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Purpose: Catheters and guidewires are used extensively in cardiac catheterization procedures such

as heart arrhythmia treatment (ablation), angioplasty, and congenital heart disease treatment. Detect-

ing their positions in fluoroscopic X-ray images is important for several clinical applications, for

example, motion compensation, coregistration between 2D and 3D imaging modalities, and 3D

object reconstruction.

Methods: For the generalized framework, a multiscale vessel enhancement filter is first used to

enhance the visibility of wire-like structures in the X-ray images. After applying adaptive binarization

method, the centerlines of wire-like objects were extracted. Finally, the catheters and guidewires were

detected as a smooth path which is reconstructed from centerlines of target wire-like objects. In order

to classify electrode catheters which are mainly used in electrophysiology procedures, additional

steps were proposed. First, a blob detection method, which is embedded in vessel enhancement filter

with no additional computational cost, localizes electrode positions on catheters. Then the type of

electrode catheters can be recognized by detecting the number of electrodes and also the shape cre-

ated by a series of electrodes. Furthermore, for detecting guiding catheters or guidewires, a localized

machine learning algorithm is added into the framework to distinguish between target wire objects

and other wire-like artifacts. The proposed framework were tested on total 10,624 images which are

from 102 image sequences acquired from 63 clinical cases.

Results: Detection errors for the coronary sinus (CS) catheter, lasso catheter ring and lasso catheter

body are 0.56 � 0.28 mm, 0.64 � 0.36 mm, and 0.66 � 0.32 mm, respectively, as well as success

rates of 91.4%, 86.3%, and 84.8% were achieved. Detection errors for guidewires and guiding cathe-

ters are 0.62 � 0.48 mm and success rates are 83.5%.

Conclusion: The proposed computational framework do not require any user interaction or prior

models and it can detect multiple catheters or guidewires simultaneously and in real-time. The accu-

racy of the proposed framework is sub-mm and the methods are robust toward low-dose X-ray fluoro-

scopic images, which are mainly used during procedures to maintain low radiation dose. © 2018 The

Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of

Physicists in Medicine. [https://doi.org/10.1002/mp.13190]

Key words: cardiac catheterization procedures, catheter detection, electrophysiology, guidewire

detection

1. INTRODUCTION

Cardiac catheterization procedures are routinely carried out

under X-ray fluoroscopic guidance to diagnose and treat

heart diseases such as atrial fibrillation, congenital heart

defects, coronary artery diseases, and more. The procedures

generally involve catheters and guidewires, which are visible

in the X-ray images as they are made from high density

materials. However, soft tissues are hardly visible under X-

ray. To overcome this problem, static (3D) roadmaps can be

overlaid onto X-ray images to add anatomical information.

3D roadmaps are the anatomical models of soft issues which

can be generated from preprocedural computed tomography

(CT) images,1–3 magnetic resonance (MR) images,4,5 or rota-

tional X-ray angiography (RXA) images.6–8 However, the

accuracy of 3D roadmap guiding systems rely on the

5066 Med. Phys. 45 (11), November 2018 0094-2405/2018/45(11)/5066/14

© 2018 The Authors.Medical Physics published by Wiley Periodicals,
Inc. on behalf of American Association of Physicists in Medicine. This

is an open access article under the terms of the Creative Commons
Attribution-NonCommercial License, which permits use, distribution

and reproduction in any medium, provided the original work is
properly cited and is not used for commercial purposes.

5066

https://doi.org/10.1002/mp.13190
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


accuracy of: (a) respiratory and cardiac motion compensation,

and (b) registration between the 2D X-ray images and the 3D

roadmap. Localizing catheters and guidewires provides more

information to help increasing the accuracy of both motion

compensation and 2D3D registration. For example, during

cardiac electrophysiological (EP) procedures, localizing elec-

trode catheters such as coronary sinus (CS) catheters and lasso

catheters, which are routinely used, could be employed to cor-

rect respiratory motion.9 Furthermore, the CS catheter in the

X-ray image could be used as a reference to increase the over-

laying accuracy of the 3D roadmap (Fig. 1(a) gives an exam-

ple). The applications of real-time detection of catheters and

guidewires are not limited to EP procedures. In cardiac

catheterization procedures for treating congenital heart

defects, 3D heart models together with blood vessels models

could be automatically registered with 2D X-ray images if the

locations of catheters or guidewires are detected.10 Those soft

tissue models could then be overlaid onto live X-ray images to

aid device deployment in the targeted location.

Moreover, localizing guidewires and catheters can facili-

tates optimal collimation.11 Collimators control the field of

view by using thick blades to block part of X-ray radiation

leaving the source to the patient. Currently, collimation is

controlled manually by human operator and it causes inter-

ruption to the clinical work-flow. Detecting locations of

guidewires or catheters can automatically narrow down the

region of interest [Fig. 1(b) gives an example]. Therefore,

real-time catheter and guidewire detection, is essential for

many image guided applications, such as motion compensa-

tion, 2D3D image registration, and X-ray dose control using

collimation. Nonetheless, developing an accurate and robust

real-time detection method is a challenging task as the major-

ity of X-ray fluoroscopic images are low quality.

Conventional methods using region features, such as pixel

intensity, or texture and histogram, cannot track catheters or

guidewires well.12 Another category of detection methods,

such as active contours and level sets,13–15 are prone to image

artifacts and other wire-like objects. Brost et al. 16,17 developed

a model-based lasso catheter tracking algorithm. However, the

tracking method required manual initialization or a model pro-

vided by the detection method. The proposed method does not

work on other catheters or guidewires. Wu et al.18 proposed a

learning-based approach to temporally track and detect cathe-

ter electrodes in fluoroscopy sequences. Similar to Brost’s

method, it only tracks electrodes and required manual initial-

ization. Yatziv et al.19 presented a catheter detection method

based on cascade classifiers. Although their method achieved

10 fps and 3.97% detection failure rate, it only detected the

catheter tip electrode and could fail when a thicker lasso cathe-

ter was present. Ma et al.20,21 have developed a catheter detec-

tion method based on blob detection. However, this method

only works on catheters with electrodes and will not detect

guidewires. Furthermore, this method only detects the part of

catheter with electrodes on it.

For guidewire detection and tracking, the majority of work

is only focused on tracking, and require manual initialization.

Beyar et al.22 designed a guidewire detection method by using

a combination of a filter-based method, and the Hough trans-

form, to extract wire-like objects and fit them with polynomial

curves. This method would likely fail in X-ray images, as there

is no method to differentiate between image wire-like artifacts

and real wire-like object. Similarly, Baert et al.,23 used image

subtraction and template matching to enhance guidewires, but

only detected a part of the guidewire. More recently, a number

of learning-based methods have been developed for guidewire

tracking. Barbu et al.,24 used a marginal space learning

method to track the target object based on manual annotations.

Wang et al.,25 utilized a probabilistic framework, and tracking

speed of 2 fps was achieved. Chen et al.26 used a deformed B-

spline model and motion patterns to track guidewires. The B-

spline model was also used together with a convolutional neu-

ral networks in Ref. [27]. However, all tracking methods need

manual or semi-automatic initialization of the guidewire

models. Navab et al.28 applied a machine learning approach

on randomly generated deformable models to extract guide-

wires. However, this was not tested on cases where guidewires

have a sudden and large deformation movement.

In this paper, we propose a fully automatic catheter and

guidewire detection framework. Two object classifiers were

used in the detection framework. The first classifier is based

on blob detection and is embedded in the vessel enhancement

filter with no additional computational cost. This classifier is

used to target electrode catheters. In addition to recognize the

type of electrode catheter based on the electrode pattern, the

classifier also reduces the influence of wire-like artifacts. The

second classifier uses a k-nearest neighbor (KNN) algorithm

to distinguish between target wire objects and image artifacts.

It is used for detecting guidewires or catheters without elec-

trodes. The computational costs of both classifiers are low

and they can be used in real-time applications.

2. METHODS

The proposed computational framework is divided into

four steps: (a) Multiscale vessel enhancement and blob detec-

tion. (b) Centerline extraction and segmentation. (c) Wire

FIG. 1. (a) Aligning the CS model (light blue color) with the CS catheter in

the X-ray image for 2D to 3D registration. (b) Localized guidewires are

shown in yellow. The predicted collimation box is shown with white bound-

aries with the area outside set to red. [Color figure can be viewed at wileyon

linelibrary.com]
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path reconstruction. (d) Object classification. For detecting

and recognizing electrode catheters, an object classifier using

electrode (blob) positions is added after the third step. For

detecting guidewires or catheters without electrodes, a KNN

classifier is added into the third step.

2.A. Multiscale vessel enhancement and blob
detection

A multiscale vessel enhancement filter29 is used to

enhance the visibility of wire-like structures in the X-ray

images. It is based on the idea of approximating wire-like

objects, such as tubular or cylindrical structures.29 In order to

detect wire-likes structures, the vessel filter algorithm finds

the local coordinate system aligned with the wire and use the

curvature in these directions (x or y axis) to classify different

structures. This involves the following five steps:

Step 1) Gaussian smoothing by convolving the 2D input

image with a Gaussian kernel of the appropriate scale s. The

Gaussian kernel at position X ¼ x; yð Þ, and scale s is defined

as follows:

G X; sð Þ ¼
1

2ps2
exp �

kXk2

2s2

 !

(1)

The smoothed image L X; sð Þ is computed as

L X; sð Þ ¼ L Xð Þ � G X; sð Þ, where � is the convolution opera-

tor.

Step 2) Aligning the orthogonal coordinate system with

the local features in the image by forming and decompos-

ing the 2 9 2 Hessian matrix at every image pixel. The

Hessian matrix HX;s consists of second order derivatives

that contain information about the local curvature. HX;s is

defined such as:

HX;s ¼
Lxx X; sð Þ Lxy X; sð Þ
Lyx X; sð Þ Lyy X; sð Þ

�
�
�
�

�
�
�
�

(2)

where Lxy X; sð Þ ¼ @
@x

@
@y L X; sð Þ
� �

, and the other terms are

defined similarly.

Step 3) Eigenvalue decomposition for Hessian matrix

HX;s.

Step 4) Computing the vessel classification using the

eigenvalues. As HX;s is a 2 9 2 matrix, there are two eigen-

vectors and eigenvalues at every image pixel. To quantify any

local structures in the image, the eigenvalues for each pixel

are arranged in increasing order such that kk1k\kk2k. The
ratio differentiates between wire-like structures and blob-like

structures and is given by R ¼ k1=k2. If R � 1, detected

structures will be blob-like structures. Otherwise, they will be

wire-like structures.

Step 5) Applying the vessel filter repeatedly using differ-

ent Gaussian scales to take into account different vessel sizes

within the 2D image.

The multiscale parameter s is one of the important param-

eters in the vessel enhancement filter. If s is set too high,

guidewires or catheters will be filtered out. If the range of s is

set too large, it will slow down the vessel enhancement filter

dramatically. In order to get the optimal result for enhancing

catheters and guidewires, the multiscale s of Gaussian kernel

should be centered at the average radius of target objects.29

To calculate the average radius, radii of several catheters and

guidewires used in clinical cases are measured. To convert

them into image pixel space, Rdicom pixel to mm ratio are

obtained from X-ray Dicom image header. The magnification

factor M of the X-ray system is also estimated, which is based

on M ¼ Ddet=Dpat (Ddet is the distance from the X-ray source

to the detector, and Dpat is the distance from the X-ray source

to the patient). The real pixel to mm ratio is defined as:

Rxray ¼ Rdicom=M. The final multiscale s is in the range of

2� s� 6 (Unit is in image pixels).

As a by-product of the vessel enhancement filter, electrode

(blob) positions can be detected as image pixels where the

ratio between two eigenvalues is close to 1.0 (k1 � k2).

Enabling blob detection adds no additional computational

cost for the filter as the eigenvalues of Hessian matrix HX;s

are always computed inside the vessel enhancement filter. An

example of blob detection can be found in Fig. 2.

2.B. Centerline extraction and segmentation

In order to reduce computational complexity, and achieve

real-time detection speed, after applying the vessel enhance-

ment filter, the image is binarized using Otsu’s method.30

Otsu’s method is a nonparametrized and adaptive algorithm

as it automatically determines the thresholding level based on

minimizing the intra-class variance. Otsu’s method has been

used together with vessel enhancement filter for coronary

sinus segmentation on X-ray images.31

A thinning algorithm32 is applied to the binarized image

and the results are one-pixel-wide skeletons. Those skeletons

are the centerlines of wire-like objects and they have to be

broken down into line segments before wire path reconstruc-

tion. The first step of segmentation is to find the branch

points and end points of the skeleton. A branch point is the

pixel which has more than two neighbors of skeleton pixels

in connected 8-neighbours. End points only have one neigh-

bor [Fig. 3(a)]. Figure 3 presents the flow chart for the cen-

terline segmentation algorithm.

2.C. Wire path reconstruction

The wire path reconstruction algorithm used in this paper

assumed that the catheters and guidewires are relatively rigid

so that the path created from multiple line segments (Sec-

tion 2.B) is smooth. The proposed algorithm probably will

not work on very flexible wires such as pacing wires in car-

diac resynchronization therapy. However, the main applica-

tions for the computational framework is for motion

compensation and 2D to 3D registration. Both applications

require rigid objects to work with.

Furthermore, in cardiac catheterization procedures for

treating congenital heart defects, the first step is to push a

guiding catheter toward the area to be treated, which
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sometimes involves pushing the catheter into a narrow blood

vessel [Fig. 4(a)]. Then, a guidewire is pushed through the

guiding catheter [Fig. 4(b)]. Finally, a treatment device, such

as a balloon or stent, is pushed along guidewire inside the

guide catheter to the target area and deployed. Guidewires are

thicker and less flexible as they have to support interventional

devices.

Therefore, a minimum energy method is used to search a

smooth path for the completed catheter or guidewire. The

cost function for the minimum energy method is defined as:

E sð Þ ¼ w1 � 1� cosað Þ þ w2 � 1� CurvRatioð Þ

þ w3 �
con dist

max search dist

þ w4 �
dev dist

max search dist
þ w5 �

2

L

(3)

w1 . . . w5 are the optimal weight parameters. Angle a is the

angle between two tangent vectors of two line segments (see

Fig. 5). CurvRatio is the local curvature ratio between two

line segments. con dist is the distance between two end

points from two line segments. max search dist is the maxi-

mum distance for searching candidate line segments.

dev dist is the distance between an end point and its

projected point on the tangent vector (see Fig. 7). L is the

length of the line segment.

The cost function contains five parts and each part has been

normalized to the range between 0 and 1. The cost function is

used to select a pair of line segments which creates a smooth

path between them. The first part is to minimize the direction

angle difference between two line segments. As shown in

Fig. 5, cosa can be calculated as V1
~ � V2

~
�

kV1
~kkV1

~k. Where

V1
~ � V2

~ are the dot product between the end tangent vector V1
�!

of line segment A and the end tangent vector V2
�!

of line seg-

ment B. kV1
~k and kV2

~k are the length of vector V1
�!

and V2
�!

.

The second part is to minimize the local curvature difference

between two line segments. The curvature ratio CurvRatio

always has the range between 0 and 1 as it is defined as

CurvRatio ¼
Curv1
Curv2

if Curv1\Curv2

Curv2
Curv1

if Curv1[Curv2

(

(4)

where Curv1 is the local curvature in the end point EPt1 in

line segment A and Curv2 is the local curvature in the end

point EPt2 in line segment B (Fig. 5).

To compute the local curvature efficiently, an approxi-

mation method was developed. In mathematics, the local

curvature is defined as 1/R, where R is the radius of an

approximation circle which is fitted with the curve. As

(a1) (a2)

(b1) (b2)

FIG. 2. Outputs from vessel enhancement filter. (a) Blob positions (red crosses). (b) Enhanced wire-like objects. [Color figure can be viewed at wileyonlinelibra

ry.com]
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shown in Fig. 6, the approximation circle touches the curve

on the point where the local curvature calculation is

required.

To compute the local curvature efficiently, we assume that

Pt1 and Pt2 are both on the approximation circle and the

curve. Therefore,

R ¼ 0:5C=sina (5a)

where C is the distance between Pt1 and Pt2. Angle a can be

computed from angle b , which is defined as

FIG. 4. (a) Guiding Catheter. (b) Guiding catheter and guidewire. [Color fig-

ure can be viewed at wileyonlinelibrary.com]

FIG. 5. End point and tangent vector definitions for the cost function. [Color

figure can be viewed at wileyonlinelibrary.com]

FIG. 6. Illustration for local curvature approximation. [Color figure can be

viewed at wileyonlinelibrary.com]

(a)

(c) (d)

(b)

FIG. 3. (a) Step one: find the branch and end points. The red points are branch points and green points are end points. (b) Step two: extract segments from one

end point to the nearest branch point along the skeleton. (c) Step three: extract segments from one branch point to the nearest branch point along the skeleton.

Green line segments are extracted segments. (d) Step four: Detect any unused image pixels within the skeleton. If unused pixels are found, extract line segments

from the nearest branch point to another one. [Color figure can be viewed at wileyonlinelibrary.com]
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cos2b ¼ V1
�!

� V2
�!
�

k V1
�!

kk V2
�!

k (5b)

2b is the angle between two tangent vectors ( V1
�!

and V2
�!

) of

the curve. As aþ b ¼ 90�, sina ¼ sin 90� � bð Þ ¼ cosb.

Then, the Eq. 5(a) can be rewritten as

R ¼ 0:5C=cosb (5c)

As cos2b¼ 2cos2b� 1, cosb¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2bþ 1ð Þ

�

2

s

. sina

is always great than 0, otherwise the tangent (right angle) tri-

angle will not exist. So,

cosb¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2bþ 1ð Þ

�

2

s

(5d)

Finally, Eq. 5(c) is rewritten as

R ¼ 0:5C=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V1
�!

� V2
�!�

k V1
�!

kk V2
�!

kþ1
� �

�

2

s

(5e)

Local curvature is computed as

Curv ¼ 1=R

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V1
�!

� V2
�!�

k V1
�!

kk V2
�!

kþ1
� �

�

2

s

.

0:5C (6)

The Eq. (6) is very efficient to compute as the computa-

tional cost of dot product of two vectors is very low (compared

with curve fitting or curve derivative calculations). The com-

putation of local curvatures was only carried out in the region

of two end points for each line segment. Pt1 and Pt2 should

not be neighbor image pixels along line segment as curvature

computation could be distracted by incorrectly identified end-

points which arise from image noise. Instead, there should be

a gap of 3 or 4 image pixels between Pt1 and Pt2.

The third part of Eq. (3) is to minimize the con dist dis-

tance which is between two end points from two line seg-

ments. Similarly, the fourth part of Eq. (3) is to minimize the

dev dist distance which is between an end point and its pro-

jected point on the tangent vector. As shown in Fig. 7, Vc
�!

is

the connection vector between two end points EPt1 and EPt2.

The con dist distance is the length of Vc
�!

. The dev dist

distance is computed as devdist ¼ kVcksinu, where u is the

angle between Vc
�!

and V1
�!

. V1
�!

is the tangent vector at the

end point EPt1. The final part of Eq. (3) is to penalize short

line segments to avoid distracting by image noise. L is the

length of the line segment which is measured in the number

of image pixels. The minimum value of L is 2 as single-pixel

line segments are excluded from path searching algorithm.

max search dist in Eq. (3) is the maximum distance for

searching candidate line segments. In order to accommodate

the low-contrast guiding catheters or guidewires, the maxi-

mum searching distance is set to 10% of image width or

image height (whichever is longer). An example of path

reconstruction of the low-contrast wire guiding catheter is

shown in Fig. 17(e).

To find out the optimal weight parameters (w1 . . . w5) for

Eq. (3), 610 training images from eight image sequences

were used. Among eight image sequences, five

sequences (212 images) contain electrode catheters and three

sequences (398 images) contain guiding catheters or guide-

wires. A brute-force approach was employed to search possi-

ble combinations of weights. w1 . . . w5 were set to a range

from 0.2 to 1.0 with a step size 0.2. Total number of combina-

tions are 55 ¼ 3125. The selection of optimal weights is

based on achieving maximum success rate of detection. A

successful detection is defined as the maximum distance

between the detected object and the manually annotated

object is below 2.5 mm (around six image pixels). The

choice of 2.5 mm is motivated by the size of the smallest tar-

get structures for cardiac catheterization procedures. After

applying optimal weight, Eq. (3) is redefined as following:

E sð Þ ¼ 0:8 � 1� cosað Þ þ 0:2 � 1� CurvRatioð Þ

þ 0:4 �
con dist

max search dist

þ 0:6 �
dev dist

max search dist
þ 0:6 �

2

L

(7)

As all catheters or guidewires are inserted from the blood

vessels in arms, legs or necks into the heart, wire path recon-

struction algorithm could start with the longest line segment

which is close to the image boundaries. Then, the algorithm

computes the energy costs (Eq. (7)) for all line segments

within the maximum searching distance and the one with the

lowest energy cost is selected. Repeat the previous step until

no more line segments are within the maximum searching

distance or stopping criterion is triggered. The stopping crite-

rion is cosa\0, which means that the wire path is going to

make a sharp turn (a[ 90�). The wire path reconstruction

algorithm can be repeated several times in order to extract

multiple wire objects. Examples of path reconstruction for

electrode catheters and guidewires are shown in Fig. 17.

2.D. Object classification

To improve the robustness of detection framework against

image artifacts, an additional step has been added after or
FIG. 7. con_dist and dev_dist distance definitions. [Color figure can be

viewed at wileyonlinelibrary.com]

Medical Physics, 45 (11), November 2018

5071 Ma et al.: Detect catheters & wires in real-time 5071

www.wileyonlinelibrary.com


within the third step. This step not only reduces the influence

of image artifacts, but also can recognize different types of

electrode catheters based the electrode patterns.

2.D.1. Lasso catheter ring detection

If the X-ray image contains a lasso catheter, the pattern of

blob (electrode) positions from the vessel enhancement filter

can be used to distinguish the lasso catheter ring from other

catheters or guidewires. The physical shape of the lasso

catheter ring (Fig. 8) is a closed circular curve. When it is

perspectively projected onto a 2D imaging plane by the X-ray

system, the projected shape becomes a circle or an ellipse.

Under some particular view orientations, the ellipse can col-

lapse to a line segment. To accommodate different shapes of

lasso ring, blob grouping and ring object selecting based on a

cost function were developed.

Blob grouping selects a number of blobs which are close

together. A distance-based clustering (partition) method is

applied to all blobs in the X-ray image to yield several

groups. The distance threshold used in the clustering method

is set to 2*Cgap, where Cgap is the maximum gap distance

between two neighboring electrodes in all lasso catheters

used in our clinical cases. The reason for using 2*Cgap is to

tolerate small detection errors to localize the positions of

electrodes. Any blob group with less than half of expected

number of blobs will be removed from the detection. The

expected number of blobs Nla is the number of electrodes (20

in our case) which lasso catheter has. The reason of using Nla=2
is to tolerate missing electrodes. The missing of electrodes hap-

pens when two electrodes are very close or overlapped. Two

electrodes will be detected as one blob (see Fig. 8).

After blob grouping, principle component analysis (PCA)

is used to compute the center of the estimated enclosing circle

and two principle vectors. The first principle vector is the

direction of semimajor axis of the ellipse. The second vector is

the direction of semiminor axis [Fig. 9(a)]. To estimate the

radius of semimajor axis, all blob points are projected onto the

first principle vector and the radius is half of the distance

between two end points. The radius of semiminor axis is esti-

mated as the maximum distance between blob points and their

projected points on the semimajor axis. To remove outliers, all

blob points are converted into the polar coordinate system by

using the center as the reference point. Any blob point with a

sudden large change in radius will be removed. After removing

outlier blobs, PCA as well as ellipse equation are recalculated.

Then, a cost function is used to compute a score for each

of ring-like objects. The cost function is defined as

Costla ¼

1:0� e� RC�RCð Þ
2
=RC

2� �

þ 1:0� e� N�Nlað Þ2=N2
la

� �

Rshort

�

RC[0

1:0� e� RC�RCð Þ
2
=RC

2� �

þ e�N=RC Rshort

�

RC� 0

8

>
>
>
>
<

>
>
>
>
:

(8)

where RC is the radius of the semimajor axis of the detected

lasso ring. Rshort is the radius of the semiminor axis. RC is

the average radius of lasso ring, which is computed from

training image dataset (Section 2.C), in which all lasso rings

have been manually annotated. N is the number of blobs

found in the blob group and Nla is the expected number of

electrodes. In Eq. (8), when the lasso ring collapses to a line

segment, Rshort

�

RC � 0. In this special case, the cost func-

tion has two parts. The first part is to test whether the size of

detected ring is close to the average radius or not. The second

part is to compute the density of blobs on the line segment.

The collapsed lasso ring has higher density of blobs. Finally,

the ring-like object with the lowest score is selected as the

detected lasso catheter ring.

2.D.2. Lasso catheter body detection

If the remaining wire body of lasso catheter needs to be

detected, existing detected wire objects which were found by

wire path reconstruction algorithm are checked first. Two con-

ditions must be met if the wire is detected as the body of lasso

catheter. (a) One of its end points must be connected to

the lasso ring. (b) If one end point connects to the ring, its

tangent vector Vend
��!

must be aligned with the tangent vector

Vla
�!

from the lasso ring. It can be calculated as

Vend
��!

� Vla
�!�

kVend
��!

kkVla
�!

k � 1. However, if none of detected

wire objects satisfy those two conditions, the unused line seg-

ments from centerline segmentation algorithm will be

searched. If one of them meets the two conditions, the wire

path algorithmwill be used to trace the path from the lasso ring

to one of image edges.
FIG. 8. Lasso catheter ring. Electrodes are overlapped in the areas indicated

by arrows. [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b)

FIG. 9. (a) Estimated enclosing circle. (b) Final detected lasso catheter ring.

[Color figure can be viewed at wileyonlinelibrary.com]
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2.D.3. CS catheter detection

Similar to lasso catheter detection, the pattern of blob

positions can be used to distinguish the CS catheter from

other catheters or guidewires. CS catheter detection should be

applied after lasso catheter ring detection, if both catheters

appear in the X-ray image. As all CS catheters used in our

clinical cases contain 10 electrodes and electrodes are nearly

evenly spaced, a cost function is developed as following:

CostCS ¼ 1:0� e� N�Ncsð Þ2=Ncs
2

� �

þ

PN�1
i¼1 Cdi � Cd
�
�

�
�
�

Cd

N � 1

(9)

The first part is related to the number of electrodes on the

catheter and it will reach zero when N ¼ Ncs. N is the number

of blobs in the wire object. Ncs is the expected number of

electrodes on the catheter. The second part is to test the blob

gap distance. Cdi is the distance between an blob and its near-

est neighbour blob. Cdiis the mean distance of all Cdi. The

second part of Eq. (9) will be zero when all Cdi are the same,

which means that electrodes are evenly spaced.

The first step of CS catheter detection is to select a number

of blobs which are located on the detected wire object. This

step is an extra step in detection algorithm if compared with

lasso ring detection. The extra step ensures that only blobs on

wire objects need to be included in pattern recognition and

ignore other blobs, which makes the detection algorithm

robust toward noise and outliers. Then, a distance-based clus-

tering (partition) method is applied to those selected blobs to

yield several groups. The distance threshold used in the clus-

tering method is set to 2*Dgap, where Dgap is the maximum

gap distance between two neighbor electrodes in all CS

catheters used in our clinical cases. The reason for choosing

2* Dgap is to tolerate small detection errors to localize the

positions of electrodes. As there might be several detected

wire objects, any wire object with less than half of expected

number of electrodes (Ncs=2) is discarded. Then, Eq. (9) is

used to compute a score for each of the remaining wire

objects. The wire object with the lowest score is selected as

the detected CS catheter.

2.D.4. Wire objects classification

Although the vessel enhancement filter can enhance and

detect wire-like objects, it could still be affected by some

image artifacts, such as calcium deposits and rib bone

boundaries (Fig. 10). For CS catheter and lasso ring detec-

tion, electrodes on the wire provide reliable information to

distinguish target objects from image artifacts. For guidewires

or guiding catheter, it is necessary to recognize as many arti-

facts as possible so that the wire path reconstruction algo-

rithm will not be distracted by image artifacts.

In order to recognize artifacts, a k-nearest neighbor

(KNN) algorithm is used. Instead of applying KNN on the

whole image to detect artifacts, a localized KNN image clas-

sifier is developed to process only wire-like objects, which

are obtained from the previous centerline segmentation step.

First, 500 sample images of artifacts (negative data) and 500

sample images of target objects (positive data) are manually

located and labeled from training image dataset. The orienta-

tion vectors are computed and sample images are organized

around the detected main axis. Then, the sample images were

flipped along the X and Y axis to create a total of 4000 sam-

ple images for both positive and negative data. This not only

increases the number of training samples, but also solves the

asymmetrical problem.

The size of sample images is 20 9 40 pixels. Figure 11

gives some examples. There are some bended wire images in

positive data, which gives some flexibilities for KNN to rec-

ognize bended wires or catheters. All positive and negative

sample images are filtered by Sobel filter and normalized so

that they all have the same value of the average intensity. This

step is to prevent the wrong classification which is caused by

the difference in the average intensity between two images.

Sober filter is used to enhance the edges, which are the

important feature to distinguish wires and artifacts. The wires

has two strong edges in both sides. On the other hand, arti-

facts often have just one strong edge and the other edge is

weak (see Fig. 11).

In current implementation, five nearest neighbors are used

for KNN classifications. KNN uses Euclidean distances

which are d p; qð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pk

i¼1

pi � qið Þ2

s

. Some of failed classifi-

cations are illustrated in Fig. 12.

3. RESULTS

110 image sequences (11,234 images) were acquired in 63

different clinical cases. Image data were collected from St.

Thomas hospital, London and University Hospital of Bor-

deaux, France. The frame size of each sequence is

512 9 512, with pixel sizes between 0.342 and 0.433 mm.

FIG. 10. Image artifacts (indicated by red arrows) in X-ray images. [Color figure can be viewed at wileyonlinelibrary.com]

Medical Physics, 45 (11), November 2018

5073 Ma et al.: Detect catheters & wires in real-time 5073

www.wileyonlinelibrary.com


The proposed detection framework has been tested on 102

image sequences (10,624 images). The remaining 610 images

are used as training data for finding optimal weights and

training KNN image classifier. Among 63 clinical cases, 42

cases are cardiac electrophysiology (EP) interventions and

remaining cases are cardiac catheterization procedures for

treating congenital heart defects (CHD). 3521 X-ray images

from EP cases contain one CS catheter and 2377 images con-

tain one CS catheter and one lasso catheter. Remaining test

images (4726 images) are from treatment of CHD and images

contain maximum two target wire objects such as guiding

catheters or guidewires.

To establish ground truth for evaluation, electrode cathe-

ters, guiding catheters or guidewires are manually annotated

by a clinical expert. An annotated object starts from the edge

of the image and ends at its tip. For lasso catheter ring, the

manual annotation is a closed curve. They are used as the

ground truth for accuracy tests. The detection precision is

defined as the average of shortest distances from points on a

detected object to the corresponding annotated object. For the

technique to be acceptable in clinical practice, failed detec-

tions are considered to be the ones where any points on the

detected object has larger errors than a preset threshold (e.g.,

a threshold of 2.5 mm (around 6 image pixels) 24 is used in

this evaluation), which is the average diameter of guidewires

or catheters) and it also corresponds to the size of the smallest

target structures for cardiac catheterization procedures.

To determine intraobserver variation, the same clinical

expert was asked to perform the manual annotation again on

400 randomly selected X-ray images. The error distances

between the first annotation and second one are

0.19 � 0.09 mm and the maximum error is 0.36 mm. There-

fore, the result indicates that there were no significant

intraobserver differences. To determine interobserver varia-

tion, the second clinical expert was invited to perform the

manual annotation on the same randomly selected dataset.

The error distances between the first expert’s annotation and

the second expert’s annotation are 0.22 � 0.11 mm and the

maximum error is 0.43 mm. Both annotations were used as

the gold standard and two sets of average error distances

between a detected object and one of corresponding gold-

standard objects were calculated. The p-values of t-tests were

calculated for two sets of average error distances. The P-

values was 0.24, which indicates that there were no signifi-

cant interobserver differences.

3.A. CS and lasso catheter detection results

The results of CS catheter detection and lasso catheter

detection using X-ray images from EP cases are shown in

Table I.

There are two error measurements in Table I. The first one

(raw errors) is from all test images. The second one excludes

FIG. 11. Training samples for KNN. (a) Positive data including guiding catheters and guidewires. (b) Positive data after applying Sobel filter and normalization.

(c) Negative data such as calcium deposit and rib bones. (d) Negative data after applying Sobel filter and normalization.

(a) (b) (c)

FIG. 12. Failed classifications for negative data (artifacts were classified as

wire objects). (a) Intersection with a catheter. (b) X-ray contrast agent injec-

tion. (c) Calcium deposit.

TABLE I. CS and lasso catheter detection results.

CS catheter Lasso ring Lasso body

Raw errors (mm) 0.95 � 0.89 0.89 � 0.68 1.03 � 0.94

Successful rate 91.4% 86.3% 84.8%

Errors after

removing failed

images (mm)

0.56 � 0.28 0.64 � 0.36 0.66 � 0.32

Missing rate 7.2% 4.3% 9.8%
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the images where the detection has failed. The missing rate is

defined as the percentage of detected wire objects which the

majority (>50%) of points have the error distances larger than

the threshold (2.5 mm). Missing rate can tell what percentage

of target catheters is missed. The missed catheter is mainly

because the detection framework obtains the wrong catheter

when the cost function gives the wrong answer. Missing rate

is lower for the lasso ring than the CS catheter. This explains

why the errors of the lasso ring detection for all images are

lower than the errors of the CS catheter detection. In 95.7%

of images, the detection framework detects the correct lasso

ring object. But 9.4% ((100%–86.3%)–4.3%) of images has

failed detection because some parts of detected ring have lar-

ger errors. Figure 13 gives two examples.

In the other hand, CS catheter has higher detection errors

and higher missing rate but the successful rate is also higher

if compared with the lasso catheter detection. The failed cases

often happen when only part of CS catheter was visible

within the X-ray images. The detection framework com-

pletely missed the CS catheter and detected the wrong cathe-

ter. The other failed cases are caused by detecting the wrong

part of catheter when the CS catheter is overlapped with other

catheters. Two examples of successful detection are shown in

Figs. 14 and 15 gives two failed examples.

The lasso body detection has the highest detections error

and highest missing rate. This is because the main body of

lasso catheter is more frequently overlapped with other cathe-

ters than the CS catheter. Step-by-step of detection workflow

and results for both CS and lasso catheter are presented in

Fig. 17.

3.B. Guidewire and guiding catheter detection
results

Overall, the detection errors for guidewires and guiding

catheters are 0.62 � 0.48 and successful rate is 83.5%. The

individual errors for guidewires or guiding catheters were

given in Table II. Similar to catheter detection results, both

raw results and results after removing failed cases were calcu-

lated. The results with or without a local KNN image classi-

fier were also calculated.

Guiding catheters have larger errors and higher missing

rates when the KNN image classifier was not integrated into

FIG. 13. Two examples of failed lasso ring detection (some areas have large errors). Green ellipse is the detected lasso ring. Red crosses are detected blob posi-

tions. Both have the large deviation of the fitted ellipse, which is distracted by the blobs nearby (either by the catheter tip electrode or last few electrodes on the

lasso catheter). [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 14. Two examples of successful CS catheter detection. The white ellipse

highlights the selected group of blobs on the detected CS catheter. Red

crosses are detected blobs. [Color figure can be viewed at wileyonlinelibra

ry.com]
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the detection framework. This is due to lower image contrast

for guiding catheters compared with guidewires as guiding

catheters are mainly made from plastic materials and guide-

wires are made from high density metal wires. Therefore,

under X-ray, guiding catheters have lower image contrast.

The wire path reconstruction algorithm was sometimes dis-

tracted from surrounding image artifacts (Fig. 16 gives an

example). However, after the KNN local image classifier

removed majority of image artifacts, guiding catheter, and

guidewires has similar results.

In order to evaluate the performance of KNN classifier,

both false positive (FP) rate and true negative (TN) rate are

calculated among all test images (4726 images) which are

from treatment of CHD. FP is defined as the image artifacts

are classified as wire objects and TN is defined as the wire

objects are labeled as image artifacts. The results show that

TN rate is 4.1% and FP rate is 7.4%. Some artifacts are classi-

fied as wire objects because they are overlapped with a wire

object or they are from contrast agent injection (Fig. 13).

Finally, step-by-step of detection workflow and results for

both guidewires and guiding catheters are presented in

Fig. 17.

The tip detection precision is also evaluated. The error is

defined as the distance between the detected guidewire or

catheter tip position and manual annotated tip position. The

error is 0.57 � 0.38 mm.

The major computational load of the proposed detection

framework is the vessel enhancement filter algorithm. The

software of the proposed framework was developed using

OpenCV and the performance was evaluated on an Intel Core

i7 2.9 GHz laptop with a single-threaded CPU implementa-

tion. The low level image processing functions of OpenCV

are accelerated by using the Intel IPP library which provides

high performance low-level routines for imaging. Currently, a

frame rate of 15 fps is achieved for CS catheter detection,

guidewire, and guiding catheter detection without the KNN

classifier. A frame of 12 fps is achieved for simultaneous

detection of CS and lasso catheters. The frame rate is reduced

to 11 fps for guidewire and guiding catheter detection with

the KNN classifier.

4. CONCLUSION AND DISCUSSIONS

This paper presents and validates a novel and real-time

catheter and guidewire detection framework. The proposed

framework does not require any user interaction or prior

models. The novelty of proposed framework is the combina-

tion of blob detection and wire detection without adding extra

computational workload. Combining the electrode (blob) pat-

tern and wire pattern makes the framework robust against

other wire-like objects or image artifacts. Therefore, it can

efficiently and robustly work on low-dose X-ray images. The

framework also enables the fully automatic recognition of CS

and lasso catheters based on the pattern of electrodes. As the

proposed framework detects both electrode positions and the

entire length of a catheter, it opens up more clinical applica-

tions. For example, the wire body of a CS catheter can be

used for both automatic 2D to 3D registration10 and motion

compensation9 in image guided applications for cardiac inter-

ventional procedures. Both electrode points and the wire

body of a detected catheter could be also used together in the

(a) (b)

FIG. 15. Two examples of failed CS catheter detection. Yellow lines are detected CS catheters. Red crosses are detected blob positions. (a) Failure due to the

detected wrong catheter. (b) Failure due to overlapping catheters near the image edge. There are small deviations of the fitted ellipses because of the nearby cathe-

ter tip electrode. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE II. Detect errors for guidewires and guiding catheters.

KNN classifier Guiding catheter Guidewire

With

Raw errors (mm) 1.08 � 0.89 0.93 � 0.72

Successful rate 82.5% 85.2%

Errors (mm)a 0.68 � 0.42 0.59 � 0.31

Missing rate 7.6% 6.5%

Without

Raw errors (mm) 1.93 � 1.38 1.29 � 0.96

Successful rate 72.4% 79.3%

Errors (mm)a 0.73 � 0.46 0.61 � 0.34

Missing rate 18.4% 10.8%

aThe second error measurement excludes all failed detection images.
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FIG. 16. (a) Original image. (b) The wire path reconstruction distracted by image artifacts. (c) The correct wire path (yellow lines). The detected image artifacts

(red lines). [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c) (d) (e)

FIG. 17. Detection workflow. From top to bottom, the first row are original images. The second row are images after applying vessel filter. The third row are

results of centreline extraction and segmentation. The bottom row are final detection results. The figures are best viewed in color. (a) (b) (c) CS and lasso catheter

detection. In the final result image, the yellow line is CS catheter, the green circle or ellipse is lasso catheter ring and the purple line is lasso catheter body. Red

crosses are the locations of blobs. (d) Guidewire detection. The yellow and purple line are two guidewires. (e) Guiding catheter detection. The yellow line is the

guiding catheter. The purple line is the other wire object. The red line is the image artifacts (calcium deposit). [Color figure can be viewed at wileyonlinelibrary.c

om]
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accurate 3D reconstruction of the detected catheter. Electrode

points are used as key points for phase matching in biplane

image sequences.33 The biplane image sequences are the two

image sequences acquired in different acquisition angles.

Phase matching is to match the cardiac motion and respira-

tory motion phases, which can largely reduce 3D reconstruc-

tion errors. The accurate 3D models of catheters could

provide enhanced functionality during procedures for guid-

ance and also for postprocedural analysis.

The proposed framework can be also used for detecting

guidewires and guiding catheters. However, the electrode pat-

tern might not be found in the target object. In order to distin-

guish between the wire-like target objects and image artifacts,

a localized machine learning algorithm (KNN classifier) is

used. As the KNN classifier has low FP and TN rates, it can

reliably identify image artifacts and reduce the influence of

artifacts for wire path reconstruction algorithm. However,

there could be other real wire objects such as metal wires left

by the open-heart surgery (Fig. 11) or ECG cables. The KNN

classifier cannot identify them as artifacts as those wires has

smooth edges on the both sides after applying Sobel filter.

However, those wires only distract the path reconstruction

algorithm when they are closely overlapping with the target

wire object.

Currently, the proposed framework has achieved the frame

rate of up to 15 fps. This frame rate is considered as real-time

for cardiovascular intervention procedures as the average

maximum frame rate for modern intervention X-ray systems

is 15 fps. In the low dose X-ray image setting, the frame rate

will drop to average 7.5 fps to reduce X-ray radiation doses.

Therefore, our detection framework is sufficient for using in

real-time imaging applications. Furthermore, if the detected

models of catheters or guidewires could be fed into a tem-

plate-based tracking method, it not only can produce an even

faster tracking method but also can largely increase the accu-

racy and successful rate compared with the original detection

framework. Because the proposed frame work does not

require any user interaction or prior models, it could autono-

mously detect and recognize all wire objects if knowledge

about catheters and guidewires such as the number of elec-

trodes, catheter tip size, guiding catheter diameter and etc.

are passed onto the detection framework. This could lead to a

context-aware detection framework. For example, it can auto-

matically recognize the stage of procedures as in the different

stage of procedure different catheters are used.

In conclusion, a fully automatic detection framework is pre-

sented for the detection of the electrode catheter as well as guid-

ing catheters and guidewires in real time. The framework not

only detects the target wire objects, but also the electrode posi-

tions of catheters. This could lead to wider clinical applications.
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Additional supporting information may be found online in

the Supporting Information section at the end of the article.

Video S1: Guidewire detection demo video.

Video S2: CS and Lasso catheter detection demo video.

Video S3: 4 Examples of CS and Lasso catheter detection.
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