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Abstract  

This study concerns new investigation of active vibration reduction of a stiffened plate bonded with discrete 

sensor/actuator pairs located optimally using genetic algorithms based on a developed finite element 

modelling. An isotropic plate element stiffened by a number of beam elements on its edges and having a 

piezoelectric sensor and actuator pair bonded to its surfaces is modelled using the finite element method and 

Hamilton’s principle, taking into account the effects of piezoelectric mass, stiffness and electromechanical 

coupling. The modelling is based on the first order shear deformation theory taking into account the effects 

of bending, membrane and shear deformation for the plate, the stiffening beam and the piezoelectric patches.  

A Matlab finite element program has been built for the stiffened plate model and verified with ANSYS and 

also experimentally.   

Optimal placement of ten piezoelectric sensor/actuator pairs and optimal feedback gain for active vibration 

reduction are investigated for a plate stiffened by two beams arranged in the form of a cross. The genetic 

algorithm was set up for optimization of sensor/actuator placement and feedback gain based on the 

minimization of the optimal linear quadratic index as an objective function to suppress the first six modes of 

vibration. 

Comparison study is presented for active vibration reduction of a square cantilever plate stiffened by crossed 

beams with two sensor/actuator configurations:  firstly, ten piezoelectric sensor/actuator pairs are located in 

optimal positions; secondly, a piezoelectric layer of single sensor/actuator pair covering the whole of the 

stiffened plate as a SISO system.  

Keywords , vibration control, stiffened plate by beams , optimal placement , piezoelectric, genetic algorithm 

 

1. Introduction 

Active vibration control is often considered as superior to passive control, being a higher response, smarter 

and lighter solution to the problem of structural vibration. It requires sensors, actuators, controller and 

driving control energy to apply opposite strain to that occurring naturally in a flexible structure to suppress 

vibration. The amount of external controller energy can be substantial, and this has attracted researchers to 

optimise it through investigation of sensor/actuator placement and control schemes.  
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Modelling of smart structure with bonded distributed piezoelectric sensor/actuator pairs have been 

investigated thoroughly for the suppression of mechanical vibration. Lee modelled a flexible laminated plate 

with a distribution of piezoelectric sensor/actuators bonded to it to effect distributed control and sensing of 

bending, torsion, shearing, shrinking and stretching based on classical laminated thin plate theory[1].  Tzou 

and Tseng modelled a mechanical structure (plate/shell) with bonded distributed piezoelectric sensor/actuator 

pairs using the finite element method and Hamilton’s principle. They proposed a new piezoelectric finite 

element including an internal electric degree of freedom [2].  

Detwiler et al modelled a laminated composite  plate containing distributed piezoelectric sensor/actuators 

using finite element and variational  principle based on first order shear deformation theory [3]. Ha et al 

studied a laminated composite plate containing distributed piezoelectric ceramics using eight-node brick 

finite elements to investigate static and dynamic response under mechanical and electrical loading [4].  A 

finite element solution using Navier theory is implemented by Reddy for a composite plate with a distributed 

piezoelectric sensor/actuator layer subjected to both mechanical and electrical disturbance based on classical 

and shear deformation theory. A simple negative velocity feedback is applied to control dynamic response of 

the structure [5]. 

He et al researched plate material functionally graded in the thickness direction with distributed piezoelectric 

material based on classical laminated plate theory. A constant velocity feedback control scheme was applied 

to study dynamic response of a plate and they found that the vibration amplitude of the plate attenuated at 

very high rates for appropriate gain values [6]. Kumar et al studied composite plates and shells with a bonded 

piezoelectric sensor/actuator layer using Hamilton’s principle and finite element analysis based on first order 

shear deformation theory including the effects of mechanical, electrical and thermal loading. Negative 

velocity feedback control was used for shape control and vibration suppression of a cylindrical shell [7].  

Han and Lee modelled a composite plate with distributed piezoelectric actuators based on layerwise theory to 

include in-plane displacement through the thickness. Classical control theory was implemented to compare 

the results with a model based on shear deformation theory and they reported that the layerwise model was 

more realistic [8]. Simoes et al investigated a thin laminated structure with integral piezoelectric sensor and 

actuator layers based on Kirchhoff classical laminate theory and finite elements. Negative constant velocity 

feedback was realised to suppress vibration for a composite beam and plate [9]. 

Plates and shells stiffened by beams are used to construct mechanical structures with increased specific 

strength and stiffness and investigated extensively for modal vibration behaviour. However, only a limited 

number of papers have been published on research into active vibration control of plates and shells stiffened 

by beams. Birman and Adali studied an orthotropic plate stiffened by a row of piezoelectric actuators to 

improve dynamic response by applying voltage to the actuators. Displacement and velocity dynamic 

response are considered as quadratic cost functions. They reported that increasing actuator voltage and width 

of stiffener-actuators led to reduced vibration suppression time [10]. Beams, plates and cylinders stiffened by 

piezoelectric beams were studied by Young and Hansen theoretically and experimentally. The beam stiffener 

had a flange and actuators were placed between the stiffener flange and the plate, and a row of error sensors 

was located near the stiffener. The authors found that one row of piezoelectric stiffeners and one row of error 
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sensors is quite enough to suppress vibration in beams and plates, but a cylinder requires three or four rows 

to suppress vibration. In addition, they noted that the locations of piezoelectric stiffeners and error sensors 

are inconvenient for many modes of vibration [11]. Mukherjee et al investigated the active vibration control 

of piezolaminated stiffened plates, but neglected the coupling between the direct and converse piezoelectric 

effects. The beam stiffener could take any direction on the plate and did not need to pass through nodal 

elements. Displacement and negative velocity feedback control were used to suppress vibration and they 

identified the problem that this tended to excite higher order modes [12]. The most recent study in this area 

was conducted in 2010 by Balamurugan and Narayanan, who considered active vibration control for a 

composite shell and plate stiffened by beams with distributed piezoelectric sensor/actuator pair bonded to its 

surfaces. The stiffener was positioned anywhere within the shell element along lines of natural coordinates. 

A number of examples was studied of cantilever stiffened plates and cylindrical shells bonded to partial and 

full coverage piezoelectric sensor and actuator to attenuate the first eight modes of vibration using optimal 

linear quadratic control. They reported that these structures with full coverage sensor and actuator did not 

detect vibration and actuate the structure effectively for all the modes. This was because of the  elimination  

of sensor voltage for some modes in full coverage case [13].   

The researchers [10-13] investigated plates and shells stiffened by beams with piezoelectric sensor/actuator 

pairs distributed over the whole surface or arbitrarily located at discrete points about the surface. However 

many researchers have drawn attention to the importance of discrete sensors, actuators and their location to 

achieve high sensing and actuating effects with low feedback voltage, high response and stability. Lim 

investigated vibration reduction for a clamped square plate and found that discrete piezoelectric 

sensor/actuator pairs in specified locations achieved higher controller effect, lower power requirement  and 

lighter weight than fully distributed piezoelectric layers [14]. Shen and Homaifar reported active damping 

controllers based on the use of discrete point piezoelectric sensors and actuators [15]. Balamurugan and 

Narayanan found that a full cover piezoelectric sensor or actuator layer bonded on a plate stiffened by beams  

gives low sensing and controlling effects for all modes of vibration [13]. Kumar and Narayanan showed that 

misplaced sensors and actuators lead to problems such as lack of observability and controllability [16]. 

Kumar et al showed that controllability depends on coverage area of piezoelectric sensor/actuator and that 

increasing the area beyond a certain limit does not improve controllability, so that the use of piezoelectric 

patches near the free end of a cantilever cylindrical shell is of little use [7]. Kapuria and Yasin reported that 

the closed loop response exhibits faster attenuation for multi-segment electrodes than a single-segment 

electrode for all control laws [17]. Good controller effect and optimality is achieved by discrete piezoelectric 

sensors/actuators and their location on a structure. Considerable work has been published to optimise the 

location of piezoelectric sensors and actuators to achieve higher response, stability and controller energy for 

plates, shells and beams. However, optimization of location for discrete piezoelectric sensors and actuators 

on a plate stiffened by beams has never been investigated.  

In this paper, a model was developed for isotropic plate stiffened by beams bonded with discrete sensors and 

actuators using the finite element method and Hamilton’s principle. The model was implemented to find the 
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optimal placement of ten piezoelectric sensor/actuator pairs for a cross-stiffened plate mounted as a 

cantilever, considering the effects of the first six vibration modes collectively.  

 

2. Stiffened Plate Model 

Consider a flexible plate stiffened by a number of beams with a number of piezoelectric sensor/actuator pairs 

bonded to it.  The stiffened plate is discretised to finite elements, with each plate element having the 

possibility of stiffening at one or more of its edges by between zero and four beam elements, and bonded to 

the plate element a piezoelectric sensor/actuator pair as shown in Figure (1). It is assumed that the 

piezoelectric elements are bonded tightly to the plate element, that the beam stiffener elements are fixed on 

plate element edges, and that the piezoelectric sensor area is the same as the actuator and plate area and is not 

affected by the thickness of the stiffener beams.  The plate, beam and piezoelectric patch is analysed 

according to first order shear deformation theory taking account of bending, membrane and shear strain 

effects.  

 

 

 

 

 2.1 Plate element 

The plate is discretised to isoparametric four nodes elements. The element displacements are a function of 

point coordinates and time as follows:  

  (       )    (     )     (     )       

 (       )    (     )     (     )    

     (       )     (     ) 

(1) 

 

Figure1 Plate element stiffened by a beam with a 

piezoelectric sensor/actuator pair bonded to the surfaces 
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For an isoparametric element, the element displacements and coordinates     are related to nodal 

displacements and coordinates by the same shape function   (   ) .  The shape function describes the 

element geometry in terms of natural coordinates      which vary between -1 and 1. The strain deformation 

induced in a plate element is: 
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Here the subscripts        and   denote to bending, membrane, shear strain and element node number 

respectively. 
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Here        and     are bending, membrane and shear differential matrices which relate element 

strain to element nodal displacements, and           represent the element local node 

numbering.  
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2.2   Beam stiffener in X-direction 

The beam stiffener is discretised into isoparametric two nodes elements. The element displacements are a 

function of point coordinates and time as follows;  

    (     )      (   )        (   )                (     )       (   )    (10) 
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2.3 Beam element connection to plate element  

The beam stiffener connection to the plate has a significant role in achieving perfect structure modelling, 

which depends on the offset elements node points distance between plate and beam. The offset can be 

ignored if it is very small compared to beam length and the transfer matrix is then considered as unity. 

However, it requires treatment if the offset is large compared to the plate and beam dimensions. A rough 

estimation of the offset was used  to  decide whether to ignore or model its effects  based on the beam length 

L and the offset distance between the beam and the plate mid-plane surface as follows  [18]:  

1. If          , the offset can be safely ignored 

2. If              , the offset needs to be modelled 

3. If        , ordinary beam, plate and shell elements should not be used. Two or three-

dimensional elements should be used instead.  

Consider the section shown in Figure (2) before and after deformation of a plate stiffened by one beam in the 

x-direction with an offset distance of     between two nodes   and   on the mid-plane surface of the plate 



7 
 

and beam respectively.  A transformation matrix is developed to relate the degrees of freedom of the beam to 

those of the plate according to Figure (2).  It is assumed that the global coordinates and displacements pass 

through the plate element. It is also assumed that there is an imaginary link connecting the two nodal points 

  and  . This link is considered before and after deformation in order to determine the relationship between 

the degrees of freedom of the displacement for the points   and   according to Figure (2) as follows:.    

 

 

 

       (       ) (18) 

                                                   (19) 

Figure 2 Section for connection of plate and beam stiffener along the  

x-direction before and after deformation 

 𝑝 

 𝑏𝑠 

𝑃𝐵 

𝑥 𝑢 

𝑧 𝑤 

𝑃 

𝐵 

 𝑥 

𝑤𝑜𝑏𝑥  

𝑤𝑜 

𝜃𝑥  𝜃𝑥𝑏𝑥  

𝑢0 

𝑢0𝑏𝑥  

Plate 

Beam 

𝜕𝑤

𝜕𝑥
 

𝜕𝑤𝑏𝑥

𝜕𝑥
 

Imaginary link   

𝑤𝑜  𝑤𝑜𝑏𝑥  

𝐵 

𝑃 



8 
 

We rearrange equation (19) in matrix form as follows:  
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The transformation matrix for the beam stiffener in the y-direction is; 

                                                   (25) 
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where     and      are transformation matrices for the beam stiffener in the    and  -directions respectively. 

So, equation (23) is substituted in equations (12) and (13) to get beam element strain in terms of plate 

degrees of freedom. 
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2.4 Piezoelectric constitutive equations 

Piezoelectric materials and their applications have gradually developed since their discovery and have 

become a popular and essential part of control system applications. The linear constitutive equation (28) 

describes the coupling relationship between electrical and mechanical behaviour of piezoelectric material 

[19].  

                                 (30) 

 

Where       and   are stress, strain, electrical displacement and electric field vectors respectively.  C, e, 

and   are elasticity, piezoelectric and permittivity matrices. Superscripts E and    indicate that measurements 

are taken under constant electrical displacement and stress, respectively. Piezoelectric material coordinates 1, 

2, 3 or x, y, z is shown in Figure (1).  Equation (30) can be rearranged into a non-coupled form, according to 

the assumptions of first order shear deformation theory that the normal stress in the z-direction     is equal 

to zero and eliminating     by condensation. Also, the polarisation direction of piezoelectric transducer is 

just in the z-direction, which leads the values of     and    to be equal to zero. Substituting these values in 

equation (30) we obtain the following [20] . 
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2.5  Kinetic and strain energy   

Hamilton’s principle and the finite element method are applied to a plate element with a bonded piezoelectric 

sensor/actuator pair and stiffened by a number of beams, to obtain the equilibrium dynamic equations.  

Hamilton’s equation is: 
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Here          and      denote the number of Gaussian integration, weighted points and Jacobian 

determinant respectively, and the subscripts,     and   refer to the plate, sensor and actuator respectively. 

The total strain energy    induced in a plate with beam stiffeners and piezoelectric sensor/actuator pair can 

be described by the following equations;  

                     (39) 
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Where    and    denote plate bending and shear elasticity matrices.     and   refer to modulus of 

elasticity, Poisson’s ratio and shear correction factor, respectively.  Strain energy induced in the beam 

stiffener is then: 
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Here            and     refer to transformation matrix, modulus of elasticity, area and second moment of 

area for the beam in the x-direction.    and     represent plate and beam element stiffness matrices 

respectively. Strain energy induced in the actuator is: 
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The electrical potential field distribution   varies linearly across the thickness of a piezoelectric element 

and the voltage difference across its thickness is constant over its whole area: 
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Where    and    are single voltage degrees of freedom over the top centre surface of sensor and actuator 

respectively.   
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In the same way, we can obtain the strain energy induced in the sensor, represented by equation (51); 
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Where     and     refer to piezoelectric sensor/actuator stiffness and electromechanical coupling 

matrices respectively. Total elastic energy induced in a plate, beam stiffener and piezoelectric element are 

obtained by substituting equations (44), (46), (50) and (51) in equation (39), from which: 
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Where      represents the total mechanical stiffness matrix for a plate, beam stiffener, and piezoelectric 

sensor/actuator element. Electrical energy induced in a sensor element is: 
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In the same way, we can obtain the electrical energy induced in an actuator represented by equation (57) 
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    is the piezoelectric capacitance matrix. The virtual work done by external mechanical and electric 

forces is: 

           
               (58) 

 

Where    and    refer to mechanical force and applied charge respectively. Substituting equations (34), 

(53), (56), (57) and (58) in equation (31), we obtain equations (59)-(62):  
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2.6  Global assembly  

The equation (63) represents the dynamic equation for a single plate element with a bonded piezoelectric 

sensor/actuator pair and stiffened by a number of beam element. The plate element may have a piezoelectric 

sensor/actuator pair and/or a number of beam element stiffeners, or may have neither. It is necessary to 

assemble the global matrices of the plate including beam stiffeners and piezoelectric sensor/actuator pairs as 

follows: 
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Where         and     are the total number of plate, sensors/actuator pairs and beam stiffeners element 

respectively.     and    refer to global mass and stiffness matrices for the structure including plate, 

piezoelectric pairs and beams stiffener.    and    are distributed matrix defined by the following [21]: 
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where      (four nodes) is the global element nodal numbering for the plate, while beam    (two nodes), 

sensor and actuator global element nodal numbering follows the same plate nodal numbering according to 

their location on the plate,           and    are the global degrees of freedom, plate and beam indexing 
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vector containing five global degree of freedom per node for    and      number of elements node 

respectively. So, the global dynamic equation for the plate stiffened by number of beam stiffeners and 

bonded by number of discrete piezoelectric sensor/actuator pairs may be written in the following form: 

    ̈    ̇       ̅   ̅  (70) 

2.7  Modal equation 

Low modes of vibration are difficult and costly to analyse using equation (70). So, superposition is realised 

by transferring the number of coupled equations from displacement in physical coordinates to the same 

number of uncoupled equations in terms of modal displacement coordinates, which makes it easier to 

investigate the contribution of each mode individually. The general dynamic equation in terms of modal 

displacement coordinates is a powerful equation to describe the motion of the system in each individual 

mode. The orthogonal properties of mass and stiffness are;  

                                      (71) 

 

The relation between physical and modal displacements is represented by the following equation: 
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Where    and   are displacement in physical and modal coordinates respectively,          refer to mode 

shape and natural frequency matrices. Substituting equations (71) and (72) in (70) we obtain a modal non-

coupled dynamic equation: 
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In order to put equations (73) and (74) into state space form and to change them from second order to a linear 

first order equation, assume that: 
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   Where    ,    ,     and    are individual modal state and input actuator, disturbance and output sensor  

matrices respectively in which subscript i refers to mode number. The state matrices for a number of modes  

   and number of actuators    are: 
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It is shown in the literature relevant to the active vibration reduction of stiffened plates explained in section 1 

that the optimisation of the location of discrete piezoelectric transducers on a plate stiffened by beams has 

never been modelled and investigated. In this study, the contribution of this finite element model is that it is 

able to solve and optimise the locations, feedback gain and number of discrete sensors and actuators for 

unstiffened plates and those stiffened by beams passing through the plate’s finite element nodes in any 

configuration in order to optimise active vibration reduction for these structures.  

 

3. Control Law and Objective Function 

Linear quadratic optimal controller design is based on minimization of performance index J. Values of 

positive-definite weighted matrices  , of dimension  (       ) , and   of dimension (     )  are 

controlled by the value of the performance index, where        represent the number of modes and 

actuators, respectively.  These matrices are established by the relative importance of error and controller 

energy, with high values of   giving high vibration suppression.  Optimal control system design for a given 

linear system is realised by minimization of performance index J.  
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Ogata has shown it is possible to follow this derivation to design a linear quadratic controller, which leads to 

the following Riccati  equation[22]: 

                     (85) 

                                 (86) 

 

Solution of the Reduced Riccati equation (85) gives the value of matrix  ; if matrix   is positive definite 

then the system is stable or the closed loop matrix      is stable. Feedback control gain can be obtained 

after substitution of   in equation (86). Minimization of the linear quadratic cost function J is taken as an 

objective function to optimise gain and piezoelectric actuator locations [23]. It can be seen from the Riccati 

equation (85) that the Riccati solution matrix   is a function of actuator location matrix   while the matrices 

    and   are constant for a particular control system.  The linear quadratic cost function J is equal to the 

trace  .  The minimum value of   gives optimal   piezoelectric actuator location and minimum feedback 

gain  .  So: 

  (   )       ( (   )) (86) 

     (   )     (     ( (   ))    )    (87) 

Where        plate dimension                   

4. Genetic algorithm 

In 1975, Holland invented the genetic algorithm, a heuristic method based on “survival of the fittest” or the 

principle of natural evolution.  It has been continuously improved and is now a powerful method for 

searching optimal solutions.  An Optimization problem consists of a large number of possible solutions 

called the search space, each of which can be marked by a fitness value depending on a problem definition or 

fitness function. An exhaustive search, in which every element of the search space is evaluated, is very 

costly.  For example, the work described here involves the optimal location of ten sensor/actuator pairs in a 

plate discretised into 100 elements, so the size of the search space is the statistical combination of 10 items 
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from 100, or 1.73  10
13

 possible solutions. The genetic algorithm gives an efficient search method for the 

global optimal solution and is largely immune to the problem of becoming “stuck” in a local optimum. 

The fundamental unit in the genetic algorithm is a population of individuals, each defined by a chromosome 

containing a number of genes.  The effectiveness or “fitness” of each individual is calculated according to 

some rule using the values of the genes.  The members of the population with the highest fitness values are 

allowed to “breed” to form the next generation and the process continues until convergence is achieved.  In 

this case, the ten “genes” are the locations of the ten sensor/actuator pairs, defined by an integer number 

(1-100), and the fitness function is the linear quadratic index. 

This process is directly analogous to the survival of the fittest concept in Darwinian natural selection, in 

which the more successful individuals in a population are inclined to breed and so form the next generation.  

By this means the genes that code for desirable characteristics, and so give the individuals possessing them a 

high degree of fitness, are transmitted down the generations at the expense of less useful genes, which die 

out. 

The working mechanism of the genetic algorithm is represented by two stages: firstly selection of the 

breeding population from the current whole population, and secondly reproduction.  The process is started by 

defining a population of individuals at random from the search space, the chromosome of each being made 

up of ten random numbers in the range 1-100, representing the locations of the ten sensor/actuator pairs on 

the plate.  This is the population of the first generation.  In the selection process, the fitness function value 

for each individual is calculated using these genetic values as data, and the breeding population defined as 

those with the highest value of fitness function. The reproduction process is closely based on sexual 

reproduction.  Pairs of individuals from the breeding population share their genetic material to produce 

offspring containing a combination of their parents’ genes.   

Many strategies have been developed for the reproduction process, but all involve “crossover” and mutation.  

In crossover, the chromosome of each parent is broken and two new chromosomes formed from the pieces.  

In mutation, one or more genes in a child’s chromosome are changed randomly.  In this way crossover 

explores the known regions of the search space by testing different combinations of genes that have been 

shown to promote high fitness, while mutation helps to maintain diversity in the population and so explore 

new regions of the search space..  The process continues for many generations until the population converges 
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on a single optimal solution, which is to say that the chromosomes of all members of the breeding population 

are almost identical. 

 

In this work, a genetic algorithm program was written in Matlab m-code.  Its main features are:    

1. Suitable values of                       and             are set by the user. 

2. The state matrix   of dimension (       )  is prepared for the first six modes of vibration according 

to the equation (79). 

3. One hundred chromosomes are chosen randomly from the search space to form the initial population.   

4. The input (actuators) matrix is calculated for each chromosome and for the first six modes of vibration 

according to equation (80). 

5. A fitness value is calculated for each member of the population based on the fitness function, according 

to equation (86), and stored in the chromosome string to save future recalculation. 

6. The chromosomes are sorted according to their fitness value and the half with the lowest fitness values 

(i.e. the most fit) are selected to form the breeding population, called parents.  The remaining, less fit, 

chromosomes are discarded. 

7. The members of the breeding population are paired up in order of fitness and crossover applied to each 

pair, the crossover point being selected randomly and is different for each pair. This gives two new 

offspring (child) chromosomes with new properties.  

8. A mutation rate of 5% is used on the child chromosomes. 

9. The input (actuators) matrix is calculated for each child chromosome according to equation (80) and 

thereafter the process is repeated from 5 for a preset number of generations. 

 

5. Results and Discussion  

5.1 Problem description  

A cantilever flat plate was stiffened by two beams arranged in cross configuration as shown in Figure 2. This 

beam stiffener configuration provides a symmetrical geometry. The plate dimensions were 

500 × 500 × 1.9 mm and the beam stiffener 500 × 20 × 1.9 mm. Optimal placement of ten piezoelectric 

actuators is investigated for the stiffened plate to suppress the first six modes of vibrations using the genetic 
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algorithm. In this paper, the genetic algorithm search space of the stiffened plate has           candidates 

(solutions), one of which is the global optimum and many are local optimal solutions.  The plate and 

piezoelectric specifications are given in Table 1. 

Table 1  Plate stiffener and piezoelectric material properties 

Properties Plate Stiffener  

 

Piezoelectric PIC255 
 

Modulus, GPa 

Density, Kg/m
3
 

Poisson’s ratio 
Thickness, mm 

Length, width, mm 

        , C/m
2
 

   
     

  ,    
  GPa 

   
 (F/m) 

210 

7810 
0.3 

1.9 

500, 500 

--------- 
-------- 

-------- 

210 

7810 
0.3 

1.9 

500, 20 

--------- 
-------- 

-------- 

------- 

7810 
------- 

0.5 

50, 50 

-7.15 
123,76.7, 97.11 

           

 

5.2 Natural  frequencies  

The dynamic behaviour of the stiffened plate was investigated using the model described in section 2, and 

validated by the ANSYS package and experimentally.  A finite element program in Matlab m-code has been 

built to solve for natural frequencies and mode shapes for the stiffened plate by beams, based on the model 

described in section 2.  

The stiffened plate is represented using two dimensional SHELL63 elements and three dimensional 

SOLID45 elements, respectively, and the results are close to the Matlab program results as shown in Table 2. 

The correctness of the natural frequencies was tested by convergence to constant values with mesh refining. 

It has been observed that the       mesh of SHELL63 elements gave good accuracy for the first six 

natural frequencies compared with finer meshes, with three dimensional SOLID45 elements and compared 

with experimental results as shown Table 2.  

Figure 2 Cantilever plate stiffened by two beams in cross configuration with distributed 

piezoelectric sensor/actuator pairs bonded to the surfaces 
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The experimental validation was performed using a cross-stiffened steel plate, mounted vertically as a 

cantilever as shown in Figure 3 by clamping along the bottom edge.  It was excited by an impact hammer to 

obtain the natural frequencies of vibration and modal damping ratios.  The vibration was measured using a 

single accelerometer located at a point of large displacement in all modes.  The acceleration signal was 

conditioned using a Kistler charge amplifier and logged using a National Instruments USB-6215 data 

acquisition unit and lap-top computer running LabVIEW software.  Figure 4 shows typical experimental 

results in linear and logarithmic (dB) form.  Modal damping, required for use with the state space matrix for 

optimal piezoelectric placement and vibration reduction, were calculated from the frequency response using 

the half-power bandwidth method.  The frequency difference  between the half power (-3dB) points on 

each modal peak n was measured and the damping ratio calculated as /2n.  The results of experimental 

damping are also shown in Table 2. 

                                                 Table 2 Natural Frequencies for the stiffened plate 

Case Mode 

                                                                                 
Ansys Shell63 (   ) 
Ansys Shell63 (   ) 
Ansys Shell63 (     ) 
Ansys Shell63 (     ) 
Ansys Solid45 (     ) 
Present model  (     ) 
Experimental 

Modal damping ratio 

17.11      25.89      56.75      69.81      99.51       130.47 
16.75      24.55      58.59      72.16      126.05     133.89 

16.59      24.19      57.84      70.33      121.11     133.51 

16.53      24.12      57.68      70.02      120.04     132.88 

16.62      25.46      57.84      71.02      125.11     133.36 
15.90      25.32      56.96      70.62      125.35     132.16 

15.10      19.70      58.50      66.90      120.00     128.40 

0.032      0.0177    0.011      0.0057    0.0052     0.0022 
 

  

 

 

 

 

Figure 3 Test rig showing vertically mounted 

cantilever plate with cross stiffeners 
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5.3 Optimization of sensor/actuator location 

The genetic algorithm described in section 4 was used to find optimal locations for ten sensor/actuator pairs 

on 0.5m square cantilever plate with cross stiffeners. The progressive convergence of the population onto an 

optimal solution is shown in Figures 5a, 6a and 7a, in which the population is distributed around the circle 

with radius representing its fitness value to be minimised. At the first generation (Figure 5a) the population is 

very diverse with representatives of high and low fitness and the range in between.  After fifty generations 

(Figure 6a) the population is much less diverse, made up of individuals of high, though not yet optimal, 

fitness.  After 500 generations (Figure 7a) the population has almost converged to a level of fitness higher 

than any individual in the first or 50
th
 generations.   

This convergence is shown in another form in Figures 5b, 6b and 7b.  Each point represents the location of a 

sensor/actuator pair for one of the individuals in a particular generation.  In the first generation these 

locations are widely distributed, having been selected at random.  After 50 generations they have begun to 

cluster in a few locations and after 500 generations the clustering is almost complete with all individual 

chromosomes coding for sensor/actuator pairs at the most ten effective sites, plus a few less effective sites 

distributed around the plate.  It can be seen from Figures (7b and 8) that the optimal piezoelectric actuator 

locations are symmetrically distributed about the x-axis, which is the only axis of symmetry for the plate 

fixed along the left hand edge. 

  

Figure 4 Experimental Lab VIEW graphs showing amplitude and frequency response for the stiffened plate  



22 
 

  

 

 

 

 

  

 

  

 

 

Figure 6.  Population distribution after 50 generations.   

(a) Chromosomes fitness                                  (b) Genes distribution  

Figure 5  The first random population shown by (a) chromosome fitness and (b) 

distribution of genes (sensor/actuator locations) on the stiffened cantilever plate surface, r 

refers to circle radius which is the fitness value. 

 

Figure 7  Population distribution after five hundred generations  

 

           (a) Chromosomes fitness                                         (b) Genes distribution 

 

  (a) Chromosomes fitness                                         (b) Genes distribution 
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5.4 Validation of location optimization  

5.4.1   Validation by convergence 

The genetic algorithm program was run multiple times to test the repeatability of the optimised 

sensor/actuator locations.  The results are shown in Figure 9, which gives an indication of the progress of 

each of five runs by plotting the fitness value for the fittest member of the breeding population at each 

generation.  It can be seen that the final fitness value is the same in each case, though the path by which it is 

reached is different for each run.  This indicates that the process is robust in finding the optimal solution 

repeatedly. 

 

5.4.2 Piezoelectric mass and stiffness effects 

Adding piezoelectric sensor and actuator layers to the plate has two passive effects:  adding stiffness and 

adding mass.  These will both affect the natural frequencies, tending to increase and reduce them, 

respectively.  This effect was represented using ANSYS using three dimensional SOLID45 elements for the 

0 0.1 0.2 0.3 0.4
0
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40
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Figure 9 Fitness value for the best individual in each generation, repeated for five runs 

Figure 8  Optimal distribution of ten piezoelectric pairs on the stiffened 

cantilever plate mounted rigidly from the left hand edge 
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main structure and SOLID5 elements for the piezoelectric pairs.  Trials were conducted on the cross stiffened 

plate for three cases:  no piezoelectric components; single sensor/actuator pair, giving complete coverage of 

both surfaces of the plate; and 10 sensor/actuator pairs in the optimal locations. 

The configurations were tested and the results are shown in Table 3. It may be seen that these have a small 

but significant effect, but there is no simple relationship between these added layers and change in natural 

frequency of the various modes.  These results are used in the analysis of vibration reduction for both 

piezoelectric configurations described in section 5.4.3. 

Table (3) piezoelectric mass and stiffness effects on natural frequencies 

Solid45/solid5 elements 
Mode 

                                                          
Neglecting effects 
Full coverage 

10 s/a pairs optimal 

16.6     25.4    57.8    71.0    125.1   133.3      
17.6     22.3    62.5    73.5    114.0   142.3  

17.1     25.1    59.7    73.6    122.0   135.7 

 

5.4.5 Time response ANSYS test 

The effectiveness of the optimal sensor/actuator locations was investigated for the cross-type cantilever 

stiffened plate.  The open and closed loop time responses were tested using two separate sensor/actuator 

configurations:  the optimal configuration of ten sensor/actuator pairs as shown in Figure (10) (a), and “full 

coverage” with a single sensor/actuator pair covering the whole surfaces of the stiffened plate as shown in 

Figure (b). The plates are actuated with an out of plane sinusoidal concentrated force of constant amplitude 

at the free-end plate corner, and the responses are measured at the location of maximum amplitude at the 

other side of the free-end plate corner, sensors and actuators, as shown in Figure (10). The plates were 

connected to the proportional differential control scheme and represented in the ANSYS package using the 

APDL program.  

 

 
 

 
 

Figure 10 (a) Cantilever stiffened plate cross-type bonded with ten discrete sensor/actuator pairs in the 

optimal locations, and (b) single sensor/actuator cover whole the stiffened plate   

  

   𝑠𝑖𝑛𝜔 𝑡    𝑠𝑖𝑛𝜔 𝑡 

Free-end Free-end 
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The results of the open and closed loop time responses at the first mode are shown in Figure 11 (a and b) for 

the two configurations. Figure 11 (a1, a2, a3, a4, and a5) shows the open and closed loop time responses for 

the first case bonded with ten pairs in the optimal locations. Figure (11) shows that the open loop maximum 

vibration amplitude for the full coverage stiffened plate was lower than that for the first case as shown in 

Figure 11 (b3) and Figure 11 (a3) respectively. This is because the piezoelectric sensor and actuator full 

coverage layers increases the stiffness and structural damping of the stiffened plate.   

  

 
 

  

  

(a1)/ Open loop  

(a2)/ Closed loop   

(a3)/ Open loop 

(b1)/ Open loop 

(b3)/ Open loop 

(b2)/ Closed loop   
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Figure 11 Open and closed loop time responses at the first mode for the cantilever stiffened plate cross-type 

bonded with (a), ten sensor/actuator pairs in the optimal locations and (b), single pair cover whole the 

stiffened plate, respectively using feedback gain              

  

The closed loop sensor voltage and free-end plate amplitude was reduced by 90% with total actuators (10 

actuators) feedback voltage of 160V as shown in Figure 11 (a1, a2, a3, a4 and a5), no reduction was obtained 

in the second full coverage case, as shown in Figure 11 (b1, b2, b3, b4, and b5). It was shown that the extra 

increase in feedback gain led to unstable responses for full coverage case, as shown in Figure 11 (b2), where 

the maximum closed loop sensor voltage at steady state is larger than that for the open loop shown in Figure 

11 (b1).  

The results of the open and closed loop time responses at the third mode are shown in Figure 12 (a and b) for 

the two piezoelectric configurations. The closed loop sensor voltage and free-end amplitude responses were 

also reduced by 90% with a total feedback voltage 70V for the first case, as shown in Figure 12 (a1, a2, a3, 

a4 and a5) and no reduction at the second full coverage case as shown in Figure 12 (b1, b2, b3, b4 and b5). 

Unstable closed loop responses were shown at gain values             , and then the gain was reduced 

to              during the test of full coverage case. In the full coverage test, no detection of vibration 

or actuation was found and the closed loop responses moved to unstable area at higher gain. The results of 

the large vibration reduction and stability obtained for the case of the optimal distribution of ten piezoelectric 

(a5)/ Closed loop   

(a4)/ Closed loop   

(b5)/ Closed loop   

(b4)/ Closed loop   
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pairs proved the effectiveness and correctness of the placement strategy and the global optimal 

configurations of sensor/actuator pairs. 

 

  

  

  

(b4)/ Closed loop   

(a2)/ Closed loop   

(b3)/ Open loop (a3)/ Open loop 

(a1)/ Open loop (b1)/ Open loop 

(b2)/ Closed loop   
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Figure 12. Open and closed loop time responses at the third mode for the cantilever stiffened plate cross-type 

bonded with (a),ten sensor/actuator pairs in the optimal locations feedback gain            and 

(b),single pair cover whole the stiffened plate, respectively  using  feedback gain             

 

Table 4 shows the results of the comparison study of the first six modes of vibration. The results show that 

the closed loop time responses of vibration amplitude of the first six modes were reduced by 90% for the 

optimal configurations and no reduction for the full coverage piezoelectric case except the second mode was 

reduced by 85%.  

Table 4 comparison study of vibration reduction between optimal and full coverage piezoelectric distribution 

Case 1
st
  2nd 3th 4th 5th 6th stability  

Optimal configuration 90.9% 90.4% 90% 94.9% 90% 91% Stable  

Full coverage 0.0% 85.2% 0.0% 0.0% 0.0% 0.0% Unstable 

 

Conclusion   

An isotropic plate stiffened by beams with bonded piezoelectric sensor actuator pairs is modelled using finite 

element and Hamilton’s principle based on first order shear deformation theory taking account of the effects 

of bending, membrane and shear deformation effects for the plate, the beams and the piezoelectric patches.  

(b5)/ Closed loop   (a5)/ Closed loop     

(a4)/ Closed loop   
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A Matlab m-code finite element program has been developed to test the model and the results verified using 

ANSYS and experimentally.    

A technique has been developed to determine optimal conditions for active vibration control of complex 

structures using a genetic algorithm.  The parameters optimised are sensor/actuator locations and feedback 

gain using minimisation of linear quadratic index as the objective function.  This was used to optimise the 

placement of ten sensor/actuator pairs from           possible locations to give the best vibration 

reduction of the first six vibration modes. 

The genetic algorithm optimisation was tested on a structure of moderate complexity: a cantilever mounted 

plate stiffened by two beams in the form of a cross.  The solutions obtained were tested for robustness by 

running the program repeatedly.  It was found that the same optimal locations were obtained in every case, 

following different evolutionary paths. 

The effectiveness of the optimisation was tested by comparison of automatic vibration control of the cross 

stiffened plate using ten optimally placed sensors/actuator pairs and single sensor/actuator pair covering the 

whole plate surface.  Vibration was reduced by more than 90% for optimal piezoelectric configuration with 

high stability and no reduction and stability for full coverage case except the second mode was reduced by 

85%.  This reflects the importance of this investigation during achievement of high vibration reduction, 

stability, material cost and structural weight comparing with previous studies for full coverage stiffened 

structures. 
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