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Effect of High Voltage Pulse Bias on Stress and Morphology of CA-PVD TiN 

Coatings 

We investigated the role of high voltage pulse bias (HVPB) on the structural, morphological and 

residual stress of TiN coatings produced with Cathodic Arc Physical Vapor Deposition (CA-PVD) 

and compared them with the ones produced with DC bias. Annealing heat treatment was also 

performed for surveying stress-relieving behavior within the coatings. Preferred orientation of the 

coatings changed from (111) to (220) by the application of high voltage pulse bias. Coatings 

produced with DC bias exhibited Zone T structure, while the growth morphologies of the coatings 

produced with HVPB were very similar to the structures in the beginning of Zone II. Presence of 

Ar in the deposition environment increased the residual stress of all coatings. Intra-grain stresses 

of the coatings produced with DC bias were almost totally annihilated by annealing. However, for 

coatings produced with HVPB, stress relief magnitudes were very low indicating that intra-grain 

defects could not be totally annihilated. 

 

Keywords: High voltage pulse bias; Residual stress; Morphology; TiN coating; Cathodic arc 

physical vapor deposition 
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1. Introduction 

Titanium nitride (TiN) is a very well-known material that is widely applied as hard wear resistant 

protective coatings on cutting and forming tools [1-3]. Structure, morphology and residual stress 

of these coatings show a strong dependence on the deposition method and parameters. The 

changes induced by these variations are strongly reflected to the final properties of the coatings.  

CA-PVD is widely applied for deposition of nitride-based coatings. The primary 

advantage of this method is its ability to produce highly ionized plasma. Ion energies of CA-PVD 

plasma can be further increased, or tuned by applying a negative bias applied to the substrate. 

Application of a DC bias during deposition leads to the formation of dense and well-adherent 

coatings. However, this application increases residual compressive stresses of the coatings that 

may be detrimental for some applications [2, 4]. On the other hand, it is well known from filtered 

CA systems, that using HVPB introduces an opportunity to control stress build-up of nitride-

based coatings [5, 6]. Recently, we have adapted this method to unfiltered cathodic arc systems 

and observed similar preferred orientation changes as seen in the filtered arc systems [6, 7]. We 

also determined the critical role of Ar presence in the gas mixture on these changes [8].  

There are many studies in the literature that explain deposition parameter-dependent 

preferred orientation and growth mode changes, mainly for nitride-based coatings produced with 

sputtering [9-12]. However, for CA-PVD coatings produced with HVPB, a systematic study that 

investigates the relations between bias voltage-dependent preferred orientation and growth 

morphology of the coatings is not present. Thus, the first aim of this study was to establish these 

relations for TiN coatings grown under different bias voltage modes and magnitudes with CA-

PVD. 
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For TiN films grown with CA-PVD, the relationship between residual stress development 

and HVPB magnitude has already been shown in several studies [5-7, 13]. The changes in the 

residual stress were mainly explained by the atomic scale defect generation inside the grains and 

their annihilations [7, 13]. However, in these studies, the role of stress generated at the grain 

boundaries [14-18], which is strongly related to the microstructure of the coatings, had not been 

taken into account. Therefore, we also aimed to interrelate the HVPB magnitude-dependent 

residual stress development, with the microstructure of the coatings, by both considering atomic 

scale defect generation/annihilation and morphology of the coatings. 

2. Experimental 

A semi-industrial scale Novatech-SIE, Model: NVT-12 CA evaporation system was utilized to 

deposit coatings using 10 cm diameter circular Ti targets operated with a cathode current of 60 A. 

Metalographically polished, High Speed Steel (HSS) samples with 20 x 20 x 5 mm dimensions 

were used as substrates. The substrates were cleaned ultrasonically in an alkaline solution for 15 

min, washed with distilled water and dried with ethanol before introducing into a vacuum 

chamber. Prior to initiation of the deposition, the substrates were heated, and Ti ion etched 

utilizing a high voltage DC bias. The deposition parameters, samples coding, and coatings 

thicknesses are presented in Table I. Deposition time for all the films was 15 min. During the 

deposition, samples were not rotated and target to substrate distance was kept constant at 15 cm.  

The X-Ray Diffraction (XRD) investigations were carried out using a Philips PW3710 

diffractometer equipped with a CuKα X-ray source. XRD measurements were carried out in both 

θ-2θ and Glancing Incidence (GI) modes. Residual stresses in the coatings were measured by X-

ray tensometry technique using sin2ψ method modified for GI X-ray diffraction. During the 

measurements, the incidence angle α was fixed at 2 degrees. Stresses were calculated using a-
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sin2ψ plots and symmetric biaxial stress state approach [1, 19]. For the stress evaluation, the X-

ray elastic constants for the TiN stucture with (111) and (220) prefererred orientations were taken 

from Ref. [13], (Young’s modulus‚ 418 GPa for (111) and 424 GPa for (220) oriented planes). 

Poisson ratios of (111) and (220) oriented planes were determined from Reuss’s approximation 

[20] using elastic constants given by Perry [21]. Sin2ψ0 values that correspond to the strain-free 

directions were estimated from ‘sin2ψ0=2ʋ/1+ʋ’ equation using the calculated Poisson ratios of 

(111) and (220) planes. 

Surfaces of all as-deposited samples were polished and etched in sodium hydroxide + 

hydrogen peroxide mixture for 30 s to reveal the column boundaries and then examined by Field 

Emission Scanning Electron Microscope (FESEM) (Jeol 7100F). ImageJ program was used to 

calculate the area of grains on the etched surfaces for all as-deposited coatings [22]. Furthermore, 

cross-sections of the coatings were prepared and examined by Focused Ion Beam (FIB) (JEOL 

JEM-9320). A thin protective carbon layer was deposited on the surface before FIB milling to 

obtain a sharper top surface of the cross-sections. A preliminary high ion current milling (5 nA) 

followed by two lower ion current milling steps (0.5 nA, 0.1 nA) were used until the desired 

cross-sections were obtained. The obtained results for the average grain area and coatings 

thicknesses are also presented in Table I. 

To annihilate the residual stresses, annealing heat treatment was performed on the coated 

samples in a vacuum furnace at 700±10 oC for 2 h, and then furnace cooled in the vacuum. The 

pressure at the annealing temperature was 10-4-10-3 Pa. 

3. Results and Discussion 

3.1. Bias Potential-Related Texture and Morphology of the Films 
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TiN coatings produced with DC bias (DC-NA and DC-N) exhibited (111) preferred orientation 

that is typical for CA-PVD TiN coatings produced with DC bias (Fig. 1a and 2a). The cross-

sectional structure was inhomogeneous along the film thickness and exhibited typical Zone T 

structure. It was fine crystalline at the regions adjacent to the substrate, grown as V-shaped grains 

in the next thickness range and became columnar in the upper part of the thick films (Fig. 3b & 

4b). The presence of Ar in the deposition environment did not create any appreciable difference 

in the planar and cross-sectional morphology of the coatings (Fig. 3a, b & 4a, b).  

  
 

Figure 1. XRD patterns of TiN coatings deposited using different bias voltages in the N2+Ar 

atmosphere before and after heat treatment in (a) θ-2θ and (b) GI modes. 

  

Figure 2. XRD patterns of TiN coatings deposited using different bias voltages in pure N2 gas 

before and after heat treatment in (a) θ-2θ and (b) GI modes. 
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  For TiN coatings produced using -1000 V HVPB in the mixture of N2 and Ar, a change in 

the preferred orientation to (220) was observed (Fig. 1a). This type of preferred orientation is 

only observed when the ion energy is sufficiently high [23] and is typical for CA-PVD TiN 

coatings produced with HVPB [5-7, 13]. Along with the change of the preferred orientation to 

(220), growth mode of the coatings also changed into long and fine columns extending from the 

substrate and exhibitied a growth morphology that was much closer to Zone II (Fig. 3d). 

According to the recent zone model given by Anders [24], during the transition from Zone T to 

Zone II, column sizes are finer and do not show perfect columnarity. Thus, the growth 

morphology observed in Fig. 3d can be described as Zone II that has not acquired sufficient 

energy for the growth of columns.  

  As pulse bias voltage further increased to -1500 V, (220) orientation (Fig. 1a) and growth 

morphology (Fig. 3f) were preserved. But in this case, column size distribution became more 

homogeneous (Fig. 3e and 5). These results indicated that under the above-stated conditions, by 

the application of short cycles of high voltage pulses during the deposition process, the energy 

required for restructuring was given to the system via increasing the adatom mobility.  

  The most common textures for TiN films with a thickness of more than 1 μm are (111), 

(200) or (220), showing dependence on the deposition conditions. The textural evolution of TiN 

thin films is explained using thermodynamic [1, 25-28]  or kinetic principles [9]. In the excellent 

review of Mahieu et al. [10], the relation between preferential growth and Structure Zone Model 

(SZM) is analyzed and evaluated for coatings produced with magnetron sputtering. According to 

this model, films that grow only in Zone T or Zone II exhibit preferred orientation, relying on the 

kinetic or thermodynamic principles, respectively. In Zone T structure, the grain boundary 

migration is strongly limited [29]. The overgrowth of grains with the fastest growth direction 

perpendicular to the substrate, leads to (111) preferred orientation in thick TiN, and a V-shaped 
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growth morphology was observed. On the other hand, the preferred orientation for films with 

Zone II structure is explained by the energy minimisation principle, since recrystallisation or 

restructuring can take place due to the higher mobility of atoms under this growth condition [30]. 

In this case, columns are oriented with the plane of the lowest surface energy ((200) orientation), 

or stopping energy related to channeling effect ((220 orientation). Under these conditions, an 

approximately straight columnar structure throughout the film thickness is observed. The 

combined results (preferrred orientation changes and growth morphology) of this study are in 

accordance with the model proposed by Mahieu et al. [10] and show its applicability to films 

grown with  CA-PVD.  
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Figure 3. FESEM and FIB micrographs of etched coated surfaces and cross-sections of (a, b) 

DC-NA, (c, d) P1000-NA and (e, f) P1500-NA. 

  

  

Figure 4. FESEM and FIB micrographs of etched coated surfaces cross-sections of (a, b) DC-N 

and (c, d) P1500-N. 
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Figure 5.  Distribution of grains area for samples coated in N2+Ar atmosphere obtained by 

ImageJ program. 

 

 (220) preferred orientation was still preserved for coatings produced in pure nitrogen 

under -1500 V pulse bias (Fig. 2a). However, in this case, grain sizes were larger (Fig. 5). This 

result indicated the significant role of Ar on the observed structural changes. During the 

deposition process, the substrate surface is bombarded by both metal ions (Ti) emitted from the 

cathode, and gas ions (nitrogen and argon) generated by the collision of neutral gas atoms with 

the metal ion plasma. Acceleration of all types of ions occurs with the application of negative 

bias potential to the substrate [7, 31]. In the absence of Ar, the main contribution to the 

bombardment is from Ti ions since nitrogen ions are very light to render any substantial effect. 

Accordingly, under pulse bias application, the presence of Ar in the deposition environment 

during growth shows its effect by both increasing the nucleation sites at the initial stages of the 

coating, and increasing the adatom mobility during further growth of the film. 
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3.2. Stress Measurements 

Residual stresses of the films that are determined from sin2ψ method using glancing incidence 

XRD data (Fig. 1b and 2b) are presented in Table II. Additionally, XRD data and residual stress 

of the samples, which were heat treated in a vacuum at 700 oC to determine their responses to 

annealing, are presented in Fig. 1, 2 and Table II, respectively.  

For the evaluation of bias potential-dependent stress build-up in TiN coatings, stress-

generating components in thin films and their possible contributions will be summarised first. 

Total stress in a film is generated through intrinsic stresses (σi) and thermal stresses (σth) (Eq. 1) 

[13, 17, 32-34]. Intrinsic stress (σi) comprises three different stress components. The first one is 

growth stress (σgs) that is tensile and builds-up as a result of a reduction in the film volume. The 

magnitude of which decreases as the film thickness increases [17, 32, 33]. The second component 

is grain boundary contribution (σgb). This is related to the grain boundary interactions that are 

compressive for dense films, and its contribution increases with a decrease in the grain size 

(increase in the grain boundary length) [15-17, 32 ]. The third component is intra-grain 

contribution (σintra), originating from the introduction of volume defects as a result of the 

energetic bombardment of the film (atomic peening) and resulting in a lattice expansion 

(compressive stress) [16-18, 32].  

 σtot = σi + σth = (σgs + σgb + σintra) + σth                    (1) 
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Figure 6. Lattice parameter vs sin2ψ plots of TiN coated samples before and after annealing (a) 

DC-NA & DC-N samples and (b) P1500-NA & P1500-N samples: experimental data (symbols) 

and best-fit lines (full lines). Vertical line corresponds to stress-free direction sin2ψ0 and 

horizontal lines correspond to stress-free lattice parameters (aψ
0). 

 

All the samples used in this study experienced approximately the same thermal history 

during deposition and annealing, and the thickness of all of them was comparable. Therefore, the 

contribution of σth is expected to be similar and compressive for all the coatings. For thick films 

beyond few microns, the contribution of growth stresses starts to become lower [32-34]. 

Consequently, as the thickness of the films used in this study was in the range of 4-5 microns 

(thick films), the contribution of σgs, to the total stress is expected to be comparably lower [35]. 

Accordingly, stresses generated under different deposition conditions can be evaluated, mainly by 

taking into consideration the compressive stress-generating intrinsic components (σgb and σintra). 

The comparison of stresses for coatings produced with DC bias in pure nitrogen (DC-N) 

and nitrogen + argon mixture (DC-NA), clearly showed that the presence of Ar in the deposition 

environment resulted in a 1.6 GPa increase in the compressive stress (Table II). As both of these 

coatings possess similar microstructure, the higher stress of DC-NA is mainly attributed to an 

increase in σintra  because of  the Ar ion bombardment-induced defects in the grains.  
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It is well known that annealing of TiN coatings at temperatures below T/Tm = 0.5 leads to 

recombination and annihilation of defects (point defects, dislocations, growth, and coalescence of 

subgrains). Accordingly, in the XRD patterns, shifting of the peaks towards unstrained values, 

reduction of peak broadening and more symmetric line profiles were observed [4, 35] (Fig. 1 and 

2). Therefore, the annealing heat treatment conducted at 700 oC mainly resulted in the 

annihilation of the ion bombardment-induced intra-grain defects [36].  

After the annealing heat treatment, the total stresses of the samples coated with DC bias 

(DC-NA & DC-N) became very close to each other (Fig. 6a and Table II). Furthermore, their 

stress-free lattice parameters (aψ
0) also became almost identical to abulk, as can be seen in a-sin2ψ 

plots given in Fig. 6a. In fact, aψ
0 lattice parameter extracted at the strain-free direction (sin2ψ0)  

is a “stress-free but defect containing” lattice parameter related to the existence of the intra-grain 

stress component associated with the introduction of intra-grain defects [17]. These results 

indicated that the contribution of σintra to the residual stress was almost eliminated by this 

treatment.  

For coatings deposited in N2+Ar gas mixture, total stress increased by the application of -

1000 V pulse bias and then decreased with the increase of pulse bias to -1500 V (Table II). The 

changes in the residual stress of the coatings, by applying different magnitudes of pulse bias 

voltage, are explained as a result of two simultaneous but differently directed processes: (1) stress 

generation due to ion implantation and defect production; (2) stress relaxation due to thermally 

activated processes of defect migration in the nonlocal thermoelastic peaks (NTP) of ions [7, 13]. 

According to this model, the stress reduction by the increase of pulse bias to -1500 V can be 

explained by the domination of stress relaxation effects. Although this model satisfies the 

observed changes in the stress level to some extent, it does not take into account the 

microstructural changes induced by applying different magnitudes of pulse bias voltage. The 
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contribution of grain boundary stress component (σgb) is expected to be significant because 

application of pulse bias results in the substantial changes in grain size (Fig. 3 &5). This 

contribution will be discussed further, by considering the stress measurement results of the 

coatings produced in pure N2 and the annealed samples.  

Comparision of the stress measurement results of TiN coating, produced with pulse bias 

with and without  Ar  in the deposition environment, also revelaed that presence of Ar resulted in 

an increase in the stress (Table II). However, stress increase induced by the presence of Ar was 

higher for samples produced with pulse bias when compared to the ones coated with DC bias. For 

coatings produced with -1500 V pulse bias, the difference in stress generated by the presence of 

Ar was 2.8 GPa (Table II). This is almost 2 times higher than the samples produced with DC 

bias, both with and without Ar in the deposition environment (Table II). This difference can be 

explained by the joint effects of the intra-grain defects (σintra) and decrease of grain sizes in the 

presence of Ar (σgb). For the coating produced using -1500 V pulse bias in the Ar-containing 

atmosphere (P1500-NA), grain sizes were distinctly smaller compared to P1500-N sample (Fig. 

3e, f & 4c, d & 5). Therefore, an increase in the grain boundary length, created by the presence of 

Ar in the deposition environment, is expected to exert a higher contribution of grain boundary 

stress contrary to the ones produced with DC bias (Fig. 6a, b). Thus, higher compressive stress 

generation for the dense coatings which were produced with HVPB in the presence of Ar, can be 

explained by the increase of σgb contribution because of their longer grain boundary length. 

More interesting results were obtained upon annealing of the coatings deposited by using 

HVPB. As explained before, this treatment is mainly expected to exert its effects on the relieving 

of intra-grain stress (σintra). Although a stress relief was also observed in the coatings produced 

with pulse bias, the magnitude of stress relief was lower than the coatings produced with DC bias 

(Table II).  Especially for coatings produced with -1500 V pulse bias, the stress relief magnitudes 
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were significantly low (0.7 GPa for P1500-NA and 0.4 GPa for P1500-N). Additionally, the 

stress-free lattice parameter (aψ
0) of these coatings did not approach to abulk after annealing, 

contrary to the coatings produced with DC bias (Fig. 6a, b), indicating that intra-grain stress 

(σintra) was not totally released during annealing. This result can be explained by difficulty in 

annihilation of the intra-grain defects, because of the structural changes induced by HVPB. Some 

of the intra-grain defects, such as dislocations and subgrains, can be annihilated within the grains 

during the annealing by rearrangement, growth and coalescence. However, the annihilation of the 

point defects requires their movement to the grain boundaries. Migration of the point defects to 

the dense grain boundaries, created by the higher adatom mobility induced by the HVPB may 

require higher activation energy due to a decrease in the chemical potential differences between 

the grains and the grain boundaries. Thus, in this case, the low stress relief observed for these 

samples can be mainly attributed to the annihilation of intra-grain defects, with the exception of 

point defects which remained almost unchanged. Further studies are needed to clarify the 

observed differences in the stress-relieving behavior.  

4. Conclusions 

The results of this study revealed the significant influence of using HVPB on the preferred 

orientation, morphology and residual stress of TiN coatings produced with CA-PVD.  

A change in the preferred orientation from (111) to (220) was observed along with a grain 

refinement and a relatively homogeneously-grown fine columnar structure. Presence of Ar in the 

deposition environment intensified the effects of HVPB.  

The coatings produced with DC bias exhibited the expected Zone T structure, while the 

growth morphologies of the coatings produced using HVPB were very similar to the structures at 

the beginning of Zone II. This observation indicated that, by the application of short cycles of 
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high voltage pulses during the deposition process, the energy required for the restructuring was 

given to the system by increasing the adatom mobility.  

When the presence of Ar in the deposition environment and its effects on the coatings 

produced with DC and pulse bias were compared, results indicated a higher stress generation in 

coatings produced with pulse bias. This observation, of the effects of Ar in coatings produced 

with pulse bias, can be explained by an increase of the grain boundary stress component (σgb), 

which is caused by significant grain size reduction. 

For the coatings produced with DC bias, intra-grain stresses were almost totally 

annihilated, as is indicated by the approach of their strain-free lattice parameter to abulk. However, 

for the coatings produced with HVPB, especially for the ones deposited under -1500 V pulse 

bias, stress relief magnitudes were very low (0.4–0.7 GPa). Moreover, their stress free lattice 

parameters did not approach to abulk indicating that the conducted annealing treatment was not 

sufficient to relieve the intra-grain defects. The densification of the grain boundaries resulting in 

the decrease of chemical potential between the grains and grain boundaries was presented as the 

reason for the difficulty of migration of point defects to the grain boundaries. 
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Table I. Deposition parameters, samples coding, coatings thicknesses and calculated average grain areas 

of the TiN coatings produced with DC and pulse bias. 

 Bias Voltage 

 Type-Magnitude 

(V) 

Pulse Bias 

Duty Cycle 

(%) 

Coating 

Atmosphere 

Coatings 

Thickness 

(µm) 

Average 

Grain Area 

(nm2) 

DC-NA DC-150 - N2+20%Ar  4.90.1 22,032 

P1000-NA Pulse-1000 14 N2+20%Ar  4.10.1 11,092 

P1500-NA Pulse-1500 14 N2+20%Ar  3.70.2 6,057 

DC-N DC-150 - N2 5.20.2 20,278 

P1500-N Pulse-1500 14 N2 4.40.2 11,079 
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Table II. Residual stress of as-deposited and heat-treated TiN coated samples.  

 As-deposited 

Stress 

(GPa) 

As-deposited 

Hardness 

(GPa) 

Stress after Heat 

Treatment (GPa) 

Stress 

Release 

(GPa) 

DC-NA -70.5 36.50.6 -4.50.4 2.5 

P1000-NA -8.20.4 31.50.7 -6.50.4 1.5 

P1500-NA -7.50.4 29.50.2 -6.80.4 0.7 

DC-N -5.40.3 32.80.7 -40.2 1.4 

P1500-N -4.20.2 27.50.2 -3.80.2 0.4 
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Figure Captions 

Figure 1. XRD patterns of TiN coatings deposited using different bias voltages in N2+Ar atmosphere 

before and after heat treatment in (a) θ-2θ and (b) GI modes. 

Figure 2. XRD patterns of TiN coatings deposited using different bias voltages in pure N2 gas 

before and after heat treatment in (a) θ-2θ and (b) GI modes. 

Figure 3. FESEM and FIB micrographs of etched coated surfaces and cross-sections of (a, b) DC-

NA, (c, d) P1000-NA and (e, f) P1500-NA. 

Figure 4. FESEM and FIB micrographs of etched coated surfaces cross-sections of (a, b) DC-N 

and (c, d) P1500-N. 

Figure 5.  Distribution of grains area for samples coated in N2+Ar atmosphere obtained by 

ImageJ program.  

Figure 6. Lattice parameter vs sin2ψ plots of TiN coated samples before and after annealing (a) 

DC-NA & DC-N samples and (b) P1500-NA & P1500-N samples: experimental data (symbols) 

and best-fit lines (full lines). Vertical line corresponds to stress-free direction sin2ψ0 and 

horizontal lines correspond to stress-free lattice parameters (aψ
0). 
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