

(-2.08)**/[-1.00] 
 

𝛌𝐤 
0.0014 

(3.60)***/[1.86]* 
 0.0018  

(3.38)***/[1.65]* 
 

𝛌𝐬𝐦𝐛 0.0016 

(8.29)***/[3.86]*** 
0.0016 

(8.19)***/[3.78]*** 
0.0028 

(13.60)***/[6.44]*** 
0.0026 

(14.73)***/[7.00]*** 

𝛌𝐡𝐦𝐥 -0.0004 

(-2.97)***/[-1.46] 
-0.0005 

(-3.87)***/[-1.87]* 
-0.0003 

(-1.55)/[-0.74] 
-0.0003 

(-1.57)/[-0.75] 

 

Notes: This Table reports the results of monthly cross-sectional regressions of average stock returns (over 24 months) on the three factors of the adjusted four-moment CAPM, 

and on the three factors of the Fama and French model. The coefficients are reported for the conditional alpha, the conditional beta, the conditional coskewness, the conditional 

cokurtosis, SMB and HML. Conventional t-statistics are reported in parentheses, while HAC t-statistics are given in square brackets. Significant coefficients at the 1, 5 and 

10% levels are indicated with ***, ** and *.   
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Table 5 

Test of the CAPM and four-moment CAPM based on 25 ME/BM portfolios 
 

 

Panel A: 1930-2010 

MODELS 𝜶 𝝀𝜷 𝝀𝒔 𝝀𝒌 𝝀𝜷

+ 𝝀𝒔𝒔𝒎

+ 𝝀𝒌 

smb hml 

CAPM 0.0075 

(3.55)*** 

-0.0001 

(0.02) 

     

Adjusted 4-

moment CAPM  

0.0068 

(3.08)*** 

-0.0000 

(-0.01) 

50.31 

(0.89) 

-0.0033 

(-0.46) 

-0.0009 

(-0.14) 

  

4-moment 

CAPM+FF 

0.0091 

(4.69)*** 

-0.0026 

(-1.22) 

16.37 

(0.30) 

0.0001 

(0.02) 

 0.0013 

(1.23) 

0.0021 

(1.73)* 

FF 0.0094 

(5.35)*** 

-0.0030 

(-1.58) 

   0.0012 

(1.21) 

0.0038 

(3.82)**** 

 

Panel B: 1980-2010 

MODELS 𝜶 𝝀𝜷 𝝀𝒔 𝝀𝒌 𝝀𝜷 + 𝝀𝒔𝒔𝒎

+ 𝝀𝒌 

smb hml 

CAPM 0.0107 

(2.73)*** 

-0.0042 

(-0.91) 

     

Adjusted 4-

moment CAPM  

0.0107 

(2.75)*** 

-0.0049 

(-1.16) 

-4.44 

(-

0.04) 

-0.0055 

(-0.40) 

-0.0063 

(-0.61) 

  

4-moment 

CAPM+FF 

0.0143 

(4.36)*** 

-0.0084 

(-2.37)** 

34.34 

(0.34) 

0.0091  -0.0007 

(-0.36) 

0.0003 

(0.11) 

FF 0.0124 

(3.92)*** 

-0.0067 

(-1.91)* 

   0.0000 

(0.03) 

0.0032 

(1.71)* 
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