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Abstract

The objective of this paper is to derive an approximate closed-form solution to the
H, optimization of piezoelectric materials shunted with inductive-resistive passive
electrical circuits in the presence of damping in the primary structure. To this end,
the homotopy perturbation method is utilized in which the zero-order solution is
the recently-developed exact solution for an undamped primary system. Simplified,
though accurate, expressions for the optimum frequency and damping ratios are also
provided.
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1 Introduction

There exists a large body of literature regarding the design of mechanical tuned vibration
absorbers (MTVAs). Considering a MTVA attached to an undamped structure, Den
Hartog [1] and Brock [2] were the first to develop approximate analytical formulas based
on the existence of fixed points in the receptance curve. However, it is only recently
that an exact closed-form solution to this classical problem could be found. Instead of
imposing two fixed points of equal amplitude, Nishihara and co-workers [3] tackled the
direct minimization of the norm of the frequency response of the controlled structure. In
the presence of damping, they proposed an approximate analytical solution in the form
of power series of the damping in the primary system [4].

For piezoelectric tuned vibration absorbers (PTVAs) shunted with RL circuits, Hagood
and von Flotow developed two strategies based on Den Hartog’s fixed point method and
on pole placement [5]. Hogsberg and Krenk proposed a tuning rule that is a balanced
compromise between these two design criteria [6]. This balanced calibration was recently
improved to account for the contributions of non-resonant vibration modes [7]. Through
the development of an equivalent mechanical model of a piezoelectric element, Yamada et
al. [8] introduced a new approximate analytical expression for the damping parameter that
improves the PTVA performance compared to the formulas in [5]. Closed-form expressions
related to shunt performance were also derived in [9]. Because all the aforementioned
tuning rules are approximate, an exact closed-form solution for a PTVA attached to an
undamped system was established in [10] through the extension to piezoelectric absorbers
of the design philosophy proposed in [3]. We note that Den Hartog’s equal peak method
was extended to nonlinear PTVAs in [11].

There have been very few attempts to derive analytical formulas for PTVAs attached
to damped systems, see, e.g., [12]. In this paper, a new approach that relies on the
homotopy perturbation method carried out up to second order is proposed. For the zero-
order solution, the recently-developed exact solution for an undamped primary system is
exploited [10], which leads to an accurate closed-form solution.

The paper is organized as follows. For completeness, Section 2 briefly reviews the exact
solution derived for an undamped primary system. Section 3 presents the analytical
developments that lead to accurate approximations of the frequency and damping ratios
of the PTVA in the damped case. To provide the reader with tractable and useful formulas,
the analytical expressions are simplified using polynomial regressions in Section 4. Finally,
the conclusions of the present study are drawn in Section 5.

2 Piezoelectric tuned vibration absorber attached to an
undamped system: review of the exact solution

We consider a one-degree-of-freedom modal model of the primary structure coupled to a
PTVA) i.e., a piezoelectric transducer (PZT) attached to a resonating resistive-inductive



(RL) shunt. The coupled system is depicted in Figure 1 and is subjected to harmonic
forcing.
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Figure 1: PTVA attached to a damped system.

The PZT is assumed to be a one-dimensional rod in which both the expansion and po-
larization directions coincide with the central axis of the rod (conventionally called ‘3-
direction’). The stiffness of the PZT rod with short-circuited electrodes, kpzr, and the
capacitance with no external forces, cpzr, are defined as:

1 sg S
T7°0

kPZT = "5 l—, CpzT = €3 l_ (1)
S33 L0 0

The cross section area and length of the PZT rod are sy and [y, respectively. The per-
mittivity under constant strain and the compliance under constant electric field of the
PZT rod in 3-direction are €1 and sfj, respectively [13]. The governing equations of the
coupled system are written as:

mlju' —+ blfL' + (k?l + EPZT) r — gq = fsinwt,

Li+ Rg + g—0x = 0. (2)

CpzT

where x(t) and ¢(t) are the displacement of the primary system and the charge in the
electrical circuit, respectively. The parameters

_ kpzr = ko kpzr  _
kpzr = 1_—%, 0 = =2\ cppr cpzr = cpzr(1 —K3), (3)

are the stiffness of the PZT rod with open electrodes, the generalized electromechanical
coupling factor and the capacitance of the PZT rod under constant strain. kg is defined
as the electromechanical coupling coefficient in ds3-mode:

k 1
ko = dg\| = = dgy———. (4)
CpzT S33€3

As in [10], Equations (2) are recast into:

T 420 +T—6ag = fosinT,
q +7r0%7 —dax+6%F = 0, (5)



where prime denotes differentiation with respect to the dimensionless time 7 = wyt and
the other parameters are:

ki + kpzr 1 w We
wy =4 ———, W=

my B v L EPZT7 ,y_w_17 w1
T =./m 7z, i=+Lq, r = Rcpzrwi, (6)

/
w1V kpgr + ki

K= kl/EPZTa Jo=

A key parameter in this paper is the damping in the primary structure:

h d ®)

p=2¢= = —
2m1 Wi 2\/7711 (kl +kPZT)

Assuming v = § 4 and j = v/—1, the receptance transfer function of the primary structure

T

Jo

B jory — 4% +1
(JO A3 4 62142 — jO ) p+ jO3rid — 8244 — jory + 0242 + a? + 42 — 1|

9)

G(y) =

features two resonant points M and N.

For an undamped primary structure, i.e., g = 0, the optimum values of § and r corre-
sponding to H,, optimization were obtained in [10]:

- 2 2 _ 2
5opt =2 %7 Topt = 2 [1 i (50Pt hi i) <a +>2< 1>2h0 ] . (10)
45a—10b (14 (X Oopt” — 1) ho”] ope

The amplitude A of the resonant peaks is:

8
a2 VAlal —1dda® + 64+ 902+ 16

and the other auxiliary parameters are given in Appendix A. As illustrated in Figure
2, the receptance curve for u = 0 possesses two resonance peaks with exactly the same
amplitude.

ho

(11)

However, for a damped primary system, Figure 2 shows that the resonance peaks have
no longer the same amplitude. The normalized difference between the amplitudes of the
resonant peaks M and N

ACy = GV — GH)n

. (12)
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Figure 2: Frequency response of a damped primary structure coupled to a PTVA tuned
using Equations (10) (o = 0.2).

is an appropriate detuning indicator. It is presented in Figure 3 for different values of the
dimensionless electromechanical coupling factor o. For instance, this figure depicts that
the detuning can amount to 5% for a practical value of @ = 0.2 and for 2% damping in
the primary system.

3 Analytical solution for a piezoelectric tuned vibration
absorber attached to a damped system

Given the dimensionless electromechanical coupling factor o and the damping parameter
1, the objective of this section is to correct the analytical expressions of the frequency and
damping ratios in Equation (10) so as to maintain equal peaks in the receptance curve of
a damped primary system.

By introducing new auxiliary parameters § = 6% and g = (§4)?, the square of the recep-
tance transfer function of the primary damped structure G* = |G(%)|? is given by:

gri0+g*—2g+1
gr0? +0 (r’0* +p? —20 —2) >+
1+ (u2r? =272 4+1)0* + (=20 —2u* + 4) 0] g°+
{ICur+2)a®+r*+pu?>—2]0 +2a* -2} g+
at —2a? + 1.

G? = (13)

To enforce two resonance peaks of equal amplitude, the optimality conditions should
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Figure 3: Normalized difference between the resonant peaks for different values of a.

be [4]:
Cl - Ba_CiQ IMgN O’
2
Cy = %’!JJWHN =0, (14)

03 = Gz’gM - G2|9N =0.

(7 indicates that the resonant amplitudes take a minimum value at a certain combination

of r and g,1.e., (rar, gu) and (ry, gn)-
C5 represents a condition for finding the two resonance frequencies, and C53 guarantees
the equality of the resonance peaks.

By plugging Equation (13) into the optimality conditions (14), we obtain:
2 L, 2 2
Ci=|—yg —2(—57’ 0—1)g—1|p—2r0g"—2(—0—1)rg+a°r—2r, (15)

and

Cy = 22g3r494 — 4% [¢* =29+ 1+ (342 — 3) 2] r0° + —2asc, g0* + arc, O+ (16)

20%(g—1)(a®+g-1),

with the following auxiliary parameters:
asc, =gt —4@3+[6+ (2 —2)r? g+ -4+ (—a® =2p>+4)r?| g+ 1+ (u® —2)r?%
ae, = (=2 +2) g+ (Ap?—8)¢® + (2a’ur —2a® — 64> +12) ¢* + (40 + 44> = 8) g+

at —2a2)r? —2a%ur — p? —2a®+2
(17)



and
Cs =r'9mgn (gu + gn) 0* + r?asc, 0 + asc, 6 + aic, 6+

—2 [(50° +gx —1) gu + 5 0%gy — 0® — gy + 1] o®, (18)

with:
asc, = [gvPgn + (298 —4gn + 1) g + gy (gn* —4gn + 2+ (12 — 2)7?) g + g7

asc, = (gn — 12 ga® + =2+ gn® — 4982+ (54 (12 — 2)12) gn] ga>+

[—2g98° + (5+ (1> = 2) ) g2 4+ (=4 + (=202 =42 + 8) r?) gy + L+ (1* — 2) r*] g+

g [gn? —2gn + 1+ (p* —2) 77,

e, = (gx —1)° (1 = 2) gr*+
(=21 +4) gn? + (=20°ur +20® + 44 = 8) gy — 2 p° — 20° + 4] gy + (19)
(12 —=2)gn?+ (=20 —2p% +4) gy + (—a* +2a) r? + 202 ur + p? +2a% — 2.

Equations (15), (16), and (18) should be solved simultaneously to obtain the solution

6

r

X = , (20)

am
gn

in terms of parameters o and p. This system of equations is strongly nonlinear, and we
propose to solve it using the homotopy perturbation method (HPM) [14,15]. Compared to
traditional perturbation methods [16], HPM does not require the definition of a small per-
turbation parameter and was found in the literature to remain accurate even for strongly
nonlinear problems. The method starts by constructing a set of homotopy functions which
connect the known configuration of the system when p = 0 (i.e., the undamped structure)
into the unknown configuration when g # 0 (i.e., the damped structure):

HlM(X§p) = (1 - p)Cl |u:07g:gM +pCy |g:91w

Hin(X;p) = (1=p)C1lu=0,9=gx +PC1lg=gn;

Hy(Xsp) = (1=p)C2lu=0,9=gx + PC2lg=gus> (21)
Hy(X;p) = (1=p)Calu=0,9=gn +PC2lg=gn;

Hy(X;p) = (1-p)Cslu=0 +pCs,

where p € [0,1] is the homotopy parameter. The condition C; can be written for
both resonance peaks, and two sets of equations are thus created, namely set M =
{Hinm, Hy, Hs, Hy} and set N = {Hyy, Hs, H3, Hy}. To minimize both peaks simul-
taneously, the average value of the two solutions, X,; and Xy, is considered as the final
solution. By enforcing H; = 0 and varying p from 0 to 1, a family of algebraic equations
is created for which the solution evolves continuously from that without damping to that
with damping.



Expanding the solution X around p = 0, the approximate solution }A((p) is expressed as a
so-called homotopy series:

X(p) = Zpi X, (22)

Assuming that this series converges at p = 1 [17], i.e., X(1) = X, the analytical solution
is described as:

X = i X;. (23)
=0

Substituting the approximation (22) into (21), and equating terms of the same power of
p lead to calculating the analytical expressions of X;’s at different orders ‘7’

Zero-order solution
Solving the system of Equations (21) for p = 0, the zero-order solution is obtained:

0o 1
- To \/\/Laz
Xy = = 2—a 24
0 gmo 1-— \/75 o ( )
gno 1+ \/Tia

This zero-order )ACO is the solution for the undamped case and is found to be similar to
the rule proposed by Yamada [8]. However, this rule is approximate and does not enforce
equal peaks in the receptance curve, especially for great values of « [10].

. Hence,
to have an accurate zero-order solution, we propose to utilize the exact solution described
by Equations (10): ,

o )

opt

v To Topt
Xy = = P : 25
° 9gmo (7M§opt)2 (2)

Higher-order solutions
According to the two sets of homotopy functions, the corresponding solutions at order ¢
are summarized as:

(pl) : XzM = LM_I X ]:7‘11\/[7 XiN = LN_I X FiN- 1= 1, 2, (26)
The final solution of )A(Z is obtained as:

o X +X,
X, = % i=1,2,... (27)
Unlike Lj; and Ly which are independent of the order i (see Appendix B), F;y; and F;y

have to be calculated at each order. At first order,
1t (—ga0 7000 + garo® — 2 garo + 1)
F1(2)
Fl]\l = 9 (28)
Fi(3)

Fi(4)

8
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. __Exact solution [10], -

ol \ Equation(24) |

~ il
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ar Zero—order solution, Equation(23) ]
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Figure 4:

—gno 0’160 + gnoP — 2 gno e+ 1
F(2)
FlN = 5
Fi(3)
Fi(4)

where

Fi(2) = p [(14 gmo® + (r0*00 — 2) gMo)2 =21y a?gao’ + 20427“0} 6o,
Fi(3) = p [ (14 gno® + (10?00 — 2) gNo)2 =21 a?gnoe? + 20427"0] 0o,

2 20 2 2 _
F1(4):—H{ [1+ garo” + (0”00 — 2) garo] (9nv0 70700 + gno™ — 2 gvo + 1) }90‘

—279a? (garo gno — 1)

For the second-order approximation,

Fon(1) Fon(1)
P 5(2) Fay — Fy(2)
F5(3) F5(3)
Fy(4) Fy(4)

with

For(1) = [(=10%61 — 271971 00 + 2 grr1) gaao + (—70%00 — 2) gan] i+
270 gar1®00 + [(4 garo 0o — 2600 — 2) 11 + 470 (garo — 3) 01] gan+
271 gmo 61 (gao — 1)

(29)

(30)

(32)



and

Fon(1) = [(=r0%6h — 271971 00 + 2 gn1) gno + (—70%00 — 2) gna] pt
279 gv1200 + [(4 gvo b0 — 260 — 2) 11 + 470 (gno — 3) 01 gva+ (33)
2r1gn061 (gvo — 1)

For brevity, F»(2), F5(3), and F»(4) are given in Appendix C.

Eventually, by substituting Equations (26) into (27), and using Equation (23), the final
approximation is obtained:

Ly ' x Y Fay +Ln ' x> Fuy
X — XO + =1 5 =1 : (34)
where the optimum tuning parameters are:
5opt == X(l)a Topt = X(2) (35)

For illustration, Table (1) lists the resulting tuning parameters for o = 0.2 and for different
damping values.

From Figure 5, it is clear that equal peaks can
now be maintained in the damped case. The improvement with respect to the undamped
formulas is quantified in Figure 6, and the comparison between the first- and second-
order approximations is also depicted in this figure. It is seen that the first-order solution
significantly outperforms the undamped formulas. For reasonable damping values (i.e.,
on the order of a few percents), the peak amplitude difference is practically zero for the
second-order solution, which validates our developments.

Table 1: Tuning parameters based on (35) for a = 0.2.

1%* order approximation 2" order approximation
H 6opt ropt 5opt ropt

0 1.000176 0.249152 1.000176 0.249152

2.5 % 0.998372 0.254798 0.998513 0.254569
5%  0.995948 0.260851 0.996576 0.260
7.5 % 0.992899 0.267311 0.994461 0.265046

10 % 0.989220 0.274178 0.992263 0.270

10
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Figure 5: Frequency response of a damped primary structure coupled to a PTVA tuned
using Equations (10) (dashed lines) and the proposed analytical formulas (35) (solid lines)
for a = 0.2.

4 Simplification of the tuning rule

In view of the complexity of the previous developments, a simplification of the analytical
formulas (35) is proposed in this section. As shown in Figure 7, the optimum parameters
vary according to the electromechanical coupling factor a and the damping p. These
variations were fitted for realistic values of a and p, i.e., a < 0.4 and p < 0.1, using
polynomial regressions:

(o2}

4M4+53M3+52M2+51M+50 (36)
P pt iy’ o i P+

5=

A

with
Sj = Zai&j, (37)
1=0
fo= Y a'fy, j=0,1,..4
=0

The coefficients of these regressions are given in Tables 2 and 3.

11
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Table 2: Numerical values of 57;]».

i 0 1 2 3 4
0 0.99947  0.013042 -0.099172 0.276174 0
1 0.001839 -0.648595 0.203046 0 0

2 -0.583194 -0.004205 0.036732 -0.161315 1.030

3 14.528682 -180.5251  994.019  -2487.011 2302.699

4 0.235821  -0.045426 0.688615 -2.111 4.072

Table 3: Numerical values of 7;;.

i 0 1 2 3 4
0  -0.000315 1.23240 -0.055608 0.649221 0

1 0.167 -0.007 1.3371 -0.162 0

2 -1.21 15.636 -82.575  208.5644  -189.4
3 -0.874  -0.033277 3.49 -1.66418  6.8932
4 -0.9071 12.89 -61.831 154.971  -141.373

5 Conclusion

Analytical expressions for the optimum frequency and damping ratios of PTVAs coupled
to damped systems were developed in this paper. To achieve this, the homotopy per-
turbation method was carried out up to second order utilizing the exact solution in the
undamped case as zero-order solution. The obtained formulas were shown to maintain
equal peaks in the receptance function even for relatively great damping values thereby
generalizing Den Hartog’s equal peak method. Simplified expressions were also provided
for the rapid calculation of the frequency and tuning ratios or for the digital implementa-
tion of the shunt circuit.

14
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Appendix A: Analytical formulas for the PTVA coupled
to an undamped structure [10]

The analytical expression for the amplitude of the resonance peaks hy of an undamped

host structure is: g

a2 VAlal—14da® + 64+ 902+ 16

and the auxiliary parameters in Equations (10) are:

ho (A-1)

1
X = g\/64—2a2\/54044 — 144 a2 + 64 + 55 a* — 144 o2,

(13— 1)°

RS

(2x +a?) (k2 —1) (A-2)
hg ’

1 /1 Ay 2
S=—4/—= — | - =p.
2 \/3& (Q 0 ) 3?
The parameters appearing in the expression of variable S are
Q- i/A1+ \/A% —4A8
2 )
Ao = & — 3bd + 12a¢,

_ 8ac — 3b?
P="ga

™
|

S

= -2

with . - -
Ay = 28 — 9béd + 27b%¢ + 27ad® — T2ace,
ot (4)( 8) , 6 6
i=b—+ 5% - —)o*+— — —,
ho? ho?  hy? ho®  hot )
~ 2 2 -4
d=2+ (402 —2— =) y—22 +2a%—2a",
ho ho
1
ho?

The two resonant frequencies v,; and vy are also defined as:

e =

b - _
T =3~ g5, ~ S N =8 S (A-5)

17



where

b4:54
by = 6572 — 2% — 262,

by = =262 — 20202+ 64 +46%+1—

h_%7
2,.2
-2
b1:2a252+52r2+2a2—2(52—2—5rh2 :
0
1
bo=1+a*—2a? 2
- Ay
= \/—P 3b4Q 5)
~ s/ AL+ (A2 —4A3)
Q_ 2 9
_ 8byby —3b5”
p_ 8b42 I
_78511742—4525354-#533
q_ 8b43 )

Ay =12bg by — 3by by + by,
A =

—T72bo by by + 27 by by + 27 b1%by — 9 by 9 b3 + 2bsy°.

18
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Appendix B: Components of Ly; and Ly in Equations
(26)

=270 gno (gm0 — 1) =2 9000 + (260 +2) gaso +® — 2 (=470 guo +270) 6g + 219 0

L o L21 L22 L23 L24
M L Ly Lss Ly
L41 L42 L43 L44

(B-1)

—2r9gn0 (gvo — 1) —2gn0200+ (200 +2) gvo + a2 —2 0 (—4rogno + 270) B0 + 270

LN — L21 L22 L23 L24
L3 L3y L33 L3y
L41 L42 L43 L44
(B-2)
Ly = —4 91000 + (—1219%60> + 16 6y + 2) garo*+

[—8 — 879%” + 2479%00” + (879 — 24) 6] guro®+
{(670* — 1279%) 00> + [16 + (4 a* — 16) 10%] 6y — 2% + 12} garo®+
(870200 +4a* — 40y — 8) garo + (! —20%) rg> —20% + 2,

Lay = =8 guo’ro®00" — [(8 garo® — 470% — 16 garo + 8) gMy*ro — 4 groro®] 0o°
—2 gnmo [—4 gM02T0 —|— (—2 042 —|— 8) To gnmo — 47“0] 002+
(2a* —4a?) by,
Lys = —6 QMO 7“0490 - [(8 9M0 - 47”0 — 16 gpro + 8) gM + (8 gMO - 8) 9M02] 7"02903—
2 gao [49M° —12gM0 + (—4ro® +12) gyo — 4+ (—a® + 4) r?] +
2 gn0® — 8 gno® +2 (—270% + 6) garo®+ 00>+
2 ( 4+ (—a2+4)r02)gM0+2—47“02
(8 garo® — 24 grro® + (—4a® 4+ 24) gro +4a? —8) Oy + 2% (garo — 1) + 22 (@ + garo — 1),
L24 :0
Lsi = =8 gn0°r0%00” — (12 gno? — 670 — 24 gno + 12) givo? 7“0 20°—

[4 gno* — 16 gno® +4 (—270% + 6) gno® +4 (=4 + (—a? +4) ro?) gno + 4 — 870%] gno Oo+
2 gnot — 8 gno® + (—2a% +12) gno® + (4a? — 8) gNy + (a —20a?) o2 +2 — 202,

Lss = =8 gno®r0®00" — [(8 gno? — 4702 — 16 gno + 8) gno®ro — 470 gno?] 00° —
QQNO [—47’091\/02 -+ (-20&2 +8) To gno —47’0] 902 + (20&4 —40&2)7’090,
L33 = 07

= —691\70 rot0" — ((891\/0 —4re* — 16 gno + 8) gnvo + (8 gvo — 8) gno?) 70260°—
29]\[0 4NN0 _129N0 +( 4T02+12)9N0—4+(—Oé2+4)7"02]+
{ 2 gno* — 8 gno® + 2 (27197 + 6) gno®+ 00>+
2[ 4—{—(—0{2—{—4)7"02}g1\[0+2—47"02
8gN0 — 24 gno® + (—4a® +24) gno +4a? —8) 0y + 2 (gno — 1) +
a® (a® + gno — 1),
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Ly =470 gum0 gvo (gao + gN ) 00°+

L3

3 gno gmo® + 3 (2 gno® — 4 gno + 1) guo® 2 2
+3 gno (gno” — 2;‘0 — 4 gno + 2) g + 3 gno
2 (gnvo — 1)7 gm0 + 2 [gnvo® — 4 gno® — 2+ (=270% + 5) gnol g0’ +
2 (—2 gN03 —+ (—2 7“02 —+ 5) gN02 —+ (—4 + (—2 a2 + 8) 7“02) gnNo + 1-— 2T02> gM0+ 90
, 2 gno (gno® — 270 —2gn0 + 1)
-2 (gNO — 1) gM02 + [4 gN02 + (2 042 — 8) gnNo + 4 — 2042] gnmo—
2 gn0% + (=202 +4) gno + (—a* +2a?) rg? — 2+ 20a?,

Lis =4 gmoro®gno (garo + gno) 6o+
29N09M0 +2(29N0 —4gno + 1) guo+ 3 3
—4 T 0o°+
{[QQNO (gno® — 270> — 4 gno + 2) guo + 2 gno® JaroTo 9o Yo
(—4 gno 7o gumo® + [—4 70 gno® + (—4 a2 +16)7“09N0—47“0]9M0—49N07“0)902+
(—2a* +4a?) 760,

= [ro*gnmo gNO + 1ot gno (9ar0 + gno)) 00"+

[3 gnvo 9o +(49N0 — 8 gno +2) guro + gnvo (gno® — 270% — 4 gno + 2)] 0200+

{3 gNo—l gmo® + (2 gn0® — 8 gno? — 4+ 2 (=212 +5)9N0]9M0_:|0 n
29]\70 + 27’0 +5)gNO +( 4+(—2a2+8)7’0)gN0+1—2r 0

[—4 (gnv0 — 1)* gnro + 4 gnvo? + (202 — 8) gvo + 4 — 202] 8y — 202 (30 — 1+ gwo) ,

= [ro*gar0 gno + o  garo (a0 + gno)] 00"+
gm0’ + (4 gvo — 4) guo+ 20,34
lgno (2 gnv0 — 4) + gno® — 270% — 4 gno + 2] garo + 2 gno To o
(2 gno — 2) guo® + (3 gno® — 270> — 8 gno + 5) garo®+
[—6 g]\/()2 + (—4 T02 -+ 10) gNo — 4 + (-2 OéQ + 8) TOQ] gmo + gnNo (2 gNno — 2) + 902+
gno® — 270" —2gn0 + 1

[(—4 gno +4) gro® + (2% + 8 gno — 8) garo — 4 gnvo — 2% + 4] Op+
—20% (gm0 + 307 —1).
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Appendix C: Components of Fy), and Fyy in Equations
(26)

F2(2) =2 gM05912 + [4 7’12903 + 24 ToT1 91 902 + (12 7’02612 + 20 gm 91) 90 + 91 (/JJ2 - 861)] gM04+
( 12 ’1"027"12904 + 32 (7“0391 + 7o gn1 — %) 1 (903+
[12 7"04(912 + 48 7“02ng 91 + 47’1 (/ﬂ —12 61) To — 47"12 + 20 ngﬂ (902+

3
[(4120) — 240,2) 162 — 167071 01 + 4 gay (12 — 1661)] Bt gnro™+
L —4 91 (7"0291 + ,U2 + 2 am1 — 3(91)
( 24 7"037'1 gm (904—|— )
24 gmi 91 T04+

4M2T03T1 + (24 gM12 —12 T12) 7‘02—|— 903—|—
—487y g o + 411
3 puProtly — 24 ry3r 01+
6 g1 (1 —1261) 1*+
—871 (2 + 3 garn — 3601) 10 — 48 gapi 2+
i (—2a® +8)ry?
) —6 7’04912 -8 [/JQ + 3gM1 — %91] 61 T02+
(—8a? +32)r 0y ro+
-2 on,url —12 ung1+
| —12 gari® + 72 gans 64
> 661 [61 (—%042 + %)102 —2%?2/117”04—,&2 +49M1 — %91} )
670" grr 0o +
270 gart (0210 — 87021 — 1270 gary + 871) 0p°+
—12 gm 61 T04+
—8 (uz + % gm1 — 391) g1 7o+
4 [(—20a*+8) gany + i) i o+
—4 7'12 + 36 gM12
4(91 (—2 OzQQM1 + M2 +8 ng) 7’02+
(—4a?gp o — 1671 01) ro+ 0o+
12 (1 + 2 gan — 5 61) gant
[ =46, (ro*6 — o + 12+ 6901 — 01/2)
—27102gan? (1% — 2) 0>+
2 (=g + 12 + 4 gan) ro® — 4o — 4 gant) gt 00>+
—8 70 g 01+
4 gar 01 + (202 — 12) gani®+ Op + 2020y (—ary +pu+27r1) ro+
—442 g +20 [(—2a?+ 1) +p]
(—4a?gan + 12 + 8 gant) 61 — 2% gan®

02+
0 grro+

0o+

00>+
grro+

(C-1)
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F(3) = 29N0?912+
[4 7“12903 + 24 ToT1 91 902 + (12 7’02012 + 20 gn1 91) 00 + 91 ([IJ2 - 891)] gN04+
12 T027“12004 + 32 (7“0391 + Togn1 — %) T 903—|—

|:]_2 7"04012 + 48 gn1 01 T‘02 + 47"1 ([L2 —12 91) o — 4’[’12 + 20 gle} 902+
[(4#291 - 24912) 7"02 — 16 ToT1 01 + 4gN1 (,u2 — 16 01)} Qo—f—

—4 91 (7“()291 + ,UZ + 2 gN1 — 391)
24 gy 01 1ot + 4 1213y
2470 gn1 00t + | (24 gni® — 1272) o4 | O+
—48 71 gniTo 4+ 4712
3 1Prt — 24 ry3r 01+
69]\[1 ([Lz — 12 91) T’o2+
=871 (1* +3gn1 —361) ro+
—48 gn1® + (=202 + 8) ry?
—6 7"04912 -8 (,LL2 + 39]\71 - %91) 91 7'02
"‘(—8062 +32) ™ 61 To 90+
—2a2pur — 1212951 — 12 gy ? + 72 g1 01
6 { 1 921 (—%oz22+ 3) ro’+ \ 161
—zaturg+pc+4gn — 36
670" gn1200" +
270 gn1 (1210 — 870%r1 — 1270 gn1 + 871) 00+

)

00>+

—12gn1 610" = 8 [4” + 5 g1 — 361 gn1 7m0+ }002+

4 [(=2a%+8) g1 + p?r1ro — 471? + 36 gy
401 (—2 ()429]\[1 + ,u2 + 8gN1) 7“02+
(—4a’gyyp— 1671 01) ro+ 0o+
12 (1 42 gn1 — 5 01) g
—4 (ro?0; + —a’gn1 + p* + 6 gy — 601/2) 6,

—8gn1 61 m0* + 4 gn1 01+
(2 a2 — 12) gN12 — 4u2gN1 + 20&2 [(—% @2 + 1) r -+ ILL:| (&1

gno*+

> gno>+

gno

{2 ro2gni? (ro® — 2) 00° + 2 [(—a2gn1 + 1% + 4 gn1) o> — 47071 — 4 gan] g B0+

o

12020, (—aPri 4+ p+2r1) 1o + (—4agn1 + 2 + 8 gn1) 01 — 20 gni 2.
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(3gnori2+ 27071 gN1) gm0+
371%gno*+
Fy(4) = —2ry? drory (gann + gn1) gno+ | guot+ 0o+
ro’gn1 (gan + gn1/2)
$70 [4r1 gno + 1o (91 + 2 gn1)] gvo 9an

(—gnoT1® — 27971 gn1) o+
—271%gNn0°—
16 [61r0® + (3/8 gar1 + gN1/2) 70 — ] 71 gno+
—401 o gn1 + [—3 gn1 g — 2 g ?) To?+
87911 gn1 — T1°

g0+

—r12gno® — 16 [0110® + (gar1/2 + 3/8 gv1) o — -] 71 gnvo®+
—861 (ga1 + gn1) o'+

—4 u@?r*r1 + [=3 gan? — 8 gn1 garn — 3 gni® + 127112 ro®+ | gnot
167071 [gan + gn1) — 2712 v+
wrro® g+ 00+

—ro | =871 gn170 + (—8 gn1 garn — 4 gni?) o+

4ry (g + gn1)

=270 71 gt gNoS+

(=461 0 garn + (=2 gann® — 3 gn1 gun) To® + 87071 garn — 112 gno®+

—rq 1210 gar+ ano+
=871 gm1mo” — 4 gm (a1 +29n1)ro + 471 (g1 + gni)
\ 21¢? (T029M1 gN1 — % (gan + 9N1)2) )
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[—6 gno o1 01 — 3 gni T0%601 — gn1®] g™+
—1201 1911 gno>+ i
—66:%r¢" — 9 (gar1 + 3 gv1) 01 1
=27 (p* + —12601) ro+ gno+
271% — 6 gn1 gan1 — 3 gt
—gn1 (2 —1201) 10> — 6 (01 — 2/3 gn1) 71 T+
6 gn1 garn + 4 gni?

gro’+

—6 01 ToT1 gN03+

—6 9127‘04+
—12 (ng + % 9N1) 0170+
-2 T1 (,u2 —12 91)7’0"‘
2112 — 3 gai? — 6 gn1 gurt

gno*+

-3 ,U291 7“()4 + 24 91 7’037"1—|—
=2 (ga1 + gn1) (02 — 1261) 1*+
8 (M2 - %91 + gum +9N1) TiTot | gnot
6 gari® + 16 gn1 garn + 6 g1 ®+
(2a% —8)r?

661 o gn1 4 [(—6 garr — 6 gN ) 01 + 4 (1% + gann + gn1/2) gna] o+

(=3 gan 020 — 9M12) gnos+

| =2 [(—2a24+8) gn1 + p?]riro + 27112 — 3 gann® — 10 gn1 g — 5 g

gmo+

[—gan (02 —1261) 10> — 6 (61 — 2/3 garn) ri 70 + 4 gann® + 6 gn1 9] gno®+

6601 o gnn + [(—6 garn — 6 gn1) 01 + 4 (1% + gar1 /2 + gn1) 9] o+

=271 (2% +8) gar1 + %) 1o + 27112 — 5 gann® — 10 gn1 garn — 3 gni?

gno+

[(2 04291\71 - M2 - 89N1) am1 — M29N1] 7“02 +4rom (9M1 + 9N1) +2 (9M1 + £7N1)2
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—30; [(01m0% + 3 gn1) gnvo — 3 9N1) G0+
—661 (0170 + grr1 + gn1) gno>+

(—2 ;ﬂ@l + 12 912) T02+

8(91 ToT1 + (12 ng -+ 16 gNl) 01 — 2[&29]\[1 gN0+

gm0+
(495161 — 361%) ro”+

(=6 gar1 — 10 gn1) 01 4 2 P gt + 2 g ?
(=370%61% — 4 gar1 61) gno®+ )

[(—2 p26, + 12 912) ro? + 8011911 + (16 gart + 12 gy ) 01 — 2M29M1} gno>+

69127“04+
8 (M2 - %91 + 9w + 9N1) 0170+

86171 (v —2) (a+2) ro+

(—20 gar1 — 20 gy ) O1+ gno+

+
4 2 gmo
(4p” +8gx1) grnn+ O+

i 20%ury + 412 gn ]
—260; (-2 gy + p? + 8 gn1) ro’+
(2a%gny o+ 8711 01) ro+

(8gn1 +8gn1) b1 + (—2p* — 8 gn1) g+

—41%gn1 — 4 g )

(4 a1 61 — 361%) o+
401 gan1 gno® + gnoZ+
(=10 gar1 — 6 gn1) 01 + 2 12 gar1 + 2 gan®

—201 (=2a%gu + p? + 8 gar1) o+
(202 ga o+ 871 61) o+
(8 grr1 + 8 gn1) 01+
—4 g+ (=41 — 8 gn1) gt — 2 W2 g

gno + 401 (gan + gni1) To>+

(=2 ga1 — 29n1) 01+ 2 ™M + (—2a2gn1 + 2 1% + 8 gn1) gant

+2 gnv1% + 2p%gn1 — 2 [(—La® + 1) i + p] 0Py
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—912 (gNo - 1)2 9M03_

01 gno® + [10° — 461] gno®+
(=201 70% — 2% — 4 gny + 5601 gyvot+ | 01 grro®+
P2 =260y +4 gz

01 gno®+
(01 7m0> + 1> = 301 + 2 gan1 ) gno’+
2 | 61 (@ =) ro® +a?purg—2p? +2601 — 4 gann — 4 gna] gvo+ | 01 g0+
01 7r9% — 0429N1+
P —01/2 42 g1 + 4 gn
—012gn0° — 01 (2 + 4 garn — 261) gno>+
2 [017m0% — gar + 12— 01/2 + 4 gann + 2 gn1) 01 gnvo + =201 &% (—aPry + p+ 271 Tot

(2 04291\/11 + 204291\[1 - ,u2 —4d gy —4gn1) 01+ 2 gn1 9t o’
(C-3)
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