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Abstract  

Auxin is considered one of the cardinal hormones in plant growth and development. It regulates a wide 

range of processes throughout the plant. Synthetic auxins exploit the auxin-signalling pathway and are 

valuable as herbicidal agrochemicals. Currently, despite a diversity of  chemical scaffolds all synthetic 

auxins have a carboxylic acid as the active core group. By applying bio-isosteric replacement we 

discovered that indole-3-tetrazole was active by surface plasmon resonance (SPR) spectrometry, 

showing that the tetrazole could initiate assembly of the TIR1 auxin co-receptor complex. We then 

tested the tetrazole’s efficacy in a range of whole plant physiological assays and in protoplast reporter 

assays which all confirmed auxin activity, albeit rather weak.  We then tested indole-3-tetrazole against 

the AFB5 homologue of TIR1, finding that binding was selective against TIR1, absent with AFB5. The 

kinetics of binding to TIR1 are contrasted to those for the herbicide picloram, which shows the opposite 

receptor preference as it binds to AFB5 with far greater affinity than to TIR1.  The basis of the 

preference of indole-3-tetrazole for TIR1 was revealed to be a single residue substitution using 

molecular docking, and assays using tir1 and afb5 mutant lines confirmed selectivity in vivo. Given the 

potential that a TIR1-selective auxin might have for unmasking receptor-specific actions, we followed 

a rational design, lead optimisation campaign and a set of chlorinated indole-3-tetrazoles was 

synthesised.  Improved affinity for TIR1 and the preference for binding to TIR1 was maintained for 4- 

and 6-chloroindole-3-tetrazoles, coupled with improved efficacy in vivo. This work expands the range 

of auxin chemistry for the design of receptor-selective synthetic auxins. 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

Auxin (indole-3-acetic acid; IAA (1) Figure 1) regulates diverse developmental processes including cell 

elongation, cell division, tropic responses, lateral rooting and branching, and synthetic auxins are an 

important class of selective herbicides. The best-studied auxin receptor is the F-box protein Transport 

Inhibitor Resistant 1 1. A wealth of experimentation has shown that TIR1 is  the F-box component of a 

Skp, Cullin, F-box (SCF) type E3 ubiquitin ligase complex SCFTIR1, although it wasn’t until seminal 

work by two groups 2, 3  that TIR1 was shown to be the major auxin receptor.  The TIR1 family includes 

five additional Auxin F-Box proteins (AFBs) in Arabidopsis and activity within this family has been 

shown to be largely redundant 4, with some notable exceptions.  Root architecture responses to nitrate 

levels appear to be mediated through AFB3 5 6 and AFB5 has been shown to be the dominant site of 

action for the picolinate herbicides 7 8. 

The mechanism of auxin action is coordinated through transcriptional regulation and this has been 

reviewed extensively 2, 3 9 10, 11. At low auxin concentrations, AUX/IAA transcriptional repressor 

proteins, together with co-repressor (TOPLESS) proteins repress genes targeted by the Auxin Response 

Factor (ARF) transcriptional activators. As concentrations rise, auxin binds to TIR1 creating a high-

affinity surface for recruitment of the AUX/IAA co-receptor.  The assembly of this SCFTIR1co-receptor 

complex has been used for an auxin binding assay using surface plasmon resonance spectrometry 8, 12 . 

Assembly of the complex in vivo leads to ubiquination of the AUX/IAAs and consequent degradation 

in the proteasome. The consequent reduction in concentrations of AUX/IAA proteins releases the ARFs, 

allowing transcription to commence. The TIR1 crystal structure 13 provided the paradigm for IAA acting 

as molecular glue between TIR1 and AUX/IAA, and radiolabel and SPR binding experiments illustrated 

that the wide dynamic range of responses to auxin may, in part, be accounted for by the range of 

affinities measured for different co-receptor complexes 12, 14, 15. 

The diversity of receptors suggests some differentiation of activity as well as dose dependence 5, 6 14.  It 

was of interest to pursue the selectivity found for picolinate herbicides and investigate the possibility 

of receptor sub-class-specific ligands 16. We have explored the tetrazole functional group as a 

bioisostere (a chemical mimetic that sustains biologically activity) of carboxylic acids 17, 18 and shown 

that indole-3-methyl tetrazole (compound 5, Figure 1; iMT) not only works as a weak auxin, but that it 

binds selectively to TIR1, and not to AFB5.  Rational design was shown to improve its affinity for TIR1 

without changing this selectivity.  



Results and Discussion 

Modelling alternative ligands for TIR1 

Using the TIR1 crystal structure with IAA bound (PDB file 2P1P) we inspected the atomic distances 

from the carboxylic oxygens of IAA to nearby residues and noted distances of 3.47Å to Arg403 and 

4.52Å to Arg436 (Figure 2A).  This indicated some exploitable space in this region and so we modelled 

iMT (Figure 1) in the TIR1 site using the structure builder feature in Chimera 19 . Side-by-side 

comparison of IAA with iMT (Figure 2 A & B) show the indole rings to be superimposable, with the 

tetrazole group extending past the position of the carboxylic acid in IAA, further down into the pocket.  

In our model the atomic distances were 1.89Å to Arg403 and 2.34Å to Arg436. Furthermore, the proximity 

of the Ser438 residue was also considered a probable hydrogen bonding partner for iMT (Figure 2B).  

 

Docking iMT into TIR1 

Docking algorithms use more robust molecular force field calculations than a structure mutation in 

Chimera and so iMT and IAA were docked using the Vina algorithm 20 21  into the auxin-binding pocket 

of TIR1 using the coordinates from crystal structure 2P1Q (TIR1 with ligand and IAA7 degron bound, 

but removed for docking). We reasoned that 2P1Q would be the most appropriate template for docking 

in order to simulate the active state. Although there are no gross conformational changes during binding 
13, there are subtle side group moves implied from the different crystal datasets. Docking predicted that 

the indole ring of bound iMT (scoring function -8.2 kcal/mol) would be superimposed onto that for 

docked (scoring function -8.1 kcal/mol) and crystallographic IAA (Figure 2C), with a slight difference 

between alignments of the tetrazole and carboxylic acid.  Interatomic distances between the tetrazole 

and neighbouring arginines show 3 hydrogen bond donors within range (Figure 2D). Thus in silico 

docking predicted that iMT would bind to TIR1, making it  a non-carboxylic acid auxin. 

 

 iMT binds TIR1 in vitro and acts as an auxin in vivo 

iMT was synthesised in a single step reaction from indole-3-acetonitrile with the addition of azide in a 

cycloaddition reaction (Supporting Information Scheme 1; physicochemical properties are also 

presented in Supporting Information Table 1). It was tested for binding to TIR1 using SPR.  When 

mixed with purified TIR1, iMT supported TIR1 co-receptor assembly on the SPR chip with an activity 

of 18% relative to IAA (both at 50 µM; Figure 3A). We then used SPR to screen a selection of other 

aromatic tetrazoles, including (2-(naphthalen-1-yl)tetrazole), the tetrazole equivalent of 1-NAA (11, 



Supporting Information Figure 1). None of this collection of compounds bound to TIR1 or AFB5, 

consistent with a lack of auxin activity in previous whole plant assays 22 23. 

It is notable that the SPR binding signal from iMT plateaued rapidly on both association and dissociation 

phases (Figure 3A) unlike that for IAA, suggesting more rapid kinetics.  Single cycle kinetics recorded 

a KD of 210 µM for iMT, compared to 5 µM for IAA (Table 1).  The lower affinity for iMT is contributed 

by a 15-fold faster off-rate constant than for IAA, and an almost 3-fold slower on-rate constant. 

The SPR assays are performed with TIR1 expressed in insect cells.  In order to check activity with 

plant-expressed TIR1, we tested the efficacy of iMT in pull-down assays with FLAG-tagged AtTIR1 

expressed in Nicotiana benthamiana plus IAA7 peptide 24. We observed a weak response compared to 

IAA (Figure 3C), which is consistent with the SPR data on kinetic rates.  

iMT lead optimisation 

Whilst iMT has been shown to be an active auxin, it is considerably weaker than IAA and many other 

synthetic auxins, and so rational design was applied to improve its activity. Past structure-activity 

relationship studies for auxins  have shown that the addition of chlorine at the 4 or 6 positions of IAA 

yields potent auxins 25, 26 27.  We also envisaged the chlorines might improve uptake properties 27. 

Therefore, to start lead optimisation of iMT we synthesised the corresponding 4-, 5- and 6- 

monochlorinated analogues (Supporting Information Scheme 2).  Binding analysis using SPR showed 

that 4-Cl-iMT did have enhanced binding to TIR1 (Figure 3A; Table 1. Addition of chlorine at the 6 

position did not improve or reduce affinity and addition of Cl at the 5 position significantly decreased 

affinity for TIR1 and reduced activity in vivo (Table 2). 

Activity in planta. 

Having established that iMT was active as an auxin in receptor binding assays, it was necessary to test 

whether or not binding translated into auxin activity in planta.  When DR5::GUS Arabidopsis seedlings 

were grown on agar containing the test compound, iMT induced GUS activity at 50 µM, compared to 

IAA which gave a signal at 1 µM (Figure 4A). We followed this up with the auxin reporter DII::VENUS 

line 28 which showed a characteristic marked decrease in YFP signal in the presence of IAA. Again, 

iMT showed an auxin-like response, but reduced compared to that of IAA (Supporting Information 

Figure 2). Supporting these data, we treated 6-day-old DR5::GFP reporter line seedlings with IAA or 

iMT and recorded the GFP signal from primary root tips after 2 and 24 hours (Figure 4B).  After 2 hours 

only IAA induced the characteristic increase in GFP signal in the epidermis, steele and the lateral root 

cap 29. After 24 hours iMT-treated roots also showed an enhanced GFP signal in cells types 

characteristic of auxin responses, although it remained weaker than the IAA-induced signal (Figure 

4B). We also noted responses to iMT analogues 4-Cl-iMT and 6-Cl-iMT in the DR5::GUS assays 



(Figure 4A), in the DII:VENUS reporter assay (Supporting Information Figure 2) and in the DR5::GFP 

assay at 24 hours, especially for 4-Cl-iMT (Figure 4B).  In order to reveal the timescale of 

responsiveness in live cells, we used a protoplast transient reporter assay 30 adapted for use with auxin-

sensitive promoters and automated to record continually (Figure 4C; Supporting Information Figure 3).  

A series of doses of IAA or 4Cl-iMT were applied in parallel and the results indicated extended response 

lag times for iMT analogues compared to IAA, with responses becoming evident only after about 2 

hours.  This is consistent with the DR5::GFP data above (showing no response at 2 h) and might 

represent poor uptake kinetics for iMT and its analogues.  Nevertheless, a clear, auxin-dependent signal 

is generated as 4Cl-iMT accumulates. 

Root growth assays quantify auxin activity 

The genetic reporter assays provided evidence that iMT was an active auxin in vivo and showed uptake 

of the compound into Arabidopsis roots and into protoplasts.  However, genetic reporter assays are 

difficult to quantify and so we conducted dose-response assays using seedling root growth inhibition to 

evaluate IC50 values for each compound (Table 2). Defining the IC50 value as the concentration of 

compound needed to reduce primary root growth to 50% of the length without treatment, we obtained 

an IC50 value of 46 µM (±3) for iMT compared to 41 nM (±7) for IAA in Col-0. We observed complete 

root growth inhibition at 300 µM for iMT compared with 11 µM for IAA (Supporting Information 

Figure 4).  The 1000-fold difference in activity in vivo is greater than the difference in affinity observed 

for receptor binding (approximately 30-fold, Figure 3C).  We noted above that the response to iMT was 

slower than for IAA (Figure 4C), and these extended IC50 values also suggest that uptake of iMT by 

plant cells is impaired affecting potency. Nevertheless, in the same assay plates we observed increased 

lateral root density after iMT treatment, another characteristic auxin response (Figure 5), and so iMT is 

acting positively as an auxin, and not by interfering with selective elements of auxin physiology as 

reported for some other small molecules such as cis-cinnamic acid and 3,4-(methylenedioxy)cinnamic 

acid 31, 32.  

 

iMT does not bind AFB5 and this can be explained using molecular docking 

In addition to testing iMT for binding to TIR1, we investigated binding to AFB5 (Figure 3B).  

Somewhat surprisingly, we noted that iMT did not induce AFB5 co-receptor assembly, revealing a 

selectivity towards TIR1.  This is the opposite selectivity to that found for picloram and the 6-

arylpicolinate DAS534, which bind preferentially to AFB5 7 8. 

In order to investigate the basis of iMT’s failure to bind to AFB5 we identified the residues lining the 

auxin-binding pocket of each receptor 33and aligned complementary sequences from AFB5 (Figure 6A).  



There are two key changes; His78 becomes an arginine, and Ser438 becomes an alanine in AFB5. A 

change of histidine to arginine represents an increase in residue size and polarity, whilst a change of 

serine to an alanine is a decrease in polarity, an increase in hydrophobicity and loss of a key hydrogen 

bond acceptor.  To understand how these changes might result in binding selectivity we used the crystal 

structure of TIR1 (PDB file 2P1Q) and the homology model built for AFB5 from this template 12  for 

docking in silico (Figure 6B to G).  The His438Arg change is the most likely contributing factor to iMT 

receptor selectivity. IAA docked into the AFB5 pocket in a favourable pose, resembling that for TIR1, 

such that the aromatic ring is surrounded with hydrophobic residues parallel to the base of the pocket, 

and the carboxylic acid is orientated towards arginine residues at the base of the pocket, and towards 

the centre of the protein. Docking iMT into the AFB5 pocket suggested that the increased steric bulk of 

the arginine displaced the tetrazole group upwards, with this polar group now imposing on space 

previously taken by the alpha-carbon of IAA, and tilting the pose of the indole ring with respect to the 

base of the pocket. Such a pose for iMT would be likely to reduce favourable interactions with the 

AUX/IAA degron by perturbing the hydrophobic interactions of auxin with the WPPV motif 13. Binding 

analysis of the monochlorinated iMT analogues revealed that binding remained selective for TIR1 with 

no binding to AFB5 (Figure 3; Table 1) 

Mutant Arabidopsis lines confirm that receptor specificity is maintained in vivo. 

In order to confirm that iMT is selective for TIR1 in planta, loss of function mutant lines of A. thaliana 

were evaluated in the root growth assay using dose-response experiments (Supporting Information 

Figure 4) In the tir1-1 line we observed a shift in IC50 from 46 µM for iMT to 90 µM (Table 2), and 

even at the highest dose of 300 µM primary root growth was not totally inhibited. With afb5-5 we 

observed no change in the IC50 value compared to wild type, consistent with the specificity seen for 

iMT and TIR1 in vitro. Specificity is also apparent for the lateral root growth trait (Figure 5), with the 

pattern of responsiveness to iMT being identical between Col-0 and afb5-5, but distinct from tir1-1.  

Tests were extended to quantitative RT-PCR to evaluate responsiveness using widely used auxin-

responsive genes (Figure 4D). Treatment with IAA (1 µM) and 4-Cl-iMT (10 µM) gave similar auxin-

like responses in Col-0, but the response to 4-Cl-iMT was absent in tir1-1 for all three reporter genes, 

consistent with binding selectivity of 4-Cl-iMT for TIR1. The reporters GH3.3 and GH3.1 gave partial 

responses to 4-Cl-iMT in afb5-5, whilst reporter IAA5 responded as for IAA, as anticipated for a line 

with a functional TIR1. Selectivity for TIR1 was also shown to be maintained with lateral root density 

in the tir1-1 line being significantly reduced compared to Col-0 and afb5-5 at the active higher dose 

rates (Figure 5,Table 2). Picloram demonstrated its inverse selectivity and preference for AFB5 (Figure 

5A).  

 



Discussion 

We have demonstrated that isosteric replacement of the carboxylic acid on IAA with a tetrazole yields 

an active auxin that binds to the auxin receptor TIR1. Further, this isosteric change confers on iMT 

selectivity for TIR1 which introduces the first auxin that does not engage with the receptor homologue 

AFB5. Isosteric replacements have been reported for auxin previously, including the report of weak 

activities in the Avena coleoptile extension and pea split epicotyl assays 22, 23, but never pursued. The 

tetrazoles of 1-naphthylacetic acid and 2,4-dichlorophenoxyacetic acid were found to be far weaker 

than iMT,  as were other bioisosteres evaluated at the same time.  Given the weak activity, perhaps it is 

not surprising that no further interest has been shown in the 60 years since. However, with an SPR 

binding assay, as well as Arabidopsis TIR1/AFB mutants, we were able to revisit the activity of non-

carboxylic synthetic auxins and this revealed target site specificity more extreme than the known 

prefence of AFB5 for picloram and the picolinate auxins 7, 8. This is the first report of a chemical tool 

for examining receptor-selective responses and redundancy within the TIR1 family of receptors.  

We have suggested the molecular basis of iMT specificity to be a histidine the base of the TIR1 binding 

pocket which is replaced by an arginine residue in AFB5 which protrudes more (Figure 6). Without the 

crystal structure of the AFB5 receptor this explanation is based on a homology model 12, although this 

remains a reasonable hypothesis until the AFB5 structure is solved. We recognise that we have not 

represented the AFB2 clade in this study although it clusters close to TIR1 in sequence alignments 4. It 

is clear from all the data collected from tir1-1 plants that the effects of iMT and 4-Cl-iMT are dominated 

by recognition through  TIR1.  Nevertheless, we can’t exclude some efficacy with AFB2 and we note 

that at the relatively high concentrations needed for activity in vivo with this current generation of iMT 

analogues there could be some cross-over signalling from other members of the TIR1 family.  

Importantly, we now have chemical templates suitable for TIR1-dominant (iMT) and AFB5-dominant 

(picolinate) activation of auxin signals. We do not yet fully understand the significance of six redundant 

auxin receptors, but these compound families offer new tools to help differentiate the receptors. 

The tetrazole bioisostere iMT is not as potent as IAA, with a 40-fold poorer affinity for receptor binding 

(Table 1).  The difference in activity in planta is greater, perhaps due in part to reduced uptake and 

transport. Some reduced uptake capacity is suggested in the timecourse of the protoplast gene reporter 

assays (Figure 4C, Supporting Information Figure 2). Our initial lead optimisation programme has 

yielded increased potency for 4-Cl-iMT with an IC50 value of 19 µM in the primary root growth 

inhibition assay (Table 2).  In terms of utility, we may compare this to picloram which is a successful 

commercial herbicide.  Picloram has an IC50 of 5 µM (Table 2).  A further comparison may be drawn 

to the herbicide glyphosate, which has an IC50 of 11 mM on its target  enzyme 5-enolpyruvylshikimate-

3- phosphate synthase 34 and an IC50 on Arabidopsis rosettes of 50 µM, with plants able to grow through 

treatments at 5 mM 35.   



As with all agrochemicals, concerns are growing over resistance to current actives.  The auxin family 

of herbicides faces the same challenges. Resistance has not become a global threat 36, 37 but  applications 

are rising with the advent of dicamba- and 2,4-D-tolerant GM crops 38 39.  However, as well as 

maintaining the utility of the current arsenal, binding site variation might open the door to new herbicide 

selectivities, wider or more restricted than the known broad-leaved dynamic of most current 

compounds. 

 

  



Methods 

In silico modelling, chemical and protein visualisation 

In silico modelling, molecular graphics and analyses were performed with the open source UCSF 

Chimera package developed by the Resource for Biocomputing, Visualization, and Informatics at the 

University of California, San Francisco (supported by NIGMS P41-GM103311). 19. Marvin was used 

for drawing, displaying and characterizing chemical structures, substructures and reactions. Calculator 

Plugins were used for structure property prediction and calculation (Marvin v15.10.12.0, 2015; 

ChemAxon (http://www.chemaxon.com). Chemical structures were drawn using ChemDraw 

Professional v15.0.0.106. Docking was performed using an automated docking script 21  based on the 

Vina algorithm 20. Crystal structures 2P1P and 2P1Q 13were sourced from RSCB 40. 

Recombinant expression:  

Expression constructs for both TIR1 and AFB5 were engineered to give fusion proteins His10-MBP-

(TEV)-FLAG-TIR1 and His-MBP-(TEV)-FLAG-AFB5 respectively and were coexpressed with 

His10-(TEV)-ASK1 as descrbed in 8. Generation of recombinant virus, quantification, selection, 

expression screening, and generation of high-titer viral stock was done by Oxford Expression 

Technologies (Oxford, U.K.). Trichoplusia ni (T. ni High 5) was used throughout as the host cell line 

for expression. Cell densities were determined with a haemocytometer (Marienfeld, Neubauer-

improved 0.1mm, catalogue number: 0640030) using a 10x objective lens under a light microscope. 

Cells were infected at a density of 1 x106 cells/mL with multiplicity of infection of 5. The cells were 

harvested by centrifugation 72 h after infection and stored at -80oC.  

Cell Lysis and protein extraction: 

Frozen TIR1/ASK1 and AFB5/ASK1 pellets were thawed at room temperature and lysed for 40 minutes 

whist rolling at 4oC in Cytobuster™ Lysis medium (Invitrogen 5 mL per 250 mL of cell lysate) 

supplemented with DNAse I (Roche), protease inhibitors (cOmplete™ Protease Inhibitor Cocktail 

Tablets, Roche), 50 µM phytic acid (Sigma) and 1 mM reducing agent TCEP (Tris(2-

carboxyethyl)phosphine hydrochloride – Sigma). The lysate was diluted upto 30mL into Buffer A (20 

mM Tris-HCl pH 7.4, 200 mM NaCl, 1mM EDTA, 50 µM phytic acid, 1 mM TCEP) and was subjected 

to 3 x 30 seconds ultrasonication before centrifugation at 20,000 rpm at 4oC for 15 minutes. The 

supernatant was then systematically filtered through 0.45 µm and 0.2 µm  Whatman GD/X syringe 

filters.  

 

 



Protein purification: 

The filtered lysate was loaded onto a nickel immobilised metal affinity chromatography column 

(cOmplete His-Tag Purification Resin – Roche), washed with 10 column volumes of Buffer-A before 

elution with Buffer-B (20 mM Tris-HCl pH 7.4, 200 mM NaCl, 1mM EDTA, 50  µM Phytic acid,1 mM 

TCEP, 250 mM Imidazole). TEV protease was added to the elute and incubated with mixing at 4oC 

overnight. The solution was then loaded onto an anti-FLAG-affinity resin (ANTI-FLAG® M2 Affinity 

Gel - Sigma), washed with 10 column volumes of Buffer-C (10 mM HEPES pH7.4, 150 mM NaCl, 3 

mM EDTA, 50 uM Phytic acid, 1 mM TCEP, 0.05% Tween 20) and eluted with 3X-FLAG peptide 

(Sigma) at 100ug/mL.  Protein was stored on ice and protein concentrations were assayed by nanodrop 

A280 nm measurement (Thermo Scientific). 

SPR assays: 

The auxin binding assays using SPR were done on a Biacore 2000 instrument as described previously 
8 41. The kinetic analysis of iMT analogues was perfomed by single cycle kinetics on a Biacore T200,  

titrating the compounds mixed with constant TIR1 before injection onto the SA chip. The orientation 

of the assay was otherwise as for the Biacore 2000 assays, and degron peptide density on the chips was 

controlled so that Rmax > 300 RU.  

Pull-down assay: 

The pull down assay was done according to the method described in 24   where Nicotiana benthamiana 

leaves were infiltrated with agrobacterium to express FLAG-TIR1 and leaf lysates were incubated with 

biotynalted AUX/IAA7 degron (biotinyl-AKAQVVGWP PVRNYRKN) attached to streptavidin beads. 

The reactions were done in the absence and presence of IAA or iMT at specified concentrations. 

Plant assays: 

All root growth assays were done in Col-0 and mutants in this backgroud, tir1-1 and afb5-5 lines 2 27,. 

A series of plates with 15 serial dilutions for each compound was prepared in half strength Murashige 

and Skoog medium.  From the top concentration of 300 µM a three-fold dilution series was prepared, 

plus a control without compound, giving a total of 16 plates.  

From a pool of 6 day old seedlings a random selection of 10 were transferred onto each of the treated 

plates and the position of the primary root tip was marked. The plates were placed randomly in the stack 

such that the concentrations were not in order to account for positional bias. A plate with no treatment 

was included in every assay for comparison with the lower end of the dose response (longest roots) and  

as an indicator of reproducibility in the assay. The stack was placed with the seedlings vertical for 6 

days at 12 hour day (22 °C) 12 hour night (18 °C) cycles then scanned (HP PSC 2500 series) at 1200 



dpi in colour mode. Primary root growth from the marked point was measured in Image J 42  and plotted 

using GraphPad Prism v 7.0. 

The primary root growth measurements were fitted to a logistic function (2.1), using the Levenberg–

Marquardt algorithm, in QTI plot (IONDEV SRL, Romania, v 0.9.8.9) . The standard deviation of the 

data points was weighted into the algorithm !(#) = 	 '
()*+,(-+-.)  where: M = Maximal value on curve, 

e = natural logarithm, x0 = IC50 value, k = Steepness of the curve. 

Lateral root hairs were counted on screen and statistical comparisons were conducted in GraphPad 

Prism v 7.0 using a two-way ANOVA looking at comparisons within each row (i.e. compound 

concentration µM) and comparing columns (i.e. mutant lines) to a reference control column (i.e. WT 

line), multiple comparisons reported to a 95% confidence level (Supporting Information Table 2). 

DR5::GUS reporter assays:  

5-days-old DR5::GUS seedlings were cultured in liquid MS medium (1.2% sucrose) with chemicals for 

16h at 23ºC. The seedlings were then washed with a GUS staining buffer 43  and transferred to a GUS 

staining buffer containing 1 mM X-gluc. The seedlings were then incubated at 37 °C until sufficient 

staining developed. 

DII::VENUS assay: 

 5-day-old DII::VENUS seedlings 28 were cultured in liquid MS medium (1.2% sucrose) with 20 µM 

yucasin, IAA biosynthesis inhibitor for 6h at 23ºC to accumulate DII-VENUS protein. The chemicals 

were then added into culture medium at indicated concentration. After 1h incubation at 23 ºC in dark, 

DII-VENUS image was captured by fluorescent microscopy BX-50 (Olympus, Japan) with YFP filter 

sets. 

DR5::GFP reporter assay:  

Col-0 DR5::GFP seedlings 44  were germinated as above for root growth assays and used directly from 

the plates. Seedlings from ther same batch of germinants were placed onto fresh media (half-strength 

MS) prepared with compound from 100mM stocks in DMSO to give a final concentration of 50µM 

(final DMSO concentration of 0.05% v/v) in 6-well plates for 2 and 24 h in the dark. Treatments were 

started simultaneously. At sampling, primary roots were cut to 3 cm, treated with 10 ug/ml Propidium 

Iodide, then placed onto a slide in water and imaged using a Leica (Germany) LSM 880 imaging system 

controlled by Leica Zen software with a 25 x oil immersion objective. GFP was excited with a 488 nm 

laser line and detected between 499 nm and 544 nm. PI was excited with a 514 nm laser and detected 

between 598 nm and 720 nm. Control roots (DMSO 0.05% v/v) were used to benchmark imaging 



settings and the same imaging parameters were used for both days, except for the IAA treatment at 24 

hours for which the gain was lowered to obtain a non-saturated image.  

 

Protoplast reporter assay: 

Mesophyll protoplast were obtained from leaf 8 of 4-week old plants following the “tape sandwich” 

method using 4 plants per genotype 45. The IAA5 promoter (At1g15580, 920 bp) was amplified from 

genomic Col-0 DNA (primers 

5’CCTGCAGGCTCTAGAGGATCCGCTGTCCATTATCACAAAGTC3’ and 

5’TGTTTTTGGCGTCTTCCATGGCTTTGATGTTTTTGATTGAAAG3’). The backbone for the 

pIAA5::LUC construct was generated from pFRK1::LUC (ABRC CD3-919) by digestion with BamHI 

and NcoI and gel-purified. Backbone and PCR-amplified IAA5 promoter were combined in a Gibson 

reaction using the CloneEZ kit (GenScript, USA). Plasmids containing the construct pGH3.3::LUC 46 

or pIAA5::LUC were transfected together with reporter pUBQ10::GUS for normalisation 47. After 

overnight incubation, protoplasts were treated with IAA or 4-Cl-iMT at the concentrations described 

and LUC substrate luciferin added. The plate was immediately placed in a Photek dark box and imaged 

with a photon-sensitive camera HRPCS218 (Photek; Supporting Information Figure 4) for 6 h using the 

software Image32 (Photek) to integrate photon capture. After imaging protoplasts were lysed for GUS 

activity analysis 46. Images were processed with the Image32 software binning the photons captured for 

each minute into a time resolved image (TRI). Then, for each well total intensity values were extracted. 

Light intensity was normalised to GUS activity. 

Quantitative RT-PCR: 

Leaf number 8 from 4-week old plants was syringe-infiltrated with either 1% DMSO in water (mock), 

10 µM 4-Cl-iMT or 1 µM IAA for 3 hours. RNAs were extracted with RNeasy Plant Mini Kit (Qiagen) 

and treated with TURBOTM DNase (Ambion) following manufacturer’s instructions. For cDNA 

synthesis 1 µg of RNA was reverse-trancribed with the SuperScriptTM II Reverse Transcriptase (Thermo 

Fisher Scientific), following manufacturer’s specifications, using a primer for polyA tails d(T)19. qPCR 

was performed with SYBR® Green JumpStartTM Taq ReadyMixTM (Sigma), following the 

manufacturer’s recommendations (qPCR primers see Supporting information Table 3). All qPCR 

primers were tested for efficiency on a standard curve. Three technical replicates were used for each 

sample and 384-well plates were read using a CFX384 TouchTM Real-Time PCR Detection System 

(Bio-Rad Laboratories). qPCR CT values were exported into an excel file and analyzed using the 

∆∆CT method 48. Data was normalised to UBC (AT5G25760;49). UBC expression was found to be stable 

under the conditions studied (Supporting information Figure 5).  



Chemical synthesis: 

iMTsynthesis via 1,3-dipolar cycloaddition 50    of sodium azide (NaN3) and 2-(1H-indol-3-

yl)acetonitrile with NaN3, AlCl3.THF in THF for 18h at 71˚C (Compound (1), Supporting Information 

Scheme 1 51 52. 4-chloroindole-3-acetonitrile, 5-chloroindole-3-acetonitrile and 6-chloroindole-3-

acetonitrile were synthesized according to the published procedure in 53, their corresponding 4/5/6 CL-

iMT analougues were synthesised with the NH4Cl, NaN3 into DMF at 120˚C for 30h (Supporting 

Information Scheme 2). Complete methodologies including NMR and MS data are presented in the 

Supporting Information (Supporting Information Schemes 1 and 2).  
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Table 1.  Kinetic binding data.	 
The Biacore T200 single cycle kinetic facility was used with titrations of each compound 
against constant receptor concentration to derive kinetic values for each compound.  
 
  

Compound ka (1/Ms) ± (fit 
error) kd (1/s) ± (fit error) KD (µM) ka (1/Ms) ± (fit 

error) kd (1/s) ± (fit error) KD (µM)

IAA 8.06E+02 3.4 3.85E-03 9.60E-06 4.78 4.61E+02 6 7.02E-02 4.50E-04 154
iMT 3.04E+02 3.2 6.39E-02 1.40E-04 210 - - - - -

4-Cl-iMT 2.43E+02 1.8 3.82E-02 1.90E-04 157 - - - -
5-Cl-iMT 3.28E+02 8.8 1.20E-01 5.30E-04 366 - - - - -
6-Cl-iMT 3.75E+02 4.7 7.64E-02 2.20E-04 204 - - - - -

AFB5TIR1



 
 

 
 
Table 2: iMT analogues are active as auxins in the Arabidopsis primary root growth 
inhibition assay.   
The IC50 values (±SE) for the inhibition of primary root growth were calculated from 
statistical fits to dose response data. Receptor preferences are noted on the right.  
 
 
 
 
 
 
 
  

Compound Col-0 ± SE tir1-1 ± SE afb5-5 ± SE Sensitivity

IAA 0.04 -0.01 0.06 -0.01 0.03 -0.01 -
4-Cl-IAA 0.04 -0.004 - - - - -
5-Cl-IAA 0.19 -0.01 - - - - -
6-Cl-IAA 0.02 -0.002 - - - - -
Picloram 4.79 -0.87 8.4 -0.84 43.66 -6.37 AFB5

iMT 46.21 -2.87 90.61 -6.99 45.59 -4.9 TIR1
4 Cl iMT 19.05 -1.96 36.91 -3.92 19.12 -3.39 TIR1
5 Cl iMT 59.47 -6.85 55.04 -4.29 - - -
6 Cl iMT 32.48 -1.25 34.82 -2.17 28.09 -1.71 TIR1

A. thaliana lines  (IC50 values in µM)
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Figure 1.  Auxin analogues 
Chemical structures: of IAA (1) and iMT (5) with their respective mono-chlorinated 
analogues, and the synthetic auxin picloram (9).   
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Figure 2. Modelling iMT as a ligand for TIR1. 
A: The crystal structure of IAA (gold) bound in the TIR1 receptor, with key residues shown 
with coloured heteroatoms.  Interatomic distances are shown as dashed black lines. B: As A, 
but with the tetrazole analogue modelled in the binding site using Chimera. C: IAA (magenta) 
and iMT (grey), each docked (AutoDock Vina) in the deep binding pocket of TIR1 (gold, 
ribbon).  The docked poses are consistent with the modelling in B. The indole ring of iMT 
adopts the same plane as that for IAA (which is the same as that seen in the crystal structure), 
with the tetrazole group projecting past the carboxylic acid group of IAA. D: shows the 
atomic distances between the tetrazole group nitrogens and neighbouring arginine residues. 
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Figure 3. iMT binds to TIR1, but not to AFB5. 
SPR binding curves for compounds screened at 50µM against TIR1 (Panel A)  and AFB5 
(Panel B). In each case IAA (red trace) is used for reference. With TIR1 we observe a 
saturating binding response with a rapid off rate for all iMT analogues. None of the iMT 
analogues were  active against AFB5. C: A pull-down assay for FLAG-TIR1 in the presence 
of increasing concentrations of IAA (left) and iMT (right).  A western blot developed with 
anti-FLAG antibody detects FLAG-TIR1 (arrow) bound to streptavidin-coated beads loaded 
with biotinylated degron peptide. As with SPR, there is a strong response with IAA, and the 
iMT response is dose-dependent, but weaker. 
 
 
  



 
 
Figure 4. iMT analogues are active auxins in vivo. 
A: The DR5::GUS reporter line indicates auxin activity of iMT and its monochlorinated 
analogues. Treatments were for 16 h at 1µM for IAA, 50 µM for iMT and its analogues.  No 
activity was seen with 5-Cl-iMT. B: Signals from DR5::GFP after 2 and 24 hours of 
treatment. Activity is seen after 2 hours with IAA, iMT and 4- and 6-Cl-iMT show activity 
within 24 hours, with 4-Cl-iMT giving a comparatively strong response. *For the image of 
IAA treatment after 24 hours the gain was lowered to avoid a saturated signal. C: Arabidopsis 
protoplasts were transformed with auxin-sensitive reporter constructs pGH3.3::LUC (above) 
or pIAA5::LUC (below) before treatment with IAA (left) or 4-Cl-iMT (right), each over 
responsive dose ranges and each with a mock treatment (blue). Luciferase activity was 
recorded each minute for 6 hours. Error bars represent standard deviations of technical 
replicates and the plots are a representative set from three biological repeats. D: Quantitative 
PCR data for three auxin-responsive reporter genes, IAA5, GH3.3 and GH3.1.  RNA samples 
were prepared from treated leaf tissues collected 3 hours after treatment with mock, 4-Cl-iMT 
or IAA (10 and 1 µM respectively) from Col-0, tir1-1 and afb5-5 lines. Error bars represent 
the standard error of the mean of biological repeats (n = 4). 
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Figure 5: The tir1-1 mutant is insensitive to iMT and 4-Cl-iMT  

A: Normalised Lateral root densities plotted as heat maps to display the effects of compound 
and compound concentration for wild type, tir1-1 and afb5-5 knockout lines. Lateral root 
density is reduced in the tir1-1 mutant challenged with iMT, 4-Cl-iMT and 6-Cl-iMT, but not 
in afb5-5 nor Col-0. Cross-hatching (XX) indicates that this was not tested.  B: From the same 
data as A but focussing on lateral root densities for lines treated with 4-Cl-iMT. Error bars 
indicate +/- the standard error of the means.  A two-way ANOVA was used to compare 
densities at each concentration for each mutant line versus Col-0; ** P≤0.01 and **** is for  
P≤0.0001 using 10 replicates per concentration per seed line. The loss of density at higher 
concentrations is seen only with tir1-1 and not in the afb5-5 line. 
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Figure 6. A model for iMT selectivity based on space constraints in AFB5. 
A: The binding pocket residues of TIR1 are alligned against those of AFB5, using the residue 
numbers for TIR1 (Clustal 2.1). Key differences are highlighted in yellow and include His78, 
which is Arg in AFB5, and S438 Ala in AFB5. B – G: Views of the homology model for 
AFB5 (Calderon-Villalobos et al., 2012) showing IAA (B and C) or iMT (D and E), or both F 
and G) docked using AutoDock Vina.   The views in each left hand panel are similar to those 
for TIR1 in Figure 1, and on the right views are revolved to show the pose of the side group 
out of the plane of the aromatic ring system. Note that iMT does not adopt the same pose as 
IAA in AFB5 because the space occupied by the tetrazole in TIR1 (Figure 1) is partially 
occupied by Arg123 in AFB5, forcing the tetrazole up and away from the base of the pocket, 
resulting in the indole twisting from alignment with the base of the pocket. 
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Supporting Information Scheme 1 

Synthesis of iMT, 3-((1H-tetrazol-5-yl)methyl)-1H-indole 
 

 

 
Scheme 1. Reagents and conditions: (a) NaN3, AlCl3.THF, THF, 71oC, 18h.  
 
Based on methodology from (McManus & Herbst, 1959; Dolusić et al., 2011), to a stirred 
solution of 2.6mL 0.5M AlCl3.THF in a 2-neck round bottom flask at 0°C in an ice bath was 
added NaN3 180mg (3.5 mmol), left for 2 hours and kept under an inert N2 atmosphere. 
Indole-3-acetonitrile powder 190 mg (1.25 mmol) was dissolved in 5 mL THF and added via 
the side neck, and the residual powder in the neck was washed down with THF 2 mL. The 
mixture was taken off ice and placed onto a stirrer hotplate and allowed to reflux for 18 hours 
with a water condenser column attached. Teflon tape was used to seal the glassware 
connections. After 18 hours, the mixture was left to cool where we observed an off-white 
creamy precipitate. The aluminate precipitate was dissolved into 20 mL of 1M citric acid, 
washed with 3 x 25mL of ethyl acetate (EtOAc), then 1 x 25 mL water, followed by 1 x 25 
mL brine and 1 x 25 mL water. The extract was then dried over MgSO4. The excess solvent 
was evaporated off in a rotary evaporator, producing residual pale yellow oil. The crude 
material was dissolved in 5 mL EtOAc and purified by flash chromatography on standard 
60Å (Sigma Aldrich) silica gel with an EtOAc:MeOH (95:5) gradient set up. Fractions 
containing the product were pooled, concentrated with a rotary evaporator and left to dry in a 
vacuum oven for 24 hours giving an off white powder (60 mg, 24%)  
 
 
 
1H NMR (300MHz ,DMSO-d6) δ = 15.92 (s, 1 H), 11.00 (s, 1 H), 7.41 (d, J = 8.1 Hz, 1 H), 
7.36 (d, J = 8.0 Hz, 1 H), 7.25 (s, 1 H), 7.08 (t, J = 8.1 Hz, 1 H), 6.97 (t, J = 7.49 Hz, 1 H), 
4.36 (s, 2 H) 13C NMR (75 MHz, DMSO-d6) δ = ppm 161.3, 135.7, 125.9, 123.3, 120.7, 
118.1, 117.5, 111.0, 107.7, 18.9 HRMS (m/z): [M]+ calcd. For C10H10N5, 200.0931; found, 
200.0932 
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Supporing Information Scheme 2 

The synthesis of monochloroniated indole-3-methyltetrazole analogues 
 

 
 

 
Scheme 2. Reagents and conditions: (a) NH4Cl, NaN3, DMF, 120˚C, 30h  
 
4-Chloroindole-3-acetonitrile, 5-Chloroindole-3-acetonitrile and 6-Chloroindole-3-
acetonitrile were synthesized according to the published procedure in (Katayama, 2000; Luo 
et al., 2014) 
 
(6) (4-Cl-iMT)  3-((1H-tetrazol-5-yl)methyl)-4-chloro-1H-indole 
 

 
 
To the solution of 4-chloroindole-3-acetonitrile (120 mg, 0.63 mmol) in dimethylformamide 
(3mL) was added ammonium chloride (133 mg, 2.50 mmol) and sodium azide (100 mg, 
1.56mmol). The reaction mixture was then stirred for 30 h at 120˚C. The resulting solution 
was cooled and added to water (30 mL), and extracted with ethyl acetate [EtOAc] (20 mL × 
2). The organic layer was washed with saturated NH4Cl solution and brine, and then dried 
over Na2SO4. The residue was purified by a silica gel column chromatography 
(Chloroform:acetone=4:1) to give 3-((1H-tetrazol-5-yl)methyl)-4-chloro-1H-indole (1) as 
white powder (62 mg, 42% yield): 3-((1H-tetrazol-5-yl)methyl)-4-chloro-1H-indole (4-Cl-
iMT) 
 
1H NMR (500 MHz, DMSO-d6) δ = 11.40 (s, 1H), 7.37 (d, J = 8.9 Hz, 1H), 7.35 (s, 1H), 7.06 
(t, J = 7.7 Hz, 1H), 6.97 (d, J = 7.5 Hz, 1H), 4.55 (s, 2H), 13C NMR (126 MHz, DMSO-d6) δ 
= 156.3, 138.0, 126.6, 124.3, 123.2, 122.1, 119.4, 111.0, 107.7, 20.9; HRMS (m/z): [M-H]- 
calcd. For C10H7ClN5, 232.0395; found, 232.0393.  FAB-MS (m/z): [M+H]+ 234. 
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(7) (5-Cl-iMT) 3-((1H-tetrazol-5-yl)methyl)-5-chloro-1H-indole  
 

 
 
To the solution of 5-chloroindole-3-acetonitrile (250 mg, 1.32 mmol) in dimethylformamide 
(5mL) was added ammonium chloride (280 mg, 5.31 mmol) and sodium azide (212mg, 3.23 
mmol). The reaction mixture was then stirred for 25 h at 120˚C. The resulting solution was 
cooled and added to water (40 mL), and extracted with ethyl acetate [EtOAc] (30 mL × 2). 
The organic layer was washed with saturated NH4Cl solution and brine, and then dried over 
Na2SO4. The residue was purified by a silica gel column chromatography 
(Chloroform:acetone=4:1) to give 3-((1H-tetrazol-5-yl)methyl)-5-chloro-1H-indole (2) as 
white powder (116 mg, 38% yield):  
 
1H NMR (400 MHz, acetone-d6) δ = 10.43 (s, 1H), 7.55 (d, J = 2.3 Hz, 1H), 7.43(d, J = 6.4 
Hz 1H), 7.42 (s,1H), 7.10 (dd, J = 6.4 and 2.3 Hz, 1H), 4.48 (s, 2H); 13C NMR (100 MHz, 
acetone-d6) δ = 155.9, 135.3, 128.2, 125.8, 124.5, 121.8, 117.8, 113.0, 108.8, 19.6; HRMS 
(m/z): [M]- calcd. For C10H7ClN5, 232.0395; found, 232.0396. 
FAB-MS (m/z): [M+H]+ 234. 
 
(8) (6-Cl-iMT) 3-((1H-tetrazol-5-yl)methyl)-6-chloro-1H-indole 
 

 
 

To the solution of 6-chloroindole-3-acetonitrile (75 mg, 0.39 mmol) in dimethylformamide 
(3mL) was added ammonium chloride (85 mg, 1.59 mmol) and sodium azide (64mg, 
0.98mmol). The reaction mixture was then stirred for 28 h at 120˚C. The resulting solution 
was cooled and added to water (30 mL), and extracted with ethyl acetate [EtOAc] (20 mL × 
2). The organic layer was washed with saturated NH4Cl solution and brine, and then dried 
over Na2SO4. The residue was purified by a silica gel column chromatography 
(Chloroform:acetone=4:1) to give 3-((1H-tetrazol-5-yl)methyl)-6-chloro-1H-indole as white 
powder (38 mg, 41% yield):  
 
1H NMR (500 MHz, DMSO-d6) δ = 11.15 (s., 1H), 7.43 (d, J = 8.5 Hz, 1H), 7.41 (s., 1H), 
7.30 (s, 1H), 7.00 (d, J = 8.50 Hz, 1H), 4.36 (s, 2H); 13C NMR (126 MHz, DMSO-d6) δ = 
155.9, 136.9, 126.4, 125.7, 125.4, 119.9, 119.3, 111.5, 109.1, 19.7; HRMS (m/z): [M]- calcd. 
For C10H7ClN5, 232.0395; found, 232.0396. FAB-MS (m/z): [M+H]+ 234. 
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Supporting Information Table 1: 
 

 
 
Table 1: Physiochemical properties of IAA and iMT analogues 

 
 
 
 
 
 
 
 
 
 
 
 
  

ID IAA iMT 4-Cl-IAA 5-Cl-IAA 6-Cl-IAA 4-Cl-iMT 5-Cl-iMT 6-Cl-iMT
Total Molweight 175.186 199.216 209.632 209.632 209.632 233.662 233.662 233.662

pKa 4.66 4.84 4.11 4.11 4.11 4.84 4.84 4.84
cLogP 1.1822 1.0278 1.7882 1.7882 1.7882 1.6338 1.6338 1.6338

H-Acceptors (pH 7.4) 2 4 2 2 2 4 4 4
H-Donors (pH 7.4) 1 1 1 1 1 1 1 1
Total Surface Area 135.29 156.8 150.71 150.71 150.71 172.22 172.22 172.22
Polar Surface Area 53.09 70.25 53.09 53.09 53.09 70.25 70.25 70.25
Rotatable Bonds 2 2 2 2 2 2 2 2
Aromatic Rings 2 3 2 2 2 3 3 3

Charge at pH 7.4 -1 -1 -1 -1 -1 -1 -1 -1



Supporting Information Figure 1 
 

 
Figure 1: Additional tetrazoles tested for auxin-like activity against TIR1 and AFB5. 
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Supporting Information Figure 2 
 
 

 
 

Figure 2: Imaging of auxin responses using genetic reporter DII::VENUS. The GFP signal 
seen with the mock treatment is lost in the presence of IAA (1µM) and iMT analogues at 50µM, 
except for 5-Cl-iMT.  
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Supporting Information Figure 3 
 
 
 

A.                                                          B: 

 
 
Figure 3: Protoplast activity assays.  A: Replicate wells of protoplasts were exposed to 
serial dilutions of IAA (left) or 4-Cl-iMT (right).  B: Luciferase readings plotted against dose 
indicate the differences in potency and time to response between the two compounds. 
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Supporting Information Figure 4 

Root growth inhibition curves 

 
Figure 4: Primary root growth inhibition dose response curves for compounds tested 
against tir1-1 and afb5-5 lines. 
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Supporting Information Figure 5 
 

 
 
Supplementary Figure 5. A boxplot showing that UBC expression is stable across 
treatments and replicates. Cycle threshold (CT) values are given from four biological 
replicates after Mock (1% DMSO), 1 µM IAA or 10 µM 4-Cl-MT treatments.  For GH3.1, 
GH3.3 and IAA5 genes the CT value declines (expression is increased) after IAA and 4-Cl-
MT treatments, whereas CT for UBC remains stable with little variation across samples and 
conditions. 
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Within each row, compare columns (simple effects within rows) 
      

Number of families 10     

Number of comparisons per 
family 2     

Alpha 0.05     
      

Sidak's multiple comparisons 
test 

Mean 
Diff. 

95.00% CI of 
diff. 

Significant
? 

Summar
y 

Adjusted P 
Value 

      

300      

WT vs. tir1-1 6.8 5.841 to 7.759 Yes **** <0.0001 

WT vs. afb5-5 -1.2 -2.159 to -
0.2408 Yes * 0.0105 

      

100      

WT vs. tir1-1 1.5 0.5408 to 2.459 Yes ** 0.001 
WT vs. afb5-5 0.5 -0.4592 to 1.459 No ns 0.4256 

      

33.33333      

WT vs. tir1-1 2.2 1.241 to 3.159 Yes **** <0.0001 
WT vs. afb5-5 -0.6 -1.559 to 0.3592 No ns 0.2955 

      

11.11      

WT vs. tir1-1 1.3 0.3408 to 2.259 Yes ** 0.0051 
WT vs. afb5-5 0.3 -0.6592 to 1.259 No ns 0.7321 

      

3.703704      

WT vs. tir1-1 0.8 -0.1592 to 1.759 No ns 0.1198 
WT vs. afb5-5 -0.1 -1.059 to 0.8592 No ns 0.9657 

      

1.234568      

WT vs. tir1-1 0.7 -0.2592 to 1.659 No ns 0.1935 
WT vs. afb5-5 -0.2 -1.159 to 0.7592 No ns 0.8701 

      

0.4115226      

WT vs. tir1-1 0.5 -0.4592 to 1.459 No ns 0.4256 
WT vs. afb5-5 -0.5 -1.459 to 0.4592 No ns 0.4256 

      

0.1371742      

WT vs. tir1-1 0.2 -0.7592 to 1.159 No ns 0.8701 
WT vs. afb5-5 -0.4 -1.359 to 0.5592 No ns 0.5764 

      



0.04572474      

WT vs. tir1-1 1 0.04075 to 1.959 Yes * 0.0392 
WT vs. afb5-5 0.2 -0.7592 to 1.159 No ns 0.8701 

      

0.01524158      

WT vs. tir1-1 0.8 -0.1592 to 1.759 No ns 0.1198 
WT vs. afb5-5 0.4 -0.5592 to 1.359 No ns 0.5764 

Table 2: Two-way ANOVA test of lateral root densities, comparing tir1-1 and afb5-5 
mutant lines to Col-0 across the dose response range of 4-Cl-iMT treatments. 
  



Supporting information Table 3 
 
Gene ref. Gene   forward/reverse primer sequence: 
Reference genes: 
AT5G25760         UBC F                    AACTGCGACTCAGGGAATCT 
AT5G25760         UBC R                    GCGAGGCGTGTATACATTTG 
 
Test genes: 
AT2G14960         GH3.1 F                 CTCCCATCTTATCTGCCCAT 
AT2G14960         GH3.1 R                GGTCGGCATAAGTTTCCTCT 
  
AT2G23170         GH3.3 F                 GGAGATTCAACGTATTGCCA 
AT2G23170         GH3.3 R                GGTTGGCATCAACTTCCTTT 
  
AT1G15580         IAA5 F                   CGTTGAAGGAAAGTGAATGTG 
AT1G15580         IAA5 R                   ATCCAAGGAACATTTCCCAA 
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