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Abstract 

A nonlinear model is developed for the vibration of a single-walled carbon nanotube (SWCNT) based on 

Eringen’s nonlocal elasticity theory. The nanotube is assumed to be embedded in a Pasternak-type 

foundation with simply supported boundary conditions. The nonlinear equation of motion is solved by the 

energy balance method (EBM) to obtain a sufficiently accurate flow-induced frequency. It is 

demonstrated that the nonlinearity of the model makes a reasonable change to the frequency at high flow 

velocity and for the large deformations. Furthermore, the deviation of the frequency from the linear 

frequency will be exaggerated with an increase in the nonlocal parameter and a decrease of the Pasternak 

parameters. Ultimately, the results show that the nonlinearity of the model can be effectively tuned by 

applying axial tension to the nanotube. 
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1. Introduction 

    The exceptional and extraordinary mechanical, electrical, chemical and physical properties of carbon 

nanotubes (CNTs) have made them suitable for many innovative applications in nanotechnology. 

Recently, CNTs have been introduced and used widely as a building block in nano-electro-mechanical 

systems (NEMS) such as in nano-sensors [1-3] , nano-resonators [4, 5], nano-switches [6], nano-resistors 

[7], nano-motors [8] and Nano-robots [9]. Moreover, pursuant to hollow cylindrical shape of nanotubes 

with extremely high elasticity and flexibility, CNTs are used as nano-pipes, nano-containers, and nano-

fluid and -gas storage devices [10-13]. In this way, they can be used in nano-medicine as pharmaceutical 

excipients for creating versatile drug delivery systems (DDSs) [14]. The drug can be delivered directly to 

the target cells trough CNT-based nano-pipes and consequently, the therapeutic properties of the drug will 

be improved, with a reduction of undesirable side effects [14, 15]. In such nanotube-based fluidic devices, 

flow-induced vibration of CNTs is a very important topic and of great interest to nano-material scientists. 

Two different approaches are usually applied to investigate the vibrational behavior of nanotubes, 

namely: the Molecular Dynamic (MD) simulation and the continuum approach. Since MD simulation is 

still time consuming and needs much computational effort, even for small nano-structures, continuum 

theories are widely and successfully used to simulate the dynamical behavior of CNTs. The Euler-

Bernoulli elastic theory is employed to assess the flow-induced vibrational behavior and stability of 

single-walled carbon nanotubes (SWCNTs) [16-19] and multi-walled carbon nanotubes (MWCNTs) [15, 

20-23]. However, as the size of nanotubes is on the nano-scale, the local continuum theories may not 

predict the mechanical behavior of CNTs accurately. Hence, the nonlocal continuum theory introduced by 

Eringen [24], which contains information about the long-range forces between atoms and the internal 

length scale, will be a good alternative theory because it provides a more than satisfactory model [25, 26]. 

In recent years, several investigations applied the nonlocal Euler-Bernoulli elastic theory to simulate the 

vibration of nanotubes conveying fluid. Lee et.al [27] developed a nonlocal Euler-Bernoulli elastic model 

of a SWCNT conveying fluid to analyze the effects of the fluid flow on vibration frequency and mode 
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shapes of the nanotube. These authors [28] also considered flow-induced vibration of a viscous-fluid-

conveying SWCNT embedded in a Winkler-type foundation, on the basis of the nonlocal continuum 

theory. The influences of the nonlocal parameter, viscosity, aspect ratio, and elastic medium constant on 

the fundamental frequency have been investigated. Wang [29] introduced a nonlocal Euler–Bernoulli 

elastic beam model to describe the vibration and instability of tubular micro- and nano-beams conveying 

fluid. He found that the effects of the small-scale parameter on vibration properties and critical flow 

velocity are visible in nano-pipes while such effects can be neglected in micro-pipes. Based on thermal 

elasticity-mechanics and nonlocal continuum theory, an elastic beam model was developed for analysis of 

dynamic behavior of fluid-conveying SWCNTs by Zhen and Fang [25]. In this study, the thermal and 

nonlocal effect on the vibration and instability of a SWCNT conveying fluid was studied. It was found 

that the natural frequencies and critical flow velocity increase with temperature changes and the nonlocal 

effect is enhanced with flow velocity. 

Since CNTs should usually be embedded in a foundation, the mechanical properties of the medium play 

an important role in the dynamic behavior of nanotubes. The Winkler-type foundation which simulates 

the elastic medium as a series of closely spaced, mutually independent, vertical springs is applied widely 

to show the interaction between the foundation and the CNT [19, 25, 30-33]. However, this model 

simulates the foundation as a discontinuous and incoherent medium and cannot predict the mechanical 

behavior accurately. The Pasternak-type foundation model represents a more precise and generalized 

simulation of the medium, using two different parameters (called Pasternak parameters). The first 

parameter represents normal pressure while the second accounts for shear resistance due to interaction of 

shear deformation of the elastic medium [34]. Recently, the Pasternak-type foundation was applied for 

vibration analysis of nanotubes [34, 35] whereas up to now there was no publication dealing with flow-

induced vibration of CNTs using this kind of foundation model. 
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All of the mentioned works suggested linear formulations for the vibration of CNTs while previous 

theoretic and experimental investigations [36-38] showed that the deformation of nanostructures, such as 

CNTs, is nonlinear in nature when subjected to large external loads and displacements. Recently, Rasekh 

et al.[39] developed a nonlinear vibration model of a SWCNT conveying fluid. The SWCNT was 

assumed to be embedded in a Winkler-type elastic foundation. The nonlinear governing equation of 

motion was derived using local continuum theory and solved by a traditional perturbation method called 

the method of multiple scales (MMS). The most important limitation of the perturbation techniques is that 

the solution is completely related to the small perturbation parameter and is valid for weak nonlinear 

problems. To obtain the analytical solution for strongly nonlinear models, the approximate variational 

methods, as novel and simple techniques with reasonable accurate results, can be used instead of 

traditional perturbation methods. Lately, the approximate variational methods such as the variational 

iteration method [40-43], the homotopy perturbation method [44-47], the parameter expansion method 

[48-50], the max-min method [51-53], and the energy balance method [54-58] (EBM) have been widely 

and successfully applied to various kinds of nonlinear mathematical, physical, and engineering problems. 

Moreover, in the field of nanostructures and nano-modeling, some research has used approximate 

variational methods to predict the nonlinear mechanical behavior of nanostructures [59, 60]. 

In this research, for the first time, the nonlocal continuum theory is applied to simulate the nonlinear 

vibration of a SWCNT conveying fluid, resting on a Pasternak-type elastic foundation. The EBM is used 

to calculate the nonlinear flow-induced frequency as a function of vibration amplitude. The obtained 

results show good agreement with the numerical simulation and also with a previous simpler study. The 

influence of the vibration amplitude, flow velocity, nonlocal parameter and stiffness of the medium on the 

nonlinear frequency variation is discussed widely. Moreover, it is shown that the axial tension of the 

nanotube can tune the effect of the nonlinearity of the system effectively. 

 



P.Soltani & A. Farshidianfar 

5 

 

2. The nonlinear model for a single-walled carbon nanotube conveying fluid 

Fig. 1 demonstrates a SWCNT conveying fluid, as a hollow cylindrical tube in a Pasternak-type elastic 

medium. The nanotube is assumed to be simply supported at both ends and the effect of gravity is 

negligible. As the SWCNT is supposed to be slender, Euler-Bernoulli beam theory is applied to simulate 

the vibrational behavior in the model. 

Using Newton’s law, the governing equation of transverse motion of a SWCNT conveying fluid can be 

expressed as: 
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Where x is the axial coordinate, t is the time and w(x, t) is the transverse deflection of the SWCNT. mc is 

the mass of the nanotube per unit length; ke and kp are Pasternak parameters that usually represent the 

Winkler and Pasternak constants of the surrounding medium, in that order. Q and F are the transverse 

shear force and applied axial tension respectively. Fw represents the force per unit length induced by the 

fluid flow and is given by Ref. [25] as follows 
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Here, v is the uniform mean flow velocity and mf is the mass of fluid per unit length of a SWCNT. In the 

above equation, the right terms represent the Coriolis, centrifugal, and transverse forces, in that order. 

For Euler-Bernoulli beam theory, the transverse shear force Q , the bending moment of the model M , and 

the longitudinal force N are related through [61]:  
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while the bending moment M and the longitudinal force N can be expressed as 

  .cdAxxEcdAxxN,cdAxxE.zcdAxx.zM    (4) 

  

where xx and xx are the axial strain and the axial stress on the nanotube respectively. z shows the 

distance from the neutral axis and Ac represents the cross section of the nanotube.  

The classical or local continuum theories simulate the mechanical behavior of a structure as continuum 

medium and state that the stress at a point is only related to the strain state at that point. However, 

increasing importance of surface energy, discrete nature of the matter, internal strain, and quantum 

confinement at nanometer length scales may affect this assumption and cause the local continuum 

theories to cease to be valid for nanostructures [62].  

Nonlocal continuum theories, introduced by Eringen in 1983, are concerned with the physics of materials 

bodies whose behavior at a material point is influenced by the state of all points of the body. These 

theories are based on lattice dynamics and observations on phonon dispersion that describe the material as 

consisting of discrete atoms connected by forces from other neighboring atoms. Nonlocal theories state 

that the stress tensor at a reference point in an elastic medium depends not only on the strains at that point 

but also on the strains emanating from all other points in the body. This nonlocal description of 

mechanical behavior of materials is faithful in microscopic scales to the size of the lattice parameter [24] 

and makes continuum models more accurate on the nanoscale [63]. In other words, the nonlocal elasticity 

introduces an internal length scale into the constitutive equation as a material parameter and 

consequently, admits size dependence and small-scale effects in the elastic solutions. From a simple 

physical point of view, the nonlocal theory introduces a more flexible model as the CNT can be viewed as 

atoms linked by elastic springs while the local model assumes spring constants to take on an infinite value 

[64]. The nonlocal constitutive equation for a uniaxial stress state takes the form of [61]: 
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where E is the Young’s modulus of SWCNT, a is the characteristic length of the structure, and e0 

represents the small scaling parameter. The nonlocal parameter e0a in the modeling will lead to a small-

scale effect on the response of structures at nano-size and is a constant appropriate to each material which 

is used for adjusting the model to match reliable results by experimentation or other theories. 

Using Eq. (4), Eq. (5) can be rewritten as: 
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The two dimensional displacement field of the model is 
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where u is the longitudinal displacement. The von Karman strain of the Euler-Bernoulli elastic theory [65] 

associated with the displacement field Eqs.(7) is:  
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Substituting xx from Eq.(8) into Eq.(5) , we obtain: 
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Note that   0czdA and   IdAz c

2
, where I denotes the second moment of area of the SWCNT about 

the neutral axis. 

Substituting for the second derivative of M from Eq.(3) into Eq.(9), we obtain: 
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By substituting M from Eq.(10) into Eq.(9), the dynamical equilibrium equation of the SWCNT will be 

derived as: 
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For slender nanotubes and for immovable end conditions (i.e. u(0,t)=u(L,t)=0), the longitudinal 

displacement u is expressed as a function of the transverse displacement w and axial tension F [39] 
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where L is the length of SWCNT. 

Substitution of Eq.(12) and Eq.(8) in Eq.(5) yields an explicit expression for the longitudinal force N: 
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Substituting Eqs. (1) and Eq.(13) into Eq.(11) with using Eq.(2) lead to final form of the nonlinear 

governing equation of motion of a fluid-conveying SWCNT based on the nonlocal Euler-Bernoulli beam 

theory: 
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 (14) 

Since the nanotube is assumed to be simply supported at both ends, the boundary conditions can be 

written as: 
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In the above formula, )t,x(w  are expanded as: 

).x().t(q)t,x(w 1  (16) 

Where 1  represent the normalized mode functions of the nanotube from the linear vibration analysis due 

to the specified boundary condition. Meanwhile, the mode function 1  satisfies the following formula. 
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and ij is the Kronecker delta. 

Substituting Eq. (16) into Eq. (14) and utilizing Eq. (17), we have: 

.)t(q.
r

)t(q.
e

].UTKK)UTKK(e[
)t(q

pepe
0

41

1
3

2

2

0

2

2

0

222








  (18) 

The corresponding dimensionless parameters and variables are defined as:  
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3. Solution Procedures 

To seek the solution of Eq. (18), we apply EBM to this nonlinear vibration equation. Based on the EBM, 

the balance between the kinetic and potential energy of a vibrating system occurs when the phase angle of 

the oscillation is
4


. Hence, a Hamiltonian is built using the variational principle, and the nonlinear 

frequency can be determined with the collocation method. [54, 66] 

The variational form of Eq. (18) can be obtained as: 

.dt))t(q
r

)t(q.
)e.(

].UTpKeK)UTpKeK(e[
)t(q.

t
()q(J

4
216

2
0

2
212

2
0

22212

0 2

1









  

 (20) 

If the initial conditions are assumed to be as: 

000 0  )(q;a)(q  . (21) 

The harmonic approximate solution will be expressed as: 

).t.cos(a)t(q 0  (22) 

where,  is the nonlinear flow-induced frequency and a0 is the amplitude of the vibration. 

Therefore, the Hamiltonian of Eq. (20) can be written in the form 
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By substituting the approximate solution of Eq. (22) into Eq. (24), the following residual will be obtained: 
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To determine the frequency-amplitude relation, the collocation method should be used in the following 

form: 
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and the nonlinear frequency  will be: 
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The linear resonant frequency 
L

 can be obtained from Eq. (25) with a0=0 
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To show the pure effect of the nonlinearity, “the nonlinear frequency variation" %  is defined as 

follows: 

.%
L

L 100






  (29) 

This parameter demonstrates a more apparent illustration for the difference between the nonlinear and 

linear model of a CNT conveying fluid and the frequency shift based on the nonlinearity of the CNT.  

4. Results and discussion 

Fluid flow inside a nanotube plays a role as a source of energy that induces structural and mechanical 

oscillations. Flow-induced vibrations of a CNT best describe the interaction that occurs between the 

fluid’s dynamic forces and the nanotube’s inertial, damping, and elastic forces and the simulation of this 

dynamical behavior is currently a subject of great interest. However, understanding the nature of the flow 

of liquids at nanoscale is still a very challenging problem and may differ from macro-scale fluid flow. In 

the nanoscale, the balance of the volume forces is weakened and the impact of the surface forces is 

enhanced. To this end, the non-slip hypothesis that assumes the zero flow velocity relative to the nanotube 

at the interface breaks down, and a finite slip velocity of the flow occurs near the nanotube’s wall. This 

slip boundary condition is one of the marked differences between the macro-scale and the nanoscale 
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flows [67]. Since the continuum approaches represent a generalization of macro-mechanics into 

nanoscale, the effects of the slip boundary condition are ignored and the obtained results may not exactly 

reflect the real physics. Thus, these equations should be modified to cover this effect and to represent a 

more precise continuum model. The Knudsen number Kn is a useful dimensionless criterion which 

determines whether the fluid flow can be considered as a continuum flow and the non-slip condition is 

valid. The Knudsen number 
*L

nK   is defined as the ratio of the molecular mean free path length  to a 

representative physical length scale L
*
 and the magnitude of Kn determines the appropriate flow regime of 

the fluid through CNT. When the Knudsen number is small and less than 0.01, the flow behaves as a 

continuous medium and the non-slip condition is established. However, for a nanotube conveying fluid, 

the Knudsen number is usually greater than 0.01, the slip flow regime occurs near the nanotube’s wall 

[68], and the continuum models should be modified for solving the nanoscale fluid flow problems. 

Recently, Rashidi et al. [69] have formulated the small-size effect on slip boundary conditions of 

nanoflow through the Knudsen number Kn. They found that although the slip boundary regime plays a 

remarkable role on the vibrational behavior of the CNT conveying nanogas, the non-slip boundary 

condition can be used in the case of the nanoliquid flow with appropriate accuracy and the fluid can be 

determined in terms of its macroscopic characteristics.  

To evaluate the effects of various parameters on the nonlinear flow-induced frequency of a SWCNT 

embedded in an elastic medium, the following material and geometrical parameters have been used. The 

Young’s modulus of the CNT is assumed to be 3.4 Tpa with an effective wall thickness about 0.1 nm, as 

the recent investigations indicate [70, 71]. The inner diameter di, the mass density 
c

 and the aspect ratio 

L/di of the SWCNT are 7 nm, 2300 kg/m
3
, and 20 respectively. The Winkler and Pasternak constant and 

the axial tension F are set to be zero (kw=kp=F=0) and the fluid inside the nanotube is assumed to be that 

of water with the mass density f
 of 1000 kg/m

3
. 
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The determination of the magnitude of the nonlocal parameter e0a is a key issue in a successful 

application of the nonlocal continuum models. This value should be calibrated by the generated results 

from MD simulations for each model separately. Recent investigations [72, 73] reveal that this parameter 

is a function of the boundary conditions, chirality, and the nature of motions in nanotubes. Narendar et al 

[73] have conducted a simple molecular structural model to predict the parameter e0a in nonlocal 

continuum shell model of armchair and zigzag SWCNTs under tensile and torsional loadings. They found 

that the value of the nonlocal parameter is constant and irrespective of the chirality for the nanotubes with 

large diameters (more than 2 nm) in a axial mode of wave propagation. In a similar work [74], the 

vibrational behavior of a double-walled carbon nanotube (DWCNT) has been considered and the 

calibrated nonlocal parameter e0a has been proposed by matching the fundamental frequency obtained 

directly from MD simulation with those calculated via the nonlocal Donnel shell model. It has been 

observed while the boundary conditions can influence the calibrated nonlocal parameter; chirality has no 

considerable effect on e0a. Moreover, a long list of different values of the nonlocal scaling parameter 

proposed by various researchers can be found in Ref.[75]. This matter shows that the identification of 

nonlocal parameter e0a has not been fully understood and more computational research needs to be 

conducted in order to evaluate ae
0

 more precisely, especially for transverse vibrations of CNTs. In the 

present study, we choose nmae 20  , as a conservative estimation proposed by Wang[76]. 

4.1.  Model verification 

To verify the accuracy of the model, the dynamic transverse displacement of the SWCNT midpoint is 

plotted as in Figs. 2. The results are compared with the linear vibration and numerical nonlinear solution 

of the model on the basis of two different flow velocities (U=0.1 & 0.9). The good adaption between the 

EBM and numerical results corroborates the validity of the energy balance procedure. Moreover, our 

model predicts a critical flow velocity of 1191.56 m/sec for the case study introduced in Ref.  [20, 39] 
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while the linear numerical approach [20, 77] and perturbation method [39] estimate 1190 m/sec and 

1193 m/sec, respectively. 

4.2 The nonlinear frequency – amplitude relation 

As Eq. (27) shows, the nonlinear flow-induced frequency  is related to the vibration amplitude a0. 

Hence, in this section, the nonlinear frequency variation %  is plotted as a function of the vibration 

amplitude a0 for some effective parameters in Figs. 3-6. All the figures reveal that the nonlinear frequency 

variation %  increases with the vibration amplitude a0. In other words, the nonlinear model predicts a 

higher resonant frequency compared with the linear model, especially for the large amplitudes. 

The effect of the nonlocal parameter ae0  on the nonlinear resonant frequency variation %  is shown 

in Fig. 3 with respect to the vibration amplitude a0. The figure reveals that the nonlocal model 

(i.e. 00 ae ) predicts a higher nonlinear frequency in comparison with the local model (i.e. 00 ae ). In 

addition, the nonlinear frequency increases with an increase of the nonlocal parameter ae0 . As mentioned 

above, the nonlocal theory introduces a more flexible model and with increasing the flexibility, the effect 

of the nonlinearity on the model becomes more significant, which describes why %  rises with the 

nonlocal parameter ae0 . 

The mechanical properties of the elastic medium around the nanotube are another important factor 

directly affects the resonant frequency. As mentioned above, the foundation of the SWCNT is assumed as 

in the Pasternak model. The Pasternak-type foundation, that is also called the two-parameter foundation 

model, simulates the interaction between the medium and the nanotube using two different parameters. 

The first parameter of the Pasternak foundation model kw represents normal pressure, while the second 

parameter kp accounts for transverse shear stress due to the interaction of shear deformation of the 

surrounding elastic medium [35]. These factors kw and kp are called the Winkler and Pasternak constants, 

respectively. 
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The effects of the Pasternak parameters on the nonlinear frequency are shown in Figs. 4-5. Fig. 4 shows 

the effect of the Winkler constant kw on the nonlinear frequency variation % . As can be seen, with an 

increase in the Winkler constant kw, the parameter %  decreases, especially for small vibration 

amplitudes a0. This means that as the nanotube vibrates in a stiff medium, the nonlinear frequency tends 

to the linear frequency. In other words, for stiff elastic foundations and in small amplitudes, the linear 

simulation of the SWCNT represents a sufficiently accurate theoretical model for transverse flow-induced 

vibrations. The shear resistance of the surrounding elastic medium and its corresponding interaction on 

the nanotube is characterized by the Pasternak constant kp. Fig. 5 plots the nonlinear frequency variation 

%  as a function of kp and the vibration amplitude a0. The figure indicates that as the shear stiffness of 

the medium increases and for the small vibration amplitudes, the parameter %  decreases, and the 

nonlinear flow-induced frequency reduces to the linear frequency.  

Axial tension induced through external electrical fields tunes the vibration of CNTs in NEMS [81]. In 

fluid-conveying CNTs, axial tension increases the stiffness of the model and can limit the flow-induced 

vibration and nonlinearity of the system. The effect of the axial tension F on the nonlinear frequency 

variation %  is illustrated in Fig. 6. The results indicate that axial tension of the SWCNT can reduce 

the difference between the nonlinear and the linear resonant frequency, and this effect is profound for 

high vibration amplitude a0. In other words, the nonlinearity can be controlled by increasing the axial 

tension F. 

4.3. The nonlinear frequency- flow velocity relation 

   The resonant frequency of the SWCNT conveying fluid is affected by the fluid flow within the 

nanotube and the kinetic energy of the fluid flow is an essential issue in causing the nanotube to vibrate. 

In this section, the nonlinear frequency variation %  is plotted against the dimensionless fluid flow 

velocity U for some parameters (Figs. 7-10). In all these figures, it is clear that the nonlinear frequency 

variation %  shifts upwards with fluid velocity and the nonlinearity of the model makes a meaningful 
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difference between linear and nonlinear frequency at high flow velocities. Fig. 7 represents the effect of 

the nonlocal parameter e0a on the nonlinear frequency variation %  with flow velocity. The results 

indicate that at low fluid velocities (U<0.5), the effects of the nonlocal parameter is not significant and the 

nonlinear frequency variation %  is not related to the small-scale parameters; while at higher flow 

velocities, the nonlinear frequency increases with respect to the linear frequency, especially when the 

nonlocal parameter e0a increases. The effects of the Winkler constant kw on the nonlinear frequency 

variation %  with regard to the flow velocity are shown in Fig. 8. As shown in the figure, the mediums 

with stiff elastic properties cause the difference between the nonlinear and linear frequency to remain 

unchanged with respect to flow velocity and %  remains almost constant at low fluid velocities 

(U<0.5) . Moreover, for compliant mediums with paekw 71 , the nonlinear frequency variation %  

increases with the flow velocity and this pattern is amplified by decreasing the Winkler constant kw. Fig. 9 

displays the nonlinear frequency variation %  with the dimensionless flow velocity U for some 

Pasternak constants kp. It is observed that at low fluid velocities (U<0.5) and as the shear stiffness of the 

elastic medium increases, %  declines to less than 0.8% and remains constant with any increase of the 

flow velocity. This shows that the nonlinear vibration behavior of the SWCNT is independent of the fluid 

flow and can be disregarded for mediums with high shear strength. 

Fig. 10 reveals that the axial tension F has no significant effect on the nonlinear frequency variation 

%  at low flow velocities ).U( 40 . However, at high flow velocity, the parameter %  decreases 

with F and the nonlinearity effect can be controlled by tuning the axial tension on the model. 

5. Conclusion  

The nonlinear vibration model of a fluid-conveying SWCNT embedded in a Pasternak foundation was 

derived on the basis of the nonlocal continuum theory. The energy balance method was applied 

successfully to the nonlinear governing equation of motion, and an analytical solution was obtained for 

the nonlinear flow-induced frequency. The accuracy of the results was verified with the numerical 
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approach and a previous simpler model. The results show that the deviation of the nonlinear flow-induced 

frequency from the linear frequency is considerable when the amplitude, flow velocity, and nonlocal 

parameter are high while for the CNTs embedded in the mediums of high Pasternak parameters, the 

nonlinearity of the model does not demonstrate a significant effect on the frequency. Moreover, the axial 

tension restricts the nonlinear effect and limits the flow induced-vibration of the nanotube at high flow 

velocity and for high vibration amplitudes. 
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Figure Captions:
 

Fig. 1 A single-walled carbon nanotube embbeded in a Pastrenak-type foundation model characterized by 

the Winkler (kw) and Pasternak (kp) constant. 

Fig. 2 Comparison between the EBM, linear, and numerical solution (a) at high flow velocity U=0.9 and 

(b) at low flow velocity U=0.1. 

 Fig. 3 The nonlinear frequency variation %  against the maximum nonlinear amplitude a0 with 

various nonlocal parmeters e0a. 

 Fig. 4 The nonlinear frequency variation %  against the maximum nonlinear amplitude a0 with 

various Winkler constants kw ( nmae 10  ). 

 Fig. 5 The nonlinear frequency variation %  against the maximum nonlinear amplitude a0 with 

various Pasternak constants kp ( nmae 10  ). 

 Fig. 6 The nonlinear frequency variation %  against the maximum nonlinear amplitude a0 with 

various axial tensions F ( nmae 10  ). 

 Fig. 7 The nonlinear frequency variation %  against the dimensionless fluid velocity U with various 

nonlocal parmeters e0a. 

 Fig. 8 The nonlinear frequency variation %  against the dimensionless fluid velocity U with various 

Winkler constants kw ( nmae 10  ). 

Fig. 9 The nonlinear frequency variation %  against the dimensionless fluid velocity U with various 

Pasternak constants kp ( nmae 10  ). 

Fig. 10 The nonlinear frequency variation %  against the dimensionless fluid velocity U with various 

axial tensions F ( nmae 10  ). 
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Fig. 1 A single-walled carbon nanotube embbeded in a Pastrenak-type foundation model characterized by 

the Winkler (kw) and Pasternak (kp) constant. 
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Fig. 2 Comparison between the EBM, linear, and numerical solution (a) at high flow velocity U=0.9 and 

(b) at low flow velocity U=0.1. 
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Fig. 3 The nonlinear frequency variation %  against the maximum nonlinear amplitude a0 

with various nonlocal parmeters e0a. 
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Fig. 4 The nonlinear frequency variation %  against the maximum nonlinear amplitude a0 

with various Winkler constants kw ( nmae 10  ). 
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Fig. 5 The nonlinear frequency variation %  against the maximum nonlinear amplitude a0 

with various Pasternak constant kp ( nmae 10  ). 
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Fig. 6 The nonlinear frequency variation %  against the maximum nonlinear amplitude a0 

with various axial tensions F ( nmae 10  ). 

 

 

 

 



P.Soltani & A. Farshidianfar 

30 

 

 

 

 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Dimensionless Fluid Velocity U

N
o

n
li

n
ea

r 
F

re
q

u
en

cy
 V

a
ri

a
ti

o
n

 (
 


%
 )

 

 

 

e
0
a= 0 (Local Theory)

e
0
a= 1 nm

e
0
a= 2 nm

 

Fig. 7 The nonlinear frequency variation %  against the dimensionless fluid velocity U with 

various nonlocal parmeter e0a. 
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Fig. 8 The nonlinear frequency variation %  against the dimensionless fluid velocity U with 

various Winkler constants kw ( nmae 10  ). 
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Fig. 9 The nonlinear frequency variation %  against the dimensionless fluid velocity U with 

various Pasternak constants kp ( nmae 10  ). 
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Fig. 10 The nonlinear frequency variation %  against the dimensionless fluid velocity U with 

various axial tensions F ( nmae 10  ). 
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