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H∞ optimization of piezoelectric materials shunted with inductive-resistive passive
electrical circuits. Realizing that Den Hartog's method which imposes �xed points
of equal height in the receptance transfer function is approximate, the parameters
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1 Introduction

The mechanical tuned vibration absorber (MTVA) is probably the most popular passive
anti-vibration device [1]. Successful applications of the MTVA can be found in civil en-
gineering structures (e.g., the Burj Al Arab Hotel in Dubai, the Taipei World Financial
Center in Taiwan and the Millenium Bridge in London) and in other engineering applica-
tions (e.g., cars and high-voltage lines). Di�erent studies contributed to the development
of analytic tuning procedures for the MTVA starting from the work of Den Hartog [2]
and Brock [3] to the more recent contributions of Asami and Nishihara [4, 5].

An interesting alternative to the MTVA is the piezoelectric tuned vibration absorber
(PTVA) implemented with a piezoelectric transducer (PZT) bonded to the structure and
shunted with an electrical impedance. As the structure deforms, the PZT converts a
portion of the mechanical energy into electrical energy which is in turn dissipated by the
electrical circuit. Resonant circuit shunting is most often considered where the inherent
capacitance of the PZT is shunted with a resistor and an inductor [6]. Linear [7, 8]
and nonlinear [9, 10, 11] shunting strategies have been proposed in the literature. Even
if they have their own limitations, PTVAs possess several advantages with respect to
MTVAs, such as the absence of moving parts and the possibility to be �ne-tuned online
to compensate for any modeling errors. PTVAs are now enjoying applications in real-life
structures such as bladed disk assemblies [12, 13].

Resonant circuit shunting enhances piezoelectric vibration damping through appropriate
values of the frequency tuning and damping parameters. In [7], two di�erent methods were
proposed relying on the receptance transfer function and on pole placement, respectively.
The former rule extends Den Hartog's �xed-point method [2] to PTVAs and is widely
used in the literature [14]. Minimization of the frequency response amplitude is achieved
by selecting the frequency tuning parameter that gives two �xed points in the receptance
of the primary structure of equal heights. The later rule maximizes the attainable modal
damping by �nding the value of the frequency tuning parameter for which the distinct
poles coalesce in double complex conjugate pairs. Hogsberg and Krenk recently proposed a
tuning rule that is a balanced compromise between these two design criteria [15]. Through
the development of an equivalent mechanical model of a piezoelectric element, Yamada
et al. [16] introduced a new approximate analytic expression for the damping parameter
that improves the PTVA performance compared to the formulae proposed in [7].

Because all the aforementioned tuning rules are approximate, the contribution of the
present paper is to derive an exact closed-form solution for the design of piezoelectric vi-
bration absorbers based on resonance circuit shunting. The paper is organized as follows.
Section 2 brie�y reviews Den Hartog's �xed-point method for MTVAs together with the
exact solution proposed by Asami and Nishihara [4]. In Section 3, the formulation for
shunted PZTs is introduced, and the tuning rules proposed by Hagood and von Flotow [7]
and Yamada and co-workers [16] are discussed. An exact tuning rule for PTVAs is derived
in Section 4 and compared to the other tuning rules using a one-degree-of-freedom me-
chanical oscillator. Simpli�ed, though very accurate, formulae for the optimum frequency
ratio and damping parameters are provided in Section 5. Finally, the conclusions of the
present study are drawn in Section 6.
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2 The mechanical tuned vibration absorber

The steady-state response of an undamped mass-spring system subjected to a harmonic
excitation at a constant frequency can be suppressed using an undamped tuned vibration
absorber (TVA), as proposed by Frahm in 1909 [17]. However, the TVA performance de-
teriorates signi�cantly when the excitation frequency varies. To improve the performance
robustness, damping was introduced in the absorber by Ormondroyd and Den Hartog
[18]. The equations of motion of the coupled system are

m1ẍ+ k1x+ c2(ẋ− ẏ) + k2(x− y) = f sinωt

m2ÿ + c2(ẏ − ẋ) + k2(y − x) = 0, (1)

where x(t) and y(t) are the displacements of the harmonically-forced undamped primary
system and of the MTVA, respectively. k1 and k2 are the sti�ness of the primary structure
and of the MTVA, in that order. c2 represents the damping of the MTVA.

Den Hartog demonstrated that the receptance gm(ω) of the primary mass passes through
two �xed points independent of absorber damping, as illustrated in Figure 1. He proposed
a tuning rule that provides two �xed points of equal height in the receptance curve [2].
Brock then computed the optimum damping by taking the mean of the damping values
that realize a maximum of the receptance at the two �xed points [3]. The corresponding
analytic formulae for the frequency tuning δm and damping ξ2 ratios are:

δm =
ω2

ω1

=
1

1 + β

ξ2 =
c2

2
√
k2m2

=

√
3β

8(1 + β)
, (2)

where ω1 and ω2 are the natural frequencies of the primary system and of the absorber,
respectively, β = m2/m1 is the mass ratio and ξ2 is the damping ratio. Table 1 shows that
the two �xed points have the same amplitudes, unlike the two maxima of the receptance
curve. Even though they have most likely su�cient accuracy considering the uncertainty
inherent to practical applications, formulas (2) are therefore only approximate.

Interestingly, it is only recently that an exact closed-form solution to this classical problem
could be found [4]. Instead of imposing two �xed points of equal amplitude, the direct
minimization of the H∞ norm of the frequency response of the controlled structure is
achieved:

min ‖gm (ω)‖∞ → |gm (ωA) | = |gm (ωB) | (3)

where ωA and ωB represent the resonance frequencies. Eventually, exact analytic formulas
can be obtained for the frequency tuning and damping ratios:

δm =
2

1 + β

√
2
[
16 + 23β + 9β2 + 2(2 + β)

√
4 + 3β

]
3(64 + 80β + 27β2)

ξ2 =
1

4

√
8 + 9β − 4

√
4 + 3β

1 + β
(4)

3
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Figure 1: Illustration of Den Hartog's �xed-point method for β = 0.05, δm = 0.952 and for
various absorber damping values (ξ2 = 0.0447, ξ2 = 0.067, ξ2,opt = 0.134 and ξ2 = 0.268;
line thicknesses are proportion to ξ2).

Table 1: Amplitude of the �xed-points and maxima of the receptance transfer function
for Den Hartog's tuning rule (m1 = 1 kg and k1 = 1N/m).

Mass ratio Fixed point P Fixed point Q Maximum A Maximum B
0.05 6.4031 6.4031 6.4075 6.4084
0.1 4.5826 4.5826 4.5884 4.5902
0.5 2.2361 2.2361 2.2453 2.2530
1.0 1.7321 1.7321 1.7417 1.7544

Table 2: Amplitude of the �xed-points and maxima of the receptance transfer function
for Asami and Nishihara's tuning rule (m1 = 1 kg and k1 = 1N/m).

Mass ratio Fixed point P Fixed point Q Maximum A Maximum B
0.05 6.4027 6.4035 6.4079 6.4079
0.1 4.5819 4.5833 4.5892 4.5892
0.5 2.2334 2.2387 2.2480 2.2480
1.0 1.7281 1.7360 1.7456 1.7456
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Table 2 con�rms that this tuning rule yields resonance peaks of equal amplitude. It also
shows that, for this optimum design, the �xed points of the receptance curve do not have
the same amplitude.

We note that all the developments in this section assume an undamped primary system.
To date, there is no exact solution for damped primary systems, but accurate approximate
analytic formulas have been derived [5].

3 The piezoelectric vibration absorber: existing tuning

rules

3.1 Governing equations of structures with shunted piezolectric

materials

Because we aim at mitigating one speci�c structural resonance, a one-degree-of-freedom
modal model of the host structure, assumed to be undamped, is considered to which a
shunted piezoelectric transducer is attached. The PZT shunt is a series RL circuit. This
system is schematized in Figure 2.

m1

R L

k1 PZT rod

x

Ib1

f

Figure 2: Piezoelectric vibration absorber with a series RL shunt.

Assuming linear characteristics under constant temperature, the general form of the piezo-
electric constitutive equations are standardized by IEEE [19]:

S = [d]E +
[
sE
]
T,

D =
[
εT
]
E + [d]∗T.

(5)

where T and S are the material stress and strain vectors, respectively;
[
sE
]
is the com-

pliance matrix of the piezoceramic under constant electric �eld;
[
εT
]
represents the per-

mittivity under constant stress; [d] is the matrix of piezoelectric constants, and ∗ denotes
matrix transpose. The components of the aforementioned vectors and matrices are de�ned

5
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as [7]:

S =



S11

S22

S33

2S23

2S31

2S12


,T =



T11
T22
T33
T23
T31
T12


, E =


E1

E2

E3

 ,D =


D1

D2

D3

 , [d] =


0 0 d31
0 0 d32
0 0 d33
0 d24 0
d15 0 0
0 0 0

 ,

[
εT
]

=

 εT1 0 0
0 εT2 0
0 0 εT3

 , [
sE
]

=


sE11 sE12 sE13 0 0 0
sE21 sE22 sE23 0 0 0
sE31 sE32 sE33 0 0 0
0 0 0 sE44 0 0
0 0 0 0 sE55 0
0 0 0 0 0 sE66

 . (6)

The current problem considers the PZT rod as a one-dimensional element in which both
the expansion and polarization direction coincidence with the central axis of the rod
(conventionally called the �3�-direction). Hence, the PZT rod operates in its thickness
transduction mode or d33-mode. The constitutive equations of the PZT rod then become:{

D3

S33

}
=

[
εT3 d33
d33 sE33

]{
E3

T3

}
. (7)

By integrating Equations (7) over the volume of the PZT rod, the charge q and the
displacement x are written as functions of the force fPZT and the voltage between the
electrodes vPZT : {

q
x

}
=

[
cPZT d33
d33

1
kPZT

]{
vPZT
fPZT

}
. (8)

The coe�cient cPZT is the capacitance between the electrodes of the PZT rod with no
external force, and kPZT is the sti�ness of the short-circuited PZT rod. They are de�ned
as:

cPZT = εT3
s0
l0
, kPZT =

1

sE33

s0
l0
, (9)

where s0 and l0 are the cross section area and length of the PZT rod, respectively. Equa-
tion (8) can be reformulated as:{

vPZT
fPZT

}
=

[ 1
cPZT

−θ
−θ kPZT

]{
q
x

}
. (10)

where

cPZT = cPZT (1− k20), kPZT =
kPZT
1− k20

, θ =
k0

1− k20

√
kPZT
cPZT

, (11)

are the capacitance of the PZT rod under constant strain, the sti�ness of the PZT rod
with open electrodes, and the electromechanical coupling factor θ, respectively. These
parameters are de�ned as functions of the electromechanical coupling coe�cient in d33-
mode:

k0 = d33

√
kPZT
cPZT

= d33
1√
sE33ε

T
3

. (12)

6
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Finally, placing a resistive-inductive (RL) shunt across the electrodes of the piezoelectric
and applying Newton's and Kirchho�'s law yield the governing equations of the system:

m1ẍ+
(
k1 + kPZT

)
x− θq = f sinωt

Lq̈ +Rq̇ + c−1PZT q − θx = 0, (13)

where the primary host structurer is considered undamped (i.e. b1 = 0). By de�ning the
parameters similarly than Ref.[9]:

ω1 =

√
k1 + kPZT

m1

, ωe =
1√

L cPZT
, γ =

ω

ω1

, δ =
ωe
ω1

,

x̃ =
√
m1 x, q̃ =

√
L q, r = RcPZT ω1,

τ = ω1t, f0 =
f

ω1

√
kPZT + k1

, α = θ

√
cPZT

kPZT + k1
,

(14)

Equations (13) can be conveniently recast into

x̃
′′

+ x̃− δαq̃ = f0 sin γτ

q̃
′′

+ rδ2q̃
′ − δαx̃+ δ2q̃ = 0, (15)

where prime denotes di�erentiation with respect to the dimensionless time τ . We note
that the parameter

α = θ

√
cPZT

kPZT + k1
=

√
k20

1− k20

√
kPZT

kPZT + k1
= k0

√
kPZT

kPZT + k1
=

k0√
1 + κ

, (16)

depends only on the sti�ness ratio κ = k1/kPZT and the electromechanical coupling
coe�cient k0. Since PZT rods typically have k0 ∼= 0.7 in d33-mode, α takes values between
0 and 0.7. It is related to the generalized electromechanical coupling coe�cient Kij de�ned
in [7] according to the relation

Kij =

√
k20

1− k20

√
kPZT

kPZT + k1
→ Kij = α

√
1 + κ

1− k20 + κ
(17)

3.2 Tuning rules for resonant shunt circuits

Given a value of the parameter α, the tuning of a RL shunt requires to determine the
frequency tuning δ and damping r parameters. As brie�y discussed in the introductory
section, di�erent rules exist for �nding appropriate values of these parameters. Two
methods that apply Den Hartog's �xed-point method to PTVAs, namely those of Hagood
and von Flotow [7] and Yamada et al. [16], are described in this section.

7
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3.2.1 Hagood's tuning rule

In 1991, Hagood and von Flotow introduced the �rst tuning method for resonant shunt
circuits based on the receptance transfer function of the primary mass:

ge (γ) =

∣∣∣∣ x̃f0
∣∣∣∣ =

∣∣∣∣ jδ2rγ + δ2 − γ2

γ4 − jδ2rγ3 − (δ2 + 1) γ2 + jδ2rγ + (1− α2) δ2

∣∣∣∣ , (18)

with j =
√
−1. Since then, this method has often been used in the literature (e.g., Inman

and co-workers applied the method for tuning the linear part of the proposed nonlinear
piezoelectric shunt [9]).

The �rst step consists in selecting the frequency tuning parameter δ that yields two �xed
points of equal amplitude in the receptance ge (γ). Solving the equation:

ge (γ) |r=0 = ge (γ) |r=∞ , (19)

yields the dimensionless frequencies of the �xed points P and Q:

γP,Q =

√
2

2

√
δ2 + 1±

√
δ4 + 2 δ2α2 − 2 δ2 + 1

δ
. (20)

The optimum value δopt = 1 is subsequently obtained by imposing

ge (γP,Q) = ge (γP,Q) |r=∞ . (21)

Because the parameters (14) are somewhat di�erent from those considered in [7], the
value of δopt is also di�erent. At the optimum, the frequency of the �xed points and the
corresponding amplitudes of the transfer function are

γP,Q =

√
2

2

√
2±
√

2α and ge (γP ) = ge (γQ) =

√
2

α
(22)

Determining the optimal circuit damping is more challenging. To this end, Hagood and
von Flotow proposed to set

ge (γP,Q) = ge (δopt) . (23)

As we shall see, this expression is approximate. Combining Equations (18), (22b) and
(23) yields

roptH =
√

2α (24)

3.2.2 Yamada's tuning rule

Through the development of an equivalent mechanical model of a piezoelectric element,
Yamada et al. [16] improved the analytic approximations proposed in [7]. Speci�cally,
they still consider the value δopt = 1 for the frequency tuning, but the damping ratio of
the PTVA is derived such that the derivative of the receptance ge (γ) should be zero at
the �xed points:

dge(γ)

dγ
|γP ,γQ = 0. (25)

8
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By substituting Equation (22) into Equation (25), two di�erent optimum circuit damping
values are calculated for points P and Q:

rP ,Q =

√
3

4
√

2

α√√
2± α

. (26)

meaning that the two maxima of ge (γ) cannot simultaneously coincide with the �xed
points. They proposed to de�ne the optimum value through the root mean square:

roptY =

√
r2P + r2Q

2
=

√
3α√

2− α2
. (27)

The performance of the two tuning rules are illustrated in Figure 3 for di�erent dimen-
sionless coupling parameters α. For α=0.1, the rule proposed by Yamada et al. provides
two peaks of almost identical amplitudes, whereas the rule of Hagood and von Flotow
is less accurate. For larger values of α, none of these rules provides equal peaks in the
receptance function.

4 The piezoelectric vibration absorber: exact tuning

rule

4.1 Theory

As discussed in Section 2 for MTVAs and as also shown in the previous section, a �xed-
point-based absorber design cannot yield resonance peaks of equal amplitude. Following
the method proposed by Nishihara and Asami [4] for MTVAs, an exact solution for the H∞
optimization of piezoelectric materials shunted with resistive-inductive passive electrical
circuits is derived in this section. It is obtained by focusing only on the resonant points
A and B, therefore ignoring the existence of the �xed points. So, for a given value of α,

min δ,r ‖ge (γ)‖∞ → �nd δ, r such that |ge (γA) | = |ge (γB) | ≡ h0 (28)

For simplicity, the square of the receptance function g2e(γ) = n(γ)/d(γ) is considered
where

n(γ) = 1 + γ4 +
(
δ2r2 − 2

)
γ2, (29)

d(γ) = δ4γ8 +
(
δ6r2 − 2 δ4 − 2 δ2

)
γ6 +

(
−2 δ4r2 − 2α2δ2 + δ4 + 4 δ2 + 1

)
γ4

+
(
2α2δ2 + δ2r2 + 2α2 − 2 δ2 − 2

)
γ2 + α4 − 2α2 + 1. (30)

Because only terms of even power appear in these expressions, we can pose γ1 = γ2 such
that g2e(γ1) = N(γ1)/D(γ1) with

N(γ1) = 1 + γ21 + (δ2r2 − 2)γ1,

D(γ1) = δ4γ1
4 +

(
δ6r2 − 2 δ4 − 2 δ2

)
γ1

3 +
(
−2 δ4r2 − 2α2δ2 + δ4 + 4 δ2 + 1

)
γ1

2

+
(
2α2δ2 + δ2r2 + 2α2 − 2 δ2 − 2

)
γ1 + α4 − 2α2 + 1. (31)

9
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Figure 3: Performance of existing tuning rules for PTVAFs for di�erent values of α.
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If we de�ne the fourth-order polynomial

F (γ1) = D(γ1)−
N(γ1)

h20
, (32)

Equation (28) shows that two obvious roots of this polynomial are γ1A and γ1B. Because
the receptance transfer function possesses horizontal tangents at the resonant points A
and B, it also follows that

F ′(γ1A) = F ′(γ1B) = 0, (33)

where prime represents the derivative with respect to γ1. According to Equation (33), the
multiplicity of the roots γ1A and γ1B is two:

F (γ1) = γ41 + b1γ
3
1 + b2γ

2
1 + b3γ1 + b4 = (γ1 − γ1A)2(γ1 − γ1B)2, (34)

with the coe�cients bi de�ned as

b1 = −2(γ1A + γ1B),

b2 = (γ1A + γ1B)2 + 2γ1Aγ1B,

b3 = −2γ1Aγ1B (γ1A + γ1B) ,

b4 = γ21Aγ
2
1B.

(35)

It follows that

f1 = b1
√
b4 − b3 = 0,

f2 =
b21
4

+ 2
√
b4 − b2 = 0. (36)

Another expression of the coe�cients bi can be obtained through Equations (31) and (32):

b1 = −2− 2 δ1 +
r1
δ1
,

b2 = δ1
2h1

2 + (4− 2α1) δ1 − 2 r1 + 1,

b3 = δ1
[(
−2h1

2 + 2α1

)
δ1 + h1

2r1 + 2α1 − 2
]
,

b4 = δ1
2
(
h1

2 + α1
2 − 2α1

)
.

(37)

where h21 = 1− 1/h20, δ1 = 1/δ2, r1 = r2 and α1 = α2. Equations (36) therefore becomes

f1 =
(
−2 δ21 + r1 − 2 δ1

)
χ− δ1

[(
−2h21 + 2α1

)
δ1 + h1

2r1 + 2α1

]
= 0, (38)

f2 =
(
1− h12

)
δ1

4 + 2 (χ+ α2 − 1) δ1
3 + r1 δ1

2 − r1 δ1 +
1

4
r1

2 = 0. (39)

where χ ≡
√
h1

2 + α1
2 − 2α1.

Equation (38) is solved for r1 equal to the square of the optimum circuit damping:

r1 =
2 δ1

[
−δ1 h12 + δ1 χ+ δ1 α1 + χ+ α1 − 1

]
−δ1 h12 + χ

. (40)
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The substitution of r1 into Equation (39) provides a fourth-order polynomial in δ1, which
is directly related to the frequency tuning ratio δ:

ã δ41 + b̃ δ31 + c̃ δ21 + d̃ δ1 + ẽ = 0 (41)

The coe�cients of the polynomial depend only on α1, related to the coupling factor α,
and h1, related to the amplitude h0 of the receptance function:

ã =
[
h41
(
1− h21

)]
,

b̃ =

[
4h21

(
1− h21

)(
χ+

1

2
α1

)]
,

c̃ =

[(
(−4χ− 2)α1 − 5χ2 + 2

)
h1

2 + 4

(
χ+

1

2
α1

)2

− h14
]
,

d̃ =
[
2χ3 + 2χ2α1 +

(
2h1

2 + 4α1 − 4
)
χ+ 2α1

2 − 2α1

]
,

ẽ =
[
(α1 − 1)2 − χ2

]
.

(42)

The parameter α1 is an input to the problem whereas h1 should be minimized so as to
minimize the resonance peak amplitude h0.

To ensure the existence of a multiple real root of Equation (41), the value of h1 should be
selected so that the discriminant of this polynomial ∆4 is zero. For a n

th-order polynomial
f(x), a linear relation exists between the discriminant and the resultant R

(
f, ∂f

∂x

)
. This

relation can be written for the quartic function f2 as:

∆4 =
1

ã
R

(
f2,

∂f2
∂δ1

)
. (43)

Hence, the resultant R can be set to zero instead of ∆4. Since the expression of R is very
complex and cannot be solved by hand, the symbolic algebraic software Maple is used to
simplify the resultant as:

1
64

[
54α1

3 − 54α1
2 +

(
144h1

2 − 144
)
α1 − 128h1

2 + 128
]√

h1
2 + α1

2 − 2α1+
27
32
α1

4 − 27
16
α1

3 + 1
64

(
171h1

2 − 117
)
α1

2 + 272
64

(
1− h1

2
)
α1 + h1

4 − 1 = 0.
(44)

The common factor 1024α1
4
(
h1

2 − 1
)3
h1

10
[(
h1

2 + χ
)
α1 − h12 + χ2

]2
was eliminated

from the resultant during the simpli�cations. Four di�erent roots are found for Equation
(44):

h1 = ±1

8

√
−9α1

2 − 16α1 + 64± 2
√

54α1
4 − 144α1

3 + 64α1
2 (45)

Considering that h1 should be positive and should be minimized, the following root is the
solution:

h1opt =
1

8

√
−9α1

2 − 16α1 + 64− 2
√

54α1
4 − 144α1

3 + 64α1
2 (46)

This value of h1 should be inserted into Equation (42) to obtain the coe�cients in terms
of α1, and Equation(41) can be solved analytically for δ1. Eventually:

δ1opt =
4S ã− b̃

4ã
. (47)
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where

S =
1

2

√
1

3ã

(
Q+

∆0

Q

)
− 2

3
p, p =

8ãc̃− 3b̃2

8ã2
, Q =

3

√
∆1 +

√
∆2

1 − 4∆3
0

2
(48)

while the parameters ∆0 and ∆1 are:

∆0 = c̃2 − 3b̃d̃+ 12ãẽ,

∆1 = 2c̃3 − 9b̃c̃d̃+ 27b̃2ẽ+ 27ãd̃2 − 72ãc̃ẽ.
(49)

In summary, the solution to the tuning of the resonant shunt circuit can be written in
terms of the original parameters δ, r and α by considering Equations (50) to (53). From
the knowledge of the coupling factor α, h0 and χ are computed:

h0 =
8

α
√

2
√

54α4 − 144α2 + 64 + 9α2 + 16
, (50)

χ =
1

8

√
64− 2α2

√
54α4 − 144α2 + 64 + 55α4 − 144α2. (51)

The coe�cients of the quartic polynomials (41) are then calculated:

ã =
(h20 − 1)

2

h60
,

b̃ = −2
(2χ+ α2) (h20 − 1)

h40
,

c̃ = 5
α4

h0
2 +

(
4χ

h0
2 −

8

h0
2

)
α2 +

6

h0
2 −

6

h0
4 ,

d̃ = 2χ3 +

(
4α2 − 2− 2

h0
2

)
χ− 2

α2

h0
2 + 2α6 − 2α4,

ẽ =
1

h0
2 .

(52)

From these coe�cients, variables ∆0, ∆1, p, Q and S in Equations (48) and (49) are
determined. The optimal parameters can then be obtained:

δopt = 2

√
ã

4Sã− b̃
, ropt =

√
2
[
1 +

(
δopt

2 + 1
)

(α2 + χ− 1)h0
2
][

1 +
(
χ δopt

2 − 1
)
h0

2
]
δopt

2 (53)

The resistance R and inductance L of the shunt circuit are calculated directly from ropt
and δopt using Equations (14):

L =
1

δ2opt

m1

(1 + κ) εT3

(
s33 l0
s0

)2

, (54)

R =
ropt
εT3

√
m1

1 + κ

√
s33

(
l0
s0

)3

. (55)
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4.2 Numerical results

The transfer function of the primary oscillator (18) is computed for the optimal values
proposed by the three tuning rules investigated in this paper:

δopt,H = δopt,Y = 1, δopt,exact = 2

√
ã

4Sã− b̃
(56)

ropt,H =
√

2α, ropt,Y =

√
r2P + r2Q

2
=

√
3α√

2− α2
(57)

ropt,exact =

√
2
[
1 + (δ2 + 1) (α2 + χ− 1)h0

2
][

1 + (χ δ2 − 1)h0
2
]
δ2

(58)

These values are plotted in Figure 4 as a function of the dimensionless coupling parameter
α within its allowable domain.

Figures 5-8, which depict the transfer functions for four di�erent values of α, fully vali-
date the analytic developments carried out in the previous section. Indeed, the transfer
function for the exact rule possesses two resonance peaks with identical amplitude. The
corresponding amplitude is also consistently lower than the maximum peak amplitude
given by the other tuning rules.

For a very low value of the coupling parameter, α=0.01 in Figure 5, there is almost
no visible di�erence between Yamada and exact rules. The damping value proposed by
Hagood's formula is associated with a noticeable performance decrease. For α = 0.1
and α = 0.3 in Figures 6-7, respectively, both Hagood and Yamada rules lead to lower
performance compared to the exact rule. Finally, for α = 0.7 in Figure 8, a complete
detuning is observed for Yamada's rule. For a more quantitative comparison, Figure
9 displays the percentage of peak amplitude reduction provided by the exact rule as a
function of α. It con�rms the superiority of this tuning methodology over the existing
methods. For realistic values of α, an improvement of a couple of percents can be expected.

5 Simpli�cation of the exact formulas

Because expressions (50)-(53) are quite involved, the curves δopt = δopt(α) and ropt =
ropt(α) in Figure 4 are �tted using �fth and third-order polynomials:

δ̂opt = 1 +
(
a5 α

5 + a4 α
4 + a3 α

3 + a2 α
2 + a1 α + a0

)
, (59)

r̂opt = n3 α
3 + n2 α

2 + n1 α + n0 . (60)

The coe�cients ai (i=0, 1, 2,..., 5) and nj (j=0, 1, 2, 3) are listed in Tables 3 and 4,
respectively.

Table 5 compares the exact and �tted values of the design parameters δ and r together
with the corresponding maximum amplitude of the receptance function h0. The maximum
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Figure 4: Variation of (a) the tuning frequency ratio δ, and (b) the dimensionless damp-
ing of the shunt r predicted by the di�erent tuning rules against the electromechanical
coupling parameter α.
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Figure 5: (a) Performance of the three tuning rules for α = 0.01, (b) close-up of the
resonant peak.

16

Page 16 of 22CONFIDENTIAL - FOR REVIEW ONLY  SMS-101020

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



0.92 0.94 0.96 0.98 1 1.02 1.04 1.06
10

11

12

13

14

15

γ

g
e(γ

)

 

 

Hagood’s rule

Optimum exact rule

Yamada’s rule

(a)

0.955 0.96 0.965 0.97 0.975

13.7

14

14.3

γ

g
e(γ

)

 

 

Hagood’s rule
Optimum exact rule

Yamada’s rule

(b)

Figure 6: (a) Performance of the three tuning rules for α = 0.1, (b) close-up of the
resonant peak.
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Figure 7: Performance of the three tuning rules for α = 0.3.
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Figure 8: Performance of the three tuning rules for α = 0.7.
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Figure 9: Percentage of peak amplitude reduction provided by the exact closed-form
solution against the dimensionless coupling parameter α.

relative error on δ and r is 0.04% and 0.2%, respectively. Figure 10 depicts the compar-
ison between the exact and �tted transfer functions for di�erent dimensionless coupling
parameters α. Overall, these results demonstrate the very high accuracy of the proposed
simpli�cations (59)-(60).

Table 3: The coe�cients ai in Equation (59)

δ̂ a5 a4 a3 a2 a1 a0

α ≤ 0.2 0.09225 0.0808 0.00294 0 0 0
α > 0.2 4.26314 -6.4942 3.9275 -1.0805 0.1335 -0.005771

Table 4: The coe�cients ni in Equation (60)

r̂ n3 n2 n1 n0

α ≤ 0.2 0.5256 -0.00092 1.2247 0
α > 0.2 1.17861 -0.5223 1.35353 -0.00901
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Figure 10: Receptance transfer function for the exact (solid line) and �tted (circles) values
of δopt and ropt for di�erent dimensionless coupling parameters α.

Table 5: Exact and �tted values of δopt, ropt and h0.

α δ δ̂ r r̂ h0 ĥ0

0.001 1.0000000 1.0000000 0.0012 0.0012 1414.2 1414.2
0.005 1.0000000 1.0000000 0.0061 0.0061 282.8433 282.8434
0.01 1.0000000 1.0000000 0.0122 0.0122 141.4233 141.4234
0.02 1.0000000 1.0000000 0.0245 0.0245 70.7146 70.7148
0.05 1.0000001 1.0000001 0.0613 0.0613 28.2942 28.2945
0.1 1.0000107 1.0000119 0.1230 0.1230 14.1621 14.1624
0.2 1.0001767 1.0001824 0.2492 0.2491 7.1118 7.1123
0.3 1.0009511 1.0008329 0.3819 0.3819 4.7772 4.7753
0.4 1.0033006 1.0035120 0.5254 0.5243 3.6242 3.6283
0.5 1.0092485 1.0091271 0.6848 0.6845 2.9482 2.9481
0.6 1.0236558 1.0235424 0.8680 0.8697 2.5200 2.5174
0.65 1.0380200 1.0384762 0.9728 0.9738 2.3705 2.3697

6 Conclusion

In this paper, an exact closed-form solution to the H∞ optimization of piezoelectric mate-
rial shunted with inductive-resistive passive electrical circuits is proposed. This solution
imposes exactly two equal peaks in the receptance function that are associated with the
smallest possible vibration amplitude of the host structure. The performance of this
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method is therefore superior to all existing tuning rules for resonant circuit shunting,
even if the improvement may be marginal for small electromechanical coupling parame-
ters. Simpli�ed, though very accurate, formulas for the optimum tuning ratio and the
dimensionless damping are also provided.
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