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Abstract 

With the advent of the big data era, dynamic and real-time data have increased in both 

volume and variety. It is difficult to make accurate predictions regarding data as they 

undergo rapid and dynamic changes. Autonomous cloud computing aims to reduce 

the time required for traditional machine learning. The stacked auto-encoder is a 

neural network approach in machine learning for feature extraction. It attempts to 

model high-level abstractions and to reduce data dimensions by using multiple 

processing layers. However, some common issues may occur during the 

implementation of deep learning or neural network models, such as over-complicated 

dimensions of the input data and difficulty in processing dynamic data. Therefore, 

combining the concept of dynamic data-driven system with a stacked auto-encoder 

neural network will help obtain the dynamic data correlation or relationship between 

the prediction results and actual data in a dynamic environment. This study applies the 

concept of a dynamic data-driven system to obtain the correlations between the 

prediction goals and number of different combination results. Association analysis, 

sequence analysis, and stacked auto-encoder neural network are employed to design a 

dynamic data-driven system based on deep learning. 

Keywords: stacked auto-encoder neural network, association analysis, sequence 

analysis, dynamic data-driven application systems. 
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1. Introduction

With the advent of the big data era, dynamic and real-time data have increased in both 

volume and variety, rendering the processing of data challenging. During the past few 

years, cloud computing has emerged as a way of distributing computation loading 

through the Internet. However, it suffers from latency time caused by the server 

assigned. Autonomous cloud computing reduces the time required for machine 

learning [1]. If a data analysis framework can reduce computation loading without 

losing its accuracy, it may achieve even better performance in the autonomous cloud 

computing architecture. 

Dynamic data-driven application system (DDDAS) has often been used for model 

identification and data prediction, such as concept drift detection and weather 

forecasting [2]. After the initial training is complete, the predictive values of a 

dynamic data-driven system and the real-time dynamic data can be repeatedly used to 

identify the strength of association between them. The prediction accuracy is also 

enhanced via this process. Explorations of the association between historical data and 

the attribute to be predicted will assist in selecting a relatively suitable input data 

format based on the data characteristics. A suitable framework helps train the model 

and reduces resource consumption. In addition, determining the dynamic data 

association between the system prediction value and historical data during system 

operation facilitates self-regulation and learning of the dynamic data driven system, 

and benefits the prediction accuracy. Over the past few years, deep learning has 

become one of the major approaches for feature extraction in machine learning. It 

attempts to model high-level abstractions and reduce data dimensions by using 

multiple processing layers. It is possible to use different data to simplify large data 

dimensions, and identify the potential feature of data. In recent years, deep learning 

neural networks have exhibited outstanding performance in feature extraction, and 

have often been used to solve image identification [3], [4], speech recognition [5], and 

time series problems [6]. However, some common issues may occur during the 

implementation of deep learning, such as the inefficiency of analyzing data with 

complicated dimensions and difficulty of execution in a dynamic environment. 

Therefore, combining a dynamic data-driven system with deep learning methods in a 

single model and making it continuously self-adjust and learn by itself will enable the 

subsequent dynamic analysis and prediction process to become more efficient and 

accurate. Deep learning methods have been applied to solve weather forecast 

problems in recent years, e.g., deep neural networks for time series prediction with 

applications in ultra-short-term wind forecasting [7]. In addition, studies have applied 

deep learning to extract features from weather data for weather forecast, such as 



3 
 

temperature prediction [6], [8]. This study considers weather data prediction (e.g., 

rainfall) as an example.  

This study applies the concept of a dynamic data-driven system to obtain the 

correlation between the prediction targets and number of different combination results. 

Association analysis, sequence analysis, and stacked auto-encoder neural network are 

also applied to design a dynamic data-driven fine-tuning approach. Our improved 

prediction model is accurate and demonstrates good efficiency in a dynamic 

environment. 

 

2. Related Works 

2.1 Association analysis 

Association rule [9] analysis is an important method of data mining, and it is used to 

determine valuable data association relationships from a large volume of data. 

Association rules are commonly applied in solving problems such as shopping basket 

analysis: if a customer buys product A, what is his/her probability of buying product 

B? Similar to many other data mining methods, the association rule analysis extracts 

information that is not pre-defined, and makes such information sufficiently concise 

to be understood. In this method, the order of items in an item set is not important, but 

the combination of items is. In the case of sequence analysis, the order of items and 

the time interval are considered. In sequence analysis, two thresholds are often used: 

minimum support and minimum confidence. The minimum support defines the 

minimum number of data that a rule must cover, and the minimum confidence defines 

the prediction strength of the association rules. These two thresholds control the 

availability and certainty of the association rules, respectively. With these two 

thresholds, a more sophisticated data format for different machine learning methods 

can be compiled as input. As the association rule method evolved [10], Apriori 

algorithm was proposed in 1994 by Agrawal and Srikant of IBM Almaden Research 

Center, showing that all frequent item sets in the database satisfy minimum support. 

An item group containing k items is called k-item set, and the algorithm repeatedly 

searches from 1 to k until all eligible items are found. These frequent sets are called 

candidate sets. Subsequently, these candidate sets are screened to verify if they satisfy 

the threshold to form an association rule. For example, XY is a 2-item set, whereas X 

and Y are 1-item sets. If X -> Y satisfies the minimum confidence, an association rule 

is established. To increase the association rules, the minimum support value can be 

reduced; however, the resulting rules may lose their significance. Considering the 

relevance, it is necessary to form association rules with discretion. Birn et al. 
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proposed the lift correlation coefficient in 1997 to evaluate the effectiveness of the 

rules. 

2.2 Deep learning 

Deep learning is an emerging subfield of machine learning. In machine learning, deep 

learning is a multi-hierarchical approach to process data in data retrieval, image, and 

speech recognition domains. It extracts meaningful image features in different layers, 

and modifies the image content into abstract semantic concepts [11]. Its aim is to 

abstract the data through multiple non-linear transformations. Deep learning is a type 

of artificial neural network learning method that simplifies data dimensions and 

discovers potential features. However, it is challenging to train a neural network with 

deep architecture effectively while preserving the relevance between the parameters 

across the layers. In previous studies, it was indicated that setting more layers to a 

shallow neural network does not improve the performance of model training. In 2006, 

Hinton’s revolutionary work spearheaded the advance of deep belief networks. 

Moreover, Hinton [12], Bengio [13], and Ranzato [14] have published papers to 

popularize deep learning by solving the problem of training deep neural networks. 

The training process is generally divided into two stages: (1) unsupervised learning of 

representations is used to train each layer, and the representation learned at each level 

is the input of the next layer; (2) using supervised training to fine-tune all the layers to 

minimize prediction error. This greedy layer-wise unsupervised pre-training method 

has been applied in many fields. It is commonly used for unsupervised stacking 

models such as restricted Boltzmann machines (RBM), convolutional neural network 

(CNN), and auto-encoder. The greedy unsupervised layer-wise training strategy helps 

to optimize deep networks and obtain better generalization for networks, because this 

strategy initializes upper layers with better representations of relevant high-level 

abstractions. In this study, the greedy layer-wise strategy is applied with a stacked 

auto-encoder. Moreover, in the field of deep learning, although CNN has successfully 

been applied to the analysis of visual imagery, its task is to find a set of locally 

connected neurons with convolutional kernels. 

Instead of using a CNN, auto-encoder, a type of artificial neural network, has been 

used for learning efficient encodings and minimizing error or reconstruction. It is 

suitable for real numbers to determine the most efficient compact representation in 

linear problems. Its typical application is to reduce data dimensions [15]. It extracts 

data features via an encoding process, and restores data by decoding these features. 

The setting of the hidden layer is crucial to the learning performance of the 

auto-encoder [16]. Auto-encoder exhibits good performances in solving both 

numerical and categorical problems, and it can also be combined with other neural 
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network theories [17]. There are other extensions of auto-encoders, such as denoise 

auto-encoder [4] [18] and sparse auto-encoder [19] [20] [21]. As the auto-encoder 

outperforms RBM-based deep neural networks in literature [4] [17], it has been 

adopted as the base network structure of our previous study in [22]. 

2.3 Fine-tuning the neural network 

The objective of fine-tuning is to adjust the weights of the trained model from the 

final phase to improve the prediction outcome. This procedure, based on the concept 

of transfer learning [23] [24], includes the process of pre-training neural networks 

with a generative objective followed by additional training procedures with a 

discriminative objective on the same dataset [25] [26], but some other studies follow 

the process of re-using weight values from large datasets as initialization in 

applications with limited access to labeled data [27] [28]. Many fine-tuning works 

have been conducted to improve the performance of CNN [29] [30] and auto-encoders 

[4] [31]. 

 

3. Dynamic Fine-Tuning Stacked Auto-encoder Neural Network 

In this section, a dynamic fine-tuning stacked auto-encoder neural network is 

demonstrated. First, the problems related to dynamic data environment are addressed. 

Second, the model of feature extraction and stacked auto-encoder neural-network in 

DDDAS is introduced. Third, the proposed system is introduced in detail. Finally, the 

investigation and evaluation of the proposed system are presented. 

3.1 System background 

Fast-growing and rapidly changing data are difficult to analyze using traditional 

prediction models, especially in dynamic, real-time, or multi-dimensional time series 

conditions. This study proposes a dynamic fine-tuning stacked auto-encoder neural 

network framework. The fine-tuning deep learning architecture used in the system is 

based on the past studies of auto-encoder [32] and stacked auto-encoder using a 

greedy layer-wise pre-training method [13]. This system explores the correlation 

between historical data in advance. In other words, it extracts the most significant 

influential factors from historical data over a period, and uses these factors to 

represent the features of input data in order to help the training and dynamic 

fine-tuning process of the prediction model. The dynamic fine-tuning process follows 

the most common method used in the neural network field i.e., backpropagation 

method. Error gradients can be propagated from the output layer to input layer 

sequentially. Using the above methods, the correlation between data is enhanced, and 



6 
 

the prediction accuracy of the deep learning model is improved. In the experiment, 

various possible combinations of data dimensions and cases will be employed in order 

to determine the most suitable deep learning method in a dynamic data environment. 

 

3.2 Proposed architecture and system 

As shown in Fig. 1, the proposed operation of DDDAS can be divided into two phases. 

The first phase is the training of the deep learning model. The model training process 

comprises two steps: feature extraction and deep learning based on neural network. 

The former extracts feature via association analysis, and the latter trains the deep 

learning prediction model using the extracted features. The second phase is dynamic 

fine-tuning and data prediction. The prediction model continues to fine-tune itself 

dynamically with the newest data, and data prediction is also included in this phase.  

 

 
Fig. 1 Mechanism of the proposed model 
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3.3 System details 

As mentioned above, there are two phases in the proposed system, and all the 

notations are listed in Table 1. 

 

Table 1. Symbol definitions 

Symbol Definition 

bi,t The value of the ith attribute at time t 

vi The change amount per unit time of the ith attribute 

v̅i The average change amount per unit time of the ith attribute 

n The total number of data in the training dataset 

t Time 

ci 

The binary up-down value of the ith attribute after associativity 

transform 

hi 
The number of nodes in the ith layer of the deep learning network, 

where i = 1 denotes the bottom layer. 

 

3.3.1 Feature extraction using association analysis 

Input data can be transformed into a structure similar to transaction records after they 

undergo the following data association transformation, and thereafter, this format can 

be used for all historical data. After the minimum support and minimum confidence 

thresholds are defined, many association rules can be determined using Apriori 

algorithm, and these rules are considered the most influential factor for prediction. In 

the process, data correlation of historical data will be identified via association 

analysis and sequence analysis. Therefore, it is necessary to transform the data into an 

executable format before calculating the association rules. In this case, numeric data 

will be transformed into a format of increasing or decreasing status via the data 

changing situation of different attributes between every two consecutive time points. 

Using the association rules and sequence analysis, the rising or falling correlation of 

different attributes for different time intervals can be determined. The process of data 

transformation is as follows. First, the value of v̅i , which represents the average 

change amount per unit time of each attribute i, can be calculated using Equation (1). 

The value of v̅i is thereafter compared with the value of v̅i in Equation (2), in order to 

obtain four associativity conditions—substantially increasing, slightly increasing, 

substantially decreasing, and slightly decreasing.  
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�̅�𝑖 =  
1

𝑛
 ∑ |𝑏𝑖,𝑡 − 𝑏𝑖,𝑡−1|𝑛

𝑡=2           (1) 

𝑖𝑓 𝑣𝑖 > 0 𝑎𝑛𝑑 |𝑣𝑖| ≥ �̅�𝑖  𝑡ℎ𝑒𝑛 𝑐𝑖 𝑖𝑠 𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑙𝑙𝑦 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔. 

𝑖𝑓 𝑣𝑖 > 0 𝑎𝑛𝑑 |𝑣𝑖| < �̅�𝑖  𝑡ℎ𝑒𝑛 𝑐𝑖 𝑖𝑠 𝑠𝑙𝑖𝑔ℎ𝑡𝑦 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔. 

𝑖𝑓 𝑣𝑖 < 0 𝑎𝑛𝑑 |𝑣𝑖| ≥ �̅�𝑖  𝑡ℎ𝑒𝑛 𝑐𝑖 𝑖𝑠 𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑙𝑙𝑦 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔. 

𝑖𝑓 𝑣𝑖 < 0 𝑎𝑛𝑑 |𝑣𝑖| < �̅�𝑖  𝑡ℎ𝑒𝑛 𝑐𝑖 𝑖𝑠 𝑠𝑙𝑖𝑔ℎ𝑡𝑦 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔. 

where 𝑣𝑖 = 𝑏𝑖,𝑡 − 𝑏𝑖,𝑡−1                     (2) 

 

 

Fig. 2. Process of associativity transform 

Fig. 2 shows the process of the associativity transform. The values of input data 

change on a temporal basis, and such a relation can be transformed to a structure 

similar to a transaction record in shopping basket analysis. For example, if “the 

tendency of bi at t = 1 to 2 ” in Fig. 2 is regarded as a record, the item ‘ci substantially 

increasing with the value 0 can be treated as the purchase of no commodities in the 

transaction. If the value of slightly decreasing item ‘ci is 1, it denotes a purchase in 

this transaction. By applying the Apriori algorithm of association rules, we explore 

the relations among the tendencies of data attributes. Sequence analysis is applied 

when the factor of time is considered to determine the relations among the tendencies 

of data attributes at different times. For example, if event C usually occurs after two 

appearances of event A, this pattern appears two times in a certain period, marked 

with yellow and green highlights, as illustrated in Fig. 3.  
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Fig. 3. Multi-dimensional data association rules and sequence analysis 

 

The Apriori algorithm has two stages. In the first stage, it discovers all item sets 

that exceed the minimum support value; the second stage summarizes the association 

rules from large items sets. As the first part consumes the majority of computation 

loading, we focus on the exploration of large item sets with efficiency. Previous 

improvements include hashing, sampling, database table partitioning, frequent pattern 

(FP)-growth, etc. FP-growth is the most efficient algorithm to compress all 

complicated items into an FP-tree while preserving relational information among 

items [33]. Another advantage of this algorithm is that it scans a database only twice 

at most without generating numerous candidate item sets. 

In the case of weather prediction, all historical data are transformed and analyzed 

using FP-growth. Based on the data of previous years, the prediction model explores 

the relations among the tendencies of data attributes. The threshold values of 

minimum support and minimum confidence are chosen based on the attribute to be 

predicted, and thereafter, different combinations of associated item sets are obtained. 

The input data influencing the observed question can be determined via the following 

experiments. 

3.3.2 Deep learning based on neural network  

(1) Stacked auto-encoder pre-training 

The association rules obtained in the previous phase and the original observation data 

are used as the input for deep neural network pre-training. A stacked auto-encoder 

neural network is constructed by training the auto-encoders using a supervised 

training technique and stacking them based on the concept of sparse auto-encoder. 

Dimension 2: Time 

Dimension 1: Item 

T1 

A,E 

T3 

B,C 

T2 

A 

T4 

C 
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The number of nodes in each hidden layer decreases with the increase in the number 

of layers. For example, if the structure consists of three hidden layers, the number of 

nodes would conform to the order h3 > h2 > h1. The structure ensures the dimension 

reduction of the original data by the abstracted layers. In this study, there are two time 

slots—one is set for every 6 h and another is set for every 12 h—where the 

hourly-observed data used for input are considered for the period of the last three and 

a half years. It would be ideal if the proposed layer-wise training can reduce the data 

dimensions by more than half that of the original before being inputted into the 

supervised regression model. 

(2) Top layer’s feed-forward neural network pre-training 

The stacked model constructed in the previous phase considers the original data as 

input and generates new data with comparatively lower dimensions. The new data 

will thereafter be used as input for the top layer’s feed-forward neural network 

pre-training. The data of the next time period will be set as the target value, which 

would be the actual data value for the designated time period during the prediction. 

The process will generate a trained regression data model, which will thereafter be 

stacked with the previous stacked neural network model to form the deep learning 

neural network structure. This stage provides efficient initialization for the weights in 

the deep learning network, which can be remodeled for data prediction after 

performing the fine tuning technique, which will be introduced in the next phase. 

(3) Deep neural network fine-tuning 

The objective of fine-tuning is to adjust the weights of the trained model from the 

previous phase to improve the prediction outcome by using all the training dataset. 

This procedure utilizes a loss function and gradient descent algorithm from the 

stacked sparse auto-encoder. 

3.3.3 Dynamic fine-tuning & data prediction 

This phase ensures that the data are collected and stored dynamically during each time 

slot. Fine-tuning and prediction are executed during every time slot. The model first 

performs fine-tuning based on all the input data, to generate a trained model that is 

dynamically adjusted. When the newest data are collected, the model produces the 

prediction results in the next time slot. 

3.4 Summary 

In comparison with the traditional deep learning prediction methods, the use of 

association rules assures the trends of data prediction. However, the number of feature 
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selection creates drawbacks in the process of sacrificing some insignificant feature 

attributes. The use of the top layer’s supervised training provides the deep neural 

network a consistent basis for adjustment, which also benefits the later dynamic 

fine-tuning process by utilizing the completely deep network, unlike the traditional 

classifiers such as support vector machine, which can only be adjusted based on the 

result of the stacked auto-encoder. Thus, the method can reduce the training time and 

achieve precise prediction. 

 

4. Simulation and Results Analyses 

In this section, we present the simulation scenarios in order to verify the proposed 

system. The dataset, simulation cases, and evaluation metrics are also illustrated. 

4.1 Data sets and data preprocessing 

The CWB (Central Weather Bureau) in Taiwan has provided a massive volume of 

observation data on CWB Observation Data Inquiry System. Based on this system, 

real weather data could be applied in this experiment. The time range of the data set is 

covering the period from June 1, 2012 to January 31, 2016. The number of records is 

approximately 32,000. Fifteen attributes are included in the historical weather data set, 

e.g., pressure, temperature, precipitation, humidity, etc. Temperature is the prediction 

target in the experiment. Some attributes such as sunshine usually have missing 

values. Some attributes such as wind direction do not have numerical significance. 

Therefore, according to the requirement of our algorithm, we performed 

pre-processing to filter these attributes out from the data set. After the pre-processing, 

only eleven attributes remained in the experiment data set. 

4.2 Simulation design 

In this study, in order to simulate and evaluate the data prediction performance in the 

dynamic data environment, the simulation experiments were designed and developed 

in MATLAB and its toolbox. We developed the algorithm of association rules in the 

earlier stage of dynamic fine-tuning process, and thereafter designed and modified the 

neural network algorithm of stacked auto-encoders. In the experiments, we attempted 

a few combinations of hyper-parameters, such as layer depth, number of neurons, and 

learning rates. After comparing the performances and execution times of different 

combinations, we chose the most stable and efficient one as the deep neural network 

structure. We used a four-layer deep neural network model, consisting of an input 

layer, auto-encoder layer, and feed-forward neural network top layer, to predict the 

temperature at the next time point. Fig. 4 shows the structure of the deep neural 
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network. In the model training process, we used the last 12 hourly weather data tuples 

to forecast the temperature in the next hour. Each tuple in the raw data set has 11 

attributes every hour, and hence, the total number of attributes is 132. After the 

association analysis, we used the extracted features to make predictions. 

 

Fig. 4. Structure of the deep neural network 

 

4.3 Evaluation metrics 

In order to evaluate whether the proposed system predicts the temperature accurately 

and efficiently, we define three metrics: (1) initial training time & average dynamic 

fine-tuning time, given by the amount of time taken when using different number of 

attributes; (2) normalized mean squared error (NMSE), which measures the deviation 

between the actual values and predicted values, as shown in Equation (3); (3) 

directional symmetry (DS), which is the correctness percentage of the predicted 

direction, as shown in Equation (4). 

NMSE =  
1

𝑛
 ×

∑ (𝑥𝑖 −�̂�𝑖 )2𝑛
𝑖=1

�̅� �̅̂�
         (3) 

𝐷𝑆 =  
1

𝑛
 ×  ∑ 𝑑𝑖

𝑛
𝑖=1         (4) 

Where  𝑑𝑖 = {
1, (𝑥𝑖 − 𝑥𝑖−1)(�̂�𝑖 − �̂�𝑖−1) ≥ 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

4.4 Case definition 

The experiment consists of 12 different test cases with the combination of three 

control variables: the number of association rules, size of the testing dataset, and the 

usage (versus non-usage) of the dynamic fine-tuning process. The result will be used 

to verify the proposed method. Table 2 presents the details for each test case. 
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4.4.1 Number of association rules 

The association rules are applied to determine the relation between the weather 

conditions for the past 12 days and the prediction result. The thresholds are set at 

lower values in order to obtain more comprehensive association rules (Thresholds: 

minimum support = 0.05, minimum confidence = 0.2). The objective here is to first 

rank the association rule by minimum support, and thereafter compare the prediction 

result by the different percentages of the ranked association rules used, such as the top 

25%, top 50%, and 100%. The analysis provides information on the influence of the 

volume of association rules on the prediction result. 

4.4.2 Size of testing datasets 

The test cases also differ by the size of datasets—some used the datasets from one 

week, whereas others used the dataset from one month. The purpose of employing 

this variation is to observe the difference between the results of short-term and 

long-term predictions.  

4.4.3 Usage of dynamic fine-tuning 

Dynamic fine-tuning is used as a control variable to understand whether it can improve the 

efficiency of the prediction model. In consideration of computational complexity of our 

model, it varies from the framework settings and parameters of neural networks which cause 

differences and difficulties in performance evaluation. Thus we analyze model performances 

based on the same model setting and framework to observe the performance difference 

between whether dynamic fine-tuning process is adopted or not, namely the computational 

complexity of model is fixed in the following comparison. The result is analyzed in terms of 

accuracy and computing time. 

Table 2. Case definitions 

No. 
Number of  

Association Rules (%) 

Size of Testing 

datasets 

Usage of Dynamic 

Fine-Tuning 

1 25% 1 week No 

2 50% 1 week No 

3 100% 1 week No 

4 25% 1 month No 

5 50% 1 month No 

6 100% 1 month No 

7 25% 1 week Yes 

8 50% 1 week Yes 
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9 100% 1 week Yes 

10 25% 1 month Yes 

11 50% 1 month Yes 

12 100% 1 month Yes 

 

4.5 Simulation results 

 

Fig. 5. NMSE comparison chart 

 

Fig. 6. DS comparison chart 

 

Fig. 5 presents the NMSE comparison chart in this experiment. In the case of 

one-week prediction, the error rate decreases when the feature number increases. Two 

red lines overlapped with each other, indicating that the adoption of dynamic 

fine-tuning did not affect their NMSE performances. However, in the case of 

one-month prediction, the error rate increases when the full feature set is used, and the 
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best performance is achieved when the top 50% associated features are used. This is 

because when considering excessive number of features in the training process, minor 

noises are included, thus causing overfitting. This phenomenon does not appear in the 

one-week predictions as 168 testing tuples are not sufficient for it to occur. Dynamic 

fine-tuning seems inessential in the case of one-week prediction as the model does not 

have adequate time for the learning behavior to take effect and would only result in a 

waste of computing resources. In the one-month prediction, the dynamic fine-tuning 

effectively reduces the error rate and improves the overall accuracy. The best NMSE 

for all the cases reaches the rate 7.5e-4, and the dynamic fine-tuning reduces the error 

rate by 3%. 

Fig. 6 presents the DS comparison chart for all the cases. It appears that the one-week 

prediction outperforms the one-month prediction. This is because continuous training 

renders the model more applicable to different kinds of data; therefore, the overall 

performance for the one-month prediction is more stable. In the one-week scenario, 

two lines are overlapped, and the learning direction is better and achieves the best 

accuracy rate of 79.8%, owing to its inexperience of too much data. Moreover, the use 

of the top 50% associated features does not result in a better performance, because the 

transformation is subjected to the change amount of values rather than the ranking of 

the values in the process of association rule transformation. Thus, it can be concluded 

that different association rule transformations have different effects on the prediction 

accuracy and direction. This is because the time is not sufficient for the model’s 

learning and adjusting behaviors to take effect, rendering the use of fine-tuning 

inefficient. In the one-month prediction, the use of fine-tuning effectively enhances 

the directional prediction. The dynamically fine-tuned model increases the DS 

accuracy by 0.5% in comparison with the model without such process. Table 3 shows 

the performances of all the cases in terms of accuracy and execution time. 

 

Table 3. Accuracy and execution time of cases 

No. 
Initial Training 

time (sec) 

Average Dynamic 

Fine-tuning time 

(sec) 

NMSE DS 

1 112.5471 0 0.00141162 0.779762 

2 198.5657 0 0.00107861 0.767857 

3 309.4416 0 0.00081201 0.797619 

4 192.7309 0 0.00142664 0.711111 

5 214.5558 0 0.0007538 0.708333 
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6 380.6261 0 0.00086337 0.731944 

7 112.5471 5.84644997 0.00141162 0.779762 

8 198.5657 21.6370609 0.00107861 0.767857 

9 309.4416 83.1199062 0.00081201 0.797619 

10 192.7309 5.94193332 0.00125021 0.719444 

11 214.5558 23.6020907 0.00075219 0.7112 

12 380.6261 85.388829 0.00085914 0.7341 

Avg. 234.7445 18.7946892 0.00104249 0.750551 

 

5. Conclusions and Future Works 

In the DDDAS, the association rule analysis is used to explore the data characteristics 

and it transforms the input data values. Furthermore, the DDDAS concept is 

introduced to the proposed deep learning method, which helps the identification of the 

relation between the system’s prediction values and true observation values. This 

combination assists the continuous self-learning and self-adjusting of DDDAS and 

leads to a more accurate and efficient dynamic prediction process. The proposed 

method aims to solve the problem of weather forecasting. The experiment results 

show that the method reduces the average error rate by 87% and improves the 

maximum DS by 0.8%. Furthermore, the method requires only 0.5% of fine-tuning 

time. In conclusion, this study proposes a DDDAS based on deep learning. The 

experiment also proves that the system is suitable for dynamic data environment and 

exhibits more efficient and accurate performances. 

In this study, association rules are applied to enhance the speed of computation, while 

maintaining the accuracy simultaneously. Owing to the differences between the data 

association results, the form of data after transformation also varies. The quality and 

quantity of attributes obtained are influenced by the values of support and confidence. 

The form of transformation required for depicting data association is determined by 

the characteristics of the data themselves. Therefore, the association of data should be 

observed after the exploration of the relation between the data and prediction target. 

For example, the definition of association in the experiment depends on the possible 

variation and average variance of the issue to be predicted. Hence, in the process of 

transformation of Phase 1–Step 1 in Fig. 1, original data are converted to the 

associated form by their tendency and value. 

This study considers the issue of weather prediction for example, and adopts an 

auto-encoder as the stack layer of a deep learning network. Including the bottom input 
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layer and the supervised learning layer on the top, there are four layers in the 

proposed network. However, this network setting is not likely to fit all the prediction 

problems. When the amount of data attributes is not sufficient, the number of network 

layers should be reduced accordingly. Attempts to use a network with excessive 

layers may cause unnecessary resource consumption. Moreover, some substitution or 

hybrid in the stack layer may enable neural network training in the field of multimedia, 

such as the CNN in graphics or audio recognition or fully connected neural network in 

certain applications. 

In the future, the transformation process would be further improved to better fit 

different data sets or for predicting issues individually, such as PM2.5 pollutions and 

price fluctuations, whose prediction target values are numeric data and are affected by 

other increasing and decreasing factors. Moreover, the threshold values of association 

rules may be changed to determine better accommodation of operation scenarios. 

Instead of using the greedy layer-wise pre-training strategy, the classification layer 

can be joined to the training process to achieve model accuracy [33]. In order to 

implement this model in the real world, online-learning could be considered in the 

future [34], [35]. For the dynamic tuning of parameters, fuzzy inference systems [36], 

[37] and extreme learning machines [38] may also be used to further improve the 

proposed system.  
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