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Abstract
We assess the ability of the DePreSys3 prediction system to predict austral summer precipitation (DJF) over southern Africa, 
defined as the African continent south of 15°S. DePresys3 is a high resolution prediction system (at a horizontal resolution of 
~ 60 km in the atmosphere in mid-latitudes and of the quarter degree in the Ocean) and spans the long period 1959–2016. We 
find skill in predicting interannual precipitation variability, relative to a long-term trend; the anomaly correlation skill score 
over southern Africa is greater than 0.45 for the first summer (i.e. lead month 2–4), and 0.37 over Mozambique, Zimbabwe 
and Zambia for the second summer (i.e. lead month 14–16). The skill is related to the successful prediction of the El-Nino 
Southern Oscillation (ENSO), and the successful simulation of ENSO teleconnections to southern Africa. However, overall 
skill is sensitive to the inclusion of strong La-Nina events and also appears to change with forecast epoch. For example, the 
skill in predicting precipitation over Mozambique is significantly larger for the first summer in the 1990–2016 period, com-
pared to the 1959–1985 period. The difference in skill in predicting interannual precipitation variability over southern Africa 
in different epochs is consistent with a change in the strength of the observed teleconnections of ENSO. After 1990, and 
consistent with the increased skill, the observed impact of ENSO appears to strengthen over west Mozambique, in association 
with changes in ENSO related atmospheric convergence anomalies. However, these apparent changes in teleconnections are 
not captured by the ensemble-mean predictions using DePreSys3. The changes in the ENSO teleconnection are consistent 
with a warming over the Indian Ocean and modulation of ENSO properties between the different epochs, but may also be 
associated with unpredictable atmospheric variability.

Keywords Southern African precipitation · ENSO · Seasonal prediction · High resolution climate models

1 Introduction

Predicting climate for the upcoming season to several dec-
ades helps decision makers to adapt policies to near-term 
climate change (Meehl et al. 2009). The need to anticipate 
damages due to climate variability is a stressing problem, 
especially in developing countries, which are more vulner-
able to climate hazards. Climate projections are mostly pro-
vided by simulations performed with Atmosphere–Ocean 
General Circulation Models (AOGCM) under the Climate 
Model Intercomparison Project, phase 5 (CMIP5; Taylor 
et al. 2012). However, uninitialized predictions have shown 
limitations in predicting climate on short-time horizons 
(< 10 years) due to uncertainties in simulating internal cli-
mate variability, as highlighted by the “hiatus” in global-
mean surface temperature rise (Watanabe et  al. 2013; 
Kosaka and Xie 2013; Meehl et al. 2014). Prediction sys-
tems are initialised from observations, and provide more 

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s0038 2-018-4526-3) contains 
supplementary material, which is available to authorized users.

 * Paul-Arthur Monerie 
 pmonerie@gmail.com

1 Department of Meteorology,  National Centre 
for Atmospheric Science (NCAS), University of Reading, 
Reading, UK

2 Centre for Agroecology, Water and Resilience, Coventry 
University, Coventry, UK

3 School of Geography, Earth and Environmental Sciences, 
University of Birmingham, Birmingham, UK

4 Department of Oceanography, MARE Institute, University 
of Cape Town, Cape Town, RSA

5 Centre de Recherches de Climatologie, UMR6282 
Biogéosciences, CNRS/Université de Bourgogne Franche 
Comté, Dijon, France

6 Met Office Hadley Centre, Exeter, UK

http://orcid.org/0000-0002-5304-9559
http://crossmark.crossref.org/dialog/?doi=10.1007/s00382-018-4526-3&domain=pdf
https://doi.org/10.1007/s00382-018-4526-3


 P.-A. Monerie et al.

1 3

skilful near-term climate predictions, i.e. from seasonal to 
decadal timescales (Bellucci et al. 2013; Karspeck et al. 
2015; Shaffrey et al. 2017), and narrow such uncertainties.

There is significant skill in initialised climate predic-
tions. For example, there is considerable skill in predicting 
North Atlantic Sea Surface Temperature (SST) on seasonal-
to-decadal timescales (Pohlmann et al. 2009; Yeager et al. 
2012, 2018; Matei et al. 2012; Doblas-Reyes et al. 2013a; 
Karspeck et al. 2015; Monerie et al. 2017; Shaffrey et al. 
2017; Robson et al. 2017). There is also substantial skill 
in predicting the El-Niño Southern Oscillation (ENSO) 
on seasonal (Barnston et al. 2011; Imada et al. 2015) and 
multi-year timescales (Gonzalez and Goddard 2016) and in 
predicting the Pacific Decadal Oscillation a few years ahead 
(Mochizuki et al. 2012; Chikamoto et al. 2013). Although 
the evidence for improvement over land is weak in decadal 
predictions (Shaffrey et al. 2017; Yeager et al. 2018), there 
is significant evidence that improved predictions over land is 
possible on seasonal timescales (Doblas-Reyes et al. 2013b) 
due to soil moisture, snow and ice cover initialisation (Dou-
ville and Chauvin 2000; van den Hurk et al. 2012; Orsolini 
et al. 2013; Day et al. 2014). In addition, land Surface Air 
Temperature (SAT) and precipitation are associated with 
SST variability, which is better predicted, providing oppor-
tunities to improve and predict climate over land. Substantial 
skill has for instance been shown in predicting Sahel pre-
cipitation (Gaetani and Mohino 2013; Mohino et al. 2016; 
Sheen et al. 2017) and North East Asian temperature Mon-
erie et al. (2017b) due to the remote impacts of the Atlantic 
Multidecadal variability.

The added value of Ocean initialisation could therefore 
lead to high skill in seasonal prediction, and in particular for 
precipitation over southern Africa (here defined as the Afri-
can continent south of 15°S), where Landman et al. (2001), 
Reason et al. (2006), Landman and Beraki (2012) and Beraki 
et al. (2013) have all demonstrated that skill in predicting 
precipitation is strongly associated with model’s ability to 
predict ENSO events. It has been shown that southern Afri-
can precipitation is better predicted during El-Niño and La-
Niña years than during neutral years (Landman and Beraki 
2012). Thus, there is a growing body of evidence showing 
that initialised climate prediction systems provide valuable 
skill in predicting regional climate over land, and to their 
ability to reproduce the remote impact of SST on interannual 
to interdecadal timescales.

Interannual climate variability over southern Africa is 
indeed primarily related to ENSO (Ropelewski and Halp-
ert 1987, 1989; Lindesay 1988; Matarira 1990; Mason and 
Jury 1997; Mason and Goddard 2001; Rouault and Richard 
2005; Lyon and Mason 2007; Crétat et al. 2012; Ratna et al. 
2013; Ratnam et al. 2014; Malherbe et al. 2016): El-Niño 
events favour droughts, while La-Niña events favour wet 
conditions over southern Africa in austral summer. During 

El-Nino years, the South Atlantic and Indian subtropical 
Highs shift northward, hence reducing moisture transport 
convergence and precipitation over southern Africa (Mason 
and Jury 1997; Reason and Mulenga 1999; Cook et al. 2004; 
Rouault and Richard 2005; Reason and Jagadheesha 2005; 
Vigaud et al. 2009; Crétat et al. 2012; Ratnam et al. 2014; 
Dieppois et al. 2015). Similarly, the subsidence associated 
with El-Niño events over southern Africa modulates the 
strength and location of the Angola Low, a cyclonic circu-
lation associated with low values in surface pressure, over 
Angola, Namibia and Botswana (Reason and Jagadheesha 
2005; Lyon and Mason 2007, 2009; Crétat et al. 2012, 2018; 
Munday and Washington 2017; Howard and Washington 
2018). ENSO events are also associated with an eastward 
shift of the South Indian Convergence Zone (SICZ; Cook 
2000; Ratnam et al. 2014) and the associated synoptic-scale 
rain-bearing systems that affect southern Africa, e.g. tropi-
cal-temperate troughs (TTTs: Fauchereau et al. 2009). These 
systems are responsible for significant amounts of rainfall 
during austral summer (Harrison 1984; Crimp et al. 1998; 
Todd and Washington 1999; Hart et al. 2012, 2013; Macron 
et al. 2013).

Although many studies show that ENSO is a crucial 
driver of interannual variability over southern Africa, and a 
source of skill in seasonal predictions, there remain impor-
tant questions. For example, given the discussion above, 
there is a rationale to expect skill in predicting variability 
in precipitation over southern Africa beyond seasonal time-
scales owing to the strong remote impact of SST upon inter-
annual precipitation variability over southern Africa, and the 
relatively high skill in predicting SSTs at interannual time 
scales, including ENSO (Barnston et al. 2011; Imada et al. 
2015). Evidence also suggests that the impact of ENSO on 
southern African precipitation at the synoptic to interannual 
timescales is modulated by decadal modes of climate vari-
ability (Dyer and Tyson 1977; Tyson 1981; Mason and Jury 
1997; Dieppois et al. 2016; Malherbe et al. 2016; Pohl et al. 
2018). Furthermore, such a modulation could explain non-
stationarities in the impact of ENSO over land (Richard et al. 
2000, 2001). Therefore, the quality of predictions of south-
ern African precipitation may depend not only on the period 
over which they are evaluated, but potentially on a prediction 
system’s ability to simulate the modulation of the ENSO 
teleconnection on decadal timescales, as has been argued for 
the predictability of the North Atlantic Oscillation (O’Reilly 
et al. 2017; Weisheimer et al. 2017). A further motivation 
comes from the fact that, according to Dieppois et al. (2015), 
some models perform well in reproducing the remote impact 
of ENSO on the southern African regional circulation and 
rainfall through a change of the upper atmospheric circula-
tion. In particular, CMIP5 models differ significantly in their 
representation of austral summer rainfall amounts over the 
historical period (Hewitson and Crane 2006; Christensen 
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et al. 2007; Nikulin et al. 2012; Dieppois et al. 2015; Mun-
day and Washington 2017).

In order to address the uncertainties we will study pre-
dictions made with the UK Met Office Decadal Prediction 
System version3 (DePreSys3; Dunstone et al. 2016, 2018). 
Hindcasts from DePreSys3 span a much longer period than 
other seasonal forecasting data sets (i.e. from 1959 to 2016) 
and have a large number of members (i.e. 30 for a lead time 
of up to 17 months). Furthemore, DePreSys3 has signifi-
cant skill at predicting ENSO up to a year ahead (Dunstone 
et al. 2016). Therefore, this particular dataset will allow us 
to more accurately assess skill of southern African precipita-
tion at seasonal and interannual timescales. Specifically, we 
aim to address the following questions:

– Is DePreSys3 able to predict interannual variability in 
summer precipitation over southern Africa at seasonal 
or interannual timescales?

– What are the sources of skill?
– Is the skill significantly dependent upon the forecast vali-

dation period?

The paper is structured as follows. The model, data and 
methodology are described in Sect. 2. Section 3 focuses on 
the model ability to predict the southern African precipita-
tion. We analyze the source of skill in Sect. 4. A discussion 
is given in Sect. 5 and a conclusion in Sect. 6.

2  Data and method

2.1  DePreSys3

DePreSys3 is a high resolution AOGCM developed at the 
Met Office (Dunstone et al. 2016, 2018), based on the Had-
ley Centre Global Environment Model version 3, global 
coupled configuration v2 (HadGEM3-GC2; Williams et al. 
2015). The atmosphere model is the Global Atmospheric 
version 6.0 of the Met Office Unified Model, ran at the N216 
resolution (~ 60 km in mid-latitudes) with 85 vertical levels 
ensuring a resolved stratosphere. The Ocean model is the 
Global ocean version 5.0 (Megann et al. 2014), based on the 
Nucleus for European Models of the Ocean Model (NEMO; 
Madec 2008). The ocean resolution is run at a quarter degree 
using the NEMO tripolar grid with 75 vertical levels (the 
ORCA025L75 grid; Bernard et al. 2006). The sea-ice model 
is CICE version 4.1 (Hunke and Lipscomb 2004) from the 
United States Los Alamos National Laboratory and the land 
surface model is the Joint UK Land Environment Simulator 
(JULES; Best et al. 2011). The different model components 
are coupled with OASIS3 (Valcke 2013). For an extended 
description of the UM-JULES and NEMO-CICE coupling 

the reader can refer to Walters et al. (2014) and Megann 
et al. (2014).

Hindcasts are started every year between 1959 and 2015 
(i.e. 57 start dates). Thirty ensemble members are initialized 
on the 1st November of each start date, and are generated 
using different seeds to a stochastic physics scheme (MacLa-
chlan et al. 2015). Each hindcast lasts for 16 months, and are 
forced by the historical evolution of external forcings (GHG, 
aerosols, ozone, solar radiation and volcanoes). After 2005, 
external forcing is taken from the RCP4.5 scenario, as in the 
CMIP5 protocol (Taylor et al. 2012). DePreSys3 is full-field 
initialized by relaxing a coupled integration of HadGEM3-
GC2 towards gridded observations. Three-dimensional 
ocean temperature and salinity are relaxed toward the Met 
Office statistical ocean reanalysis (MOSORA; Smith and 
Murphy 2007; Smith et al. 2015), the sea-ice concentration 
is taken from HadISST (Rayner et al. 2003) and the atmos-
phere model is initialised from ERA-40 before 1979 and 
ERA-interim atmospheric temperature and winds afterwards 
(Dee et al. 2011).

2.2  Observations/reanalysis

Model skill is evaluated using observations and reanalysis. 
For precipitation we used the Global Precipitation Clima-
tology Centre (GPCC) version v7 (Schneider et al. 2014). 
GPCC is available over the long period 1901–present on 
a 0.5° × 0.5° latitude-longitude grid. For a large range of 
atmospheric variables (i.e. SAT, winds, specific humid-
ity, geopotential height, pressure) we used the data from 
the National Centers for Environmental Prediction (NCEP) 
reanalysis (R-1; Kanamitsu et al. 2002). NCEP is given on 
a 2.5° resolution (144 × 72) with 17 vertical levels. NCEP 
spans 1948 to present, allowing assessing the ability of 
DePreSys3 to retrospectively predict climate over a long-
period (i.e. over the period 1959–2015). Observed changes 
in ENSO teleconnection have also been assessed using the 
twentieth Century reanalysis (Compo et al. 2006) avoiding 
results to be dependent to NCEP.

2.3  Southern African rainfall index and Niño3.4 
INDEX

We defined two areas for which we found high skill in pre-
dicting austral summer precipitation interannual variabil-
ity with DePreSys3: SAF covers South Africa [15–30°E; 
35–25°S] and MOZ covers southern Mozambique, Zim-
babwe and Northern Botswana [20–35°E; 15–25°S] (see 
Fig. 1a). The seasonal cycle of precipitation is not homoge-
nous over the SAF box, where the maximum of precipitation 
is obtained in austral summer over a large part of southern 
Africa, while the south-western coastal regions of South 
Africa experience a maximum of precipitation in austral 
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winter (Philippon et al. 2012; Dieppois et al. 2016). Thus, 
we checked the sensitivity of the results to the exclusion 
of these grid points for which the seasonal cycle peaks in 
winter prior to computing the summer precipitation index. 
Very similar results were found in terms of skill and telecon-
nections with SAT worldwide (not shown). We performed 
an empirical orthogonal function (EOFs) to the ACC skill 
in southern African precipitation, using a 25-year running 
window, to detect spatially coherent changes in skill. The 
leading mode highlights that both MOZ and SAF areas are 
consistent in terms of skill variability (not shown). The 
skill of DePreSys3 to predict southern African precipita-
tion interannual variability is assessed throughout the paper 
using GPCC. We also used UDEL (Willmott and Matsuura 
2001) and CRU (Harris et al. 2014) to analyse the observed 
precipitation index but find that results are not sensitive to 
the choice of the observed dataset (Fig. S1; see the supple-
mentary material).

We used the El Niño3-4 [170–120°W; 5°S–5°N] 
index (hereafter noted EN3.4) to assess the ability of 
DePreSys3 to simulate ENSO variability. Using EN3.4 
enables the comparison of results with other prediction 
systems (see for instance Gonzalez and Goddard 2016). 

We also computed an EOF to estimate ENSO variabil-
ity and found similar evolution between the first princi-
pal component and EN3.4 (with correlation coefficients 
varying from 0.95 to 0.99 when considering NCEP and 
DePresys3, and for the first and second DJF lead-time). 
We also used the El-Niño3 [150–90°W; 5°S–5°N] and 
El-Niño4 index [160E–150°W; 5°S–5°N], and we did 
not find any significant difference to results when using 
EN3.4 (not shown), as also suggested in Ratnam et al. 
(2014). We thus consider here the EN3.4 index as a good 
descriptor of ENSO variability, as also seen in Barnston 
et al. (1999). We do not aim at assessing the impact of 
the Interdecadal Pacific Oscillation (Zhang et al. 1997; 
Power et al. 1999), or of the Pacific Decadal Oscillation 
(Mantua et al. 1997; Minobe 2000; Mantua and Hare 2002; 
Mills and Walsh 2013), because of the relatively short 
hindcast durations. The Subtropical Indian Ocean Dipole 
(SIOD) index allows documenting climate variability over 
the Indian Ocean, and is defined as the difference between 
the western [55–65°E; 37–27°S] and eastern [90–100°E; 
28–18°S] subtropical Indian Ocean SST anomalies after 
Behera and Yamagata (2001).

Fig. 1  Anomaly correlation 
coefficient (ACC) of the sum-
mer precipitation in DePreSys3 
hindcasts (with respect to 
GPCC) for a the first sum-
mer (i.e. DJF(0)) and b the 
second summer (i.e. DJF(1)). 
c SAF and d MOZ precipita-
tion (mm day− 1) for observa-
tions (GPCC, black line), and 
DJF(0) (DePreSys3; red line), 
and DJF(1) (DePreSys3; blue 
line). Red and blue shadings 
indicate the ensemble standard 
deviation. Stippling (on the top 
panels) indicate that the ACC 
is significantly different to zero 
at the 95% confidence-level 
according to the Monte Carlo 
significance test (see text; one 
sided test). Correlation between 
observed and simulated precipi-
tation are given on the top right 
of panels c and d, stars indicat-
ing a correlation significantly 
different to zero at the 95% 
confidence-level

(a) (b)

(c) (d)
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2.4  Bias adjustment

Climate models have biases in simulating the observed cli-
mate. Consequently, once initialised from reanalysis, models 
drift to their preferred (and imperfect) mean climatology. The 
drift in temperature can reach several degrees Celsius and 
needs to be removed prior to compare observed and simulated 
ENSO impacts on southern African precipitation. The most 
common way to remove the drift is to follow the procedure 
described in the World Climate Research Program recommen-
dation (ICPO 2011). The drift is then removed, a posteriori 
and in a linear way, and computed as:

where Y  and Xare given for a member i and a start date j for 
respectively DePreSys3 and the corresponding observations/
reanalysis (i.e. NCEP for atmospheric variables and GPCC 
for precipitation), spanning n start dates and m members. 
Thus, the drift, dr, is only lead-time ( � ) dependent, and is 
assumed to be start date independent. Here, we assume that 
the ICPO method is reliable to remove the drift for a large 
range of variables and over several regions.

2.5  Evaluation of the model skill

We evaluate the ability of DePreSys3 to predict climate by 
computing the Anomaly Correlation Coefficient (ACC) 
between DePreSys3 hindcasts and observations/reanalysis for 
a given lead-time. The significance of ACC values is assessed 
by performing a Monte Carlo procedure through resampling 
(5000 permutations). Synthetic time-series are randomly re-
sampled using blocks of 5-year periods and filled until the 
size of the original time-series is reached, to preserve the 
multi-annual variability. Correlation between DePreSys3 and 
observed/reanalysed time-series are then computed for each 
permutation. The obtained correlations follow a Gaussian 
distribution, and are considered as significant at p ≤ 0.05 (i.e. 
95% confidence level) when observed correlation values are 
greater than the 95th percentile of the permutation distribution 
(i.e. a one-sided test). The same procedure is used to evaluate 
the significance of the regressions, but using a two-sided test 
(regression values are then considered significant when regres-
sion coefficients are lower than the 2.5th percentile, or greater 
than the 97.5th percentile, of the permutation distribution).

dr(�) =
1

nm

n
∑

j=1

m
∑

i=1

Yi
j
(�) −

1

n

n
∑

j=1

Xj(�),

3  Skill in predicting southern African 
precipitation

3.1  Overall skill in predicting southern African 
precipitation

The ACC for DePreSys3 to predict interannual southern 
African precipitation variability in austral summer (DJF) is 
shown in Fig. 1. A linear trend was removed for each grid-
point, to compute the ACC, relative to the long-term trend. 
For the first summer [hereafter noted DJF(0)], ACC val-
ues are significant and up to 0.45 over both South Africa 
and West of Mozambique, over the period 1959–2015 
(Fig. 1a). Skill in predicting precipitation decreases for 
the 2nd summer [hereafter noted DJF(1)], 13–16 months 
ahead; Fig. 1b. DePreSys3 is not able to predict precipita-
tion over South Africa for the 2nd summer, but prediction 
skill remains positive and significant between 15°S and 
25°S (Fig. 1a, b). Prediction skill has also been assessed 
using CRU and UDEL data sets, and very similar results 
were found (Fig. S2).

As expected, simulated ensemble-mean precipita-
tion anomalies have a smaller variability to the observed 
(Fig. 1c, d). However, resampling the dataset (i.e. by com-
puting 10,000 synthetic 57 years long time series, taking 
one randomly selected member by start dates) shows that 
DePreSys3 underestimates SAF precipitation variance and 
overestimates MOZ precipitation variance for both DJF(0) 
and DJF(1) (Fig. S3).

The large observed peaks of the extreme years tend 
to be reproduced (e.g. precipitation anomaly of a same 
sign; Fig. 1c, d). Generally, anomalously wet years are 
associated with La-Niña (e.g. 1973–1974, 1975–1976, 
1988–1989, 1999–2000, 2007–2008 and 2010–2011), 
while exceptional dry years are associated with El-Niño 
(e.g. 1972–1973, 1982–1983, 1991–1992, 2015–2016).

3.2  Sources of skill in predicting southern African 
precipitation

Skill in predicting southern African precipitation is pri-
marily related to ENSO (Landman et al. 2001; Reason 
et al. 2006; Landman and Beraki 2012; Beraki et al. 2013). 
Thus we explore the ENSO teleconnection with south-
ern African precipitation, as simulated and predicted by 
DePreSys3. We have chosen to focus mainly on ENSO tel-
econnection for DJF(0) in the main text, which is the most 
skilful over both SAF and MOZ areas. Results obtained 
for DJF(1) are also relevant, as they provide prediction up 
to 16 month ahead and are discussed throughout the text 
and presented in the supplementary materials. However, 
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time-evolution of skill in predicting precipitation and tem-
perature for DJF(0) and DJF(1) are presented side-by-side 
to allow comparing both lead-times and document better 
their dependence on the forecast evaluation period.

Figure 2 shows the SST anomalies that are related to 
southern African precipitation variability by regressing the 
standardized linearly detrended index of SAF and MOZ pre-
cipitation with linearly detrended SAT globally at each grid 
box. The largest SAT anomalies are found over the equa-
torial Pacific Ocean in both observations and DePreSys3 
(Fig. 2). Therefore, Fig. 2 suggests that DePreSys3 is able 
to simulate the observed link between ENSO variability 
and southern African precipitation. High correlations are 
also found between the EN3.4 index and SAF precipitation 
(− 0.55 and − 0.67 in observation and DePreSys3, respec-
tively) and MOZ precipitation (− 0.60 and − 0.63 in obser-
vation and DePreSys3, respectively), with DePreSys3 over-
estimating correlations between EN3.4 index and southern 
African precipitation.

In Fig. 3, we explore the relationship between ENSO and 
southern African climate in observations and DePreSys3. 
Specifically, precipitation, 250 hPa velocity potential and 
divergence wind, 850 hPa geopotential height and moisture 
flux are regressed onto the EN3.4. In both observations 
and DePreSys3 regressions show negative precipitation 

anomalies south of 15°S (Fig. 3a, b). The change in pre-
cipitation in both observations and model is associated with 
large-scale changes occurring in the upper troposphere, 
with anomalously strong divergence over the eastern Pacific 
Ocean, while anomalously strong convergence occurs over 
the warm pool, i.e. a modulation of the Walker circulation 
(Fig. 3c, d). As a consequence, anomalous subsidence is 
found over the western Pacific Ocean, eastern Indian Ocean 
and southern Africa. In addition, the large-scale changes 
are associated with a northward shift of both South Atlan-
tic and South Indian Ocean anticyclonic circulations (Cook 
et al. 2004; Vigaud et al. 2009; Philippon et al. 2012; Rat-
nam et al. 2014; Dieppois et al. 2015), as evidenced by the 
decrease in geopotential height at 850 hPa (zg850) south of 
35°S, and an increase north of 35°S (Fig. 3e, f). The shift 
in the location of the subtropical highs leads to a change 
in the low-level atmospheric circulation and reduced mois-
ture flux inland south of 20°S (Fig. 3e, f), consistent with 
decreased SAF and MOZ precipitation (Rouault et al. 2003; 
Reason and Jagadheesha 2005; Lyon and Mason 2007; Rat-
nam et al. 2014; Vizy et al. 2015; Dieppois et al. 2015). 
Additionally, anomalous subsidence over southern Africa 
favours stable conditions and the decrease in precipitation 
(Fig. 3c, d). Therefore, DePreSys3 is able to simulate the 
relationship between southern African precipitation and 

(a) (b)

(c) (d)

Fig. 2  Surface air temperature (°C/STD) regressed onto the precipita-
tion index for (top panels) observations (NCEP and GPCC) and (bot-
tom panels) DePreSys3 for the first summer lead time (i.e. DJF(0)). 
Left panels: regressions to the SAF precipitation index. Right pan-
els: regressions to the MOZ precipitation index. Regressions are 

performed over the period 1959–2015. Stippling indicates that the 
regression is significantly different to zero at the 95% confidence-
level according to the Monte Carlo procedure (see text; two-sided 
test). For DePreSys3 results were computed using the ensemble mean
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ENSO variability (note very similar results are obtained for 
the second DJF (i.e. DJF(1); Fig S5).

Precipitation anomalies over southern Africa are not 
only related to the equatorial Pacific Ocean. Observed and 
simulated precipitation anomalies are also associated with 

the South Indian Ocean Dipole (SIOD; Fig. 2), as proposed 
in earlier studies (Nicholson and Kim 1997; Reason and 
Mulenga 1999; Reason and Rouault 2002; Washington and 
Preston 2006; Morioka et al. 2015; Hoell et al. 2017a, b; 
Hoell and Cheng 2018). The SIOD refers to a warming south 

(a) (b)

(c) (d)

(e) (f)

Fig. 3  (top panels) Precipitation (mm  day− 1/STD), (middle panels) 
250 hPa Velocity Potential  (105 m2 s−1/STD; shading) and divergent 
winds (m s− 1/STD; vectors) and (bottom panels) 850 hPa Geopoten-
tial Height (m/STD; shading) and moisture flux (g,  Kg− 1 m s− 1/STD; 
vectors) regressed onto the EN3.4 index for the first summer lead-
time (DJF(0)) in (left column) NCEP and GPCC and (right column) 

DePreSys3. Regressions are performed over the period 1959–2015. 
Stippling and red arrows indicate that the regression is significantly 
different to zero at the 95% confidence-level according to the Monte 
Carlo procedure (see text; two sided test). For DePreSys3 results were 
computed using the ensemble mean
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of Madagascar and a cooling north and east of Madagas-
car. A relation between both the MOZ and SAF precipita-
tion is obtained with the SIOD in DePreSys3 (Fig. 2c, d). 
Moreover, wet conditions across southern Africa are also 
associated with anomalously warm temperature over the 
South Atlantic Ocean in both observations and DePreSys3 
(Fig. 2a–d), as shown in Vigaud et al. (2009). Although 
weaker, the relationship between ENSO, SIOD, and the 
South Atlantic Ocean with southern African precipitation 
are also simulated by DePreSys3 for the second DJF lead 
time (Fig. S6).

3.3  Skill in predicting EN3.4 and SIOD index

There is high skill in predicting temperature for DJF(0) over 
the tropics in DePreSys3 with significant correlations over 
the Pacific Ocean (up to 0.9), the Atlantic and South Indian 
Ocean (Fig. 4a, b). ACC values decrease for the second sum-
mer lead-time, but remain significant over the Pacific Ocean, 
over the southern Indian Ocean and become very weak over 
the southern Atlantic Ocean (Fig. 4a, b). DePreSys3 thus 
exhibits a very high skill in predicting EN3.4 in DJF(0) and 
a significant and high skill in DJF (1), regardless the period 
considered (Fig. 4c). The skill in predicting precipitation 
over southern Africa is therefore consistent with the abil-
ity of DePreSys3 to predict ENSO. The SIOD index is sig-
nificantly predicted at the DJF(0) lead-time but ACC values 
drop sharply for the second DJF lead time (Fig. 4d).

3.4  Sensitivity of the skill to forecast evaluation 
period

Skill in predicting southern African precipitation has been 
associated with the remote impact of SSTs over land (Land-
man et al. 2001; Reason et al. 2006; Landman and Beraki 
2012). However, teleconnections are not stationary (Richard 
et al. 2000, 2001), and skill in predicting southern African 
precipitation may thus have changed with time. In order 
to assess whether skill changes in different periods, we 
computed the ACC skill for predictions of SAF and MOZ 
precipitation using a moving window of 25 years (Fig. 5a, 
b). Results indicate that the skill in predicting SAF precipi-
tation for the first summer is almost continuously statisti-
cally significant, varying around 0.5. However, for the sec-
ond summer, the skill drops sharply in the mid-1980s, and 
is not significant thereafter (at the 95% confidence level; 
Fig. 5a). For MOZ, skill in predicting precipitation increases 
after the 1990s for the first summer, while the skill is rela-
tively constant for the second summer lead-time (Fig. 5b). 
These changes in skill are significant over large areas of the 
selected boxes (Fig. S7).

Due to their strong impacts, large ENSO events can strongly 
modulate the ACC skill values. We assess the sensitivity of 

skill to one particular ENSO event by computing ACC from 
time series for which one ENSO event has been discarded. 
This operation is repeated as many times as need to test the 
impact of each ENSO events on skill in predicting south-
ern African precipitation (Fig. S8). Discarding the events of 
1973, 1975 and 1999 leads to changes in skill over both SAF 
and MOZ (Figs. 5c, d and S8). Over the period 1959–2015, 
ACC exhibits then a value of 0.37 (0.15) and of 0.44 (0.29) 
for respectively SAF and MOZ precipitation and for DJF(0) 
(DJF(1)). Interestingly (1) these years are La-Niña events and 
(2) the impact of the 1973–1974 and 1999–2000 events on 
precipitation are better predicted 1 year ahead than for DJF(0) 
(Fig. S4). The 1973–1974 and 1999–2000 events were also 
preceded by an El-Niño event, which suggests a successful 
prediction 1 year ahead due to the ocean dynamics (e.g. an 
El-Niño event followed by a La-Niña event, the asymmetry in 
ENSO cycle (Kessler 2002).

Removing these three events from the time series yields a 
different picture that is now only representative of the long-
term change in the skill in predicting precipitation. Skill in 
predicting SAF is stronger over the period 1990–2015 than 
over the period 1959–1985 for the first DJF lead time (Fig. 5c, 
d). Skill in predicting SAF precipitation for DJF(1) decreases 
with time, but is never significant at the 95% confidence level, 
highlighting the high impact of large ENSO events on ACC 
values, as shown in Landman et al. (2001), Reason et al. 
(2006), Landman and Beraki (2012). The broad picture stays 
relatively similar for MOZ precipitation with increasing ACC 
values for DJF(0) and pretty stable ACC values for DJF(1). 
Unlike precipitation hindcasts, the prediction skill for the 
EN3.4 index does not change with time (see also Dunstone 
et al. 2016) (Fig. 4c, d). As for EN3.4 we do not identify any 
strong changes in the ability of DePreSys3 to predict SIOD 
index with time. The same analysis is reproduced after dis-
carding the ENSO events of 73–74, 75–76 and 99–00 without 
yielding to significant changes (Fig. 4e, f).

The main question that arises from the results we obtained 
so far is to understand the reason why the prediction skill over 
southern Africa varies in time, as it has clear and strong impli-
cations for decision makers. To do so, we explore the source of 
skill in predicting SAF and MOZ precipitation in the next sub-
section. Since we aim at documenting the long-term change 
in skill in predicting precipitation the events of 1973–1974, 
1975–1976 and 1999–2000 are discarded in the next analysis 
and the focus is made on the DJF(0).



Predicting the seasonal evolution of southern African summer precipitation in the DePreSys3…

1 3

4  Processes leading to decadal timescale 
changes in ENSO teleconnection

4.1  ENSO pattern

In the NCEP reanalysis data, El-Niño is associated with 

an increased SAT over the equatorial Pacific Ocean, with 
a horseshoe pattern of opposite sign on the western Pacific 
Ocean and over the subtropics (Fig. 6a, c). El-Niño is also 
associated with an increased SAT over the tropical Indian 
Ocean (Klein et al. 1999; Zhong et al. 2005) and over south-
ern Africa. Over the period 1990–2015, ENSO is associated 

(a) (b)

(c) (d)

(e) (f)

Fig. 4  Anomaly Correlation Coefficient (ACC) of the EN3.4 hind-
casts in DePreSys3 hindcasts (with respect to NCEP) for a the first 
summer (i.e. DJF(0)) and b the second summer (i.e. DJF(1)). Stip-
pling (on a, b) indicate that the ACC is significantly different to 
zero at the 95% confidence-level according to the Monte Carlo sig-
nificance test (see text; one sided test). ACC skill in DePreSys3 com-

puted for a moving window of 25 years (plotted at the central year of 
the moving window) for c EN3.4 index and d SIOD index. e, f: as in 
c and d but after having discarded the ENSO events of 1973–1974, 
1975–1976 and 1999–2000. Black circles indicate that the ACC is 
significantly different to zero at the 95% confidence-level according 
to the Monte Carlo significance test (see text; one sided test)
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with a higher warming between 180°W and 150°W over the 
central Pacific Ocean compared to 1959–1985 (Fig. 6e). In 
comparison, DePreSys3 correctly simulates an increase in 
the ENSO-related SAT over the equatorial Pacific Ocean, 
and a decrease over the subtropics and over the southeast 
Indian Ocean (Fig.  6b, d). DePreSys3 is able to repro-
duce the apparent change of the ENSO impacts after 1990 
(Fig. 6f), with the pattern difference of SAT regression 
associated with ENSO positive phase between two periods, 
which are reminiscent of positive Interdecadal Pacific Oscil-
lation (IPO) phase. However, the changes seen in NCEP (and 
in the twentieth century reanalysis; not shown) are not repro-
duced for the second austral summer lead time in DePreSys3 
(Fig. S9).

4.2  The non‑stationarity in ENSO impacts 
over southern Africa

El-Niño events are associated with dry conditions over south-
ern Africa in both the 1959–1985 and 1990–2015 periods in 
observations and DePreSys3 (Fig. 7a, d). Note that the rela-
tion between EN3.4 index and SAF precipitation are stronger 
(and significant at the 95% confidence level), when adding the 
events of 1973–1974, 1975–1976 and 1999–2000 (not shown). 
DePreSys3 underestimates the impact of ENSO (Fig. 7b–d; as 
also assessed through resampling DePreSys3 dataset; Fig S10), 

as most CMIP5 models (Dieppois et al. 2015). Comparing 
the two sub-periods highlights a non-negligible interdecadal 
change in the observed ENSO-precipitation relationship. The 
link between ENSO and MOZ rainfall is weaker in the period 
1959–1985 than in the post-1990 period (Fig. 7e). Computing 
correlations instead of regressions confirms that MOZ precipi-
tation variability is more linked to ENSO variability after 1990 
and that simulated southern African precipitation variability is 
strongly related to ENSO in the whole period (Fig. S11). The 
part of the MOZ precipitation variance explained by ENSO 
variability is therefore closer between DePreSys3 and observa-
tion after 1990 than before 1990 (Fig. S3). We hypothesise that 
this change in the ENSO-MOZ precipitation teleconnection 
might lead to an increase in skill in retrospectively predicting 
MOZ precipitation. Before 1990, DePreSys3 is not able to 
accurately reproduce the link between EN3.4 index and MOZ 
precipitation, and DePreSys3 is not able to simulate the change 
in the ENSO-MOZ precipitation relation (Fig. 7f), yielding 
weaker ACC values.

4.3  Change in the atmospheric circulation response 
to ENSO and its impact on southern African 
precipitation

El-Niño is associated, over both 1959–1985 and 
1990–2015 periods, with significant positive anomalies 

Fig. 5  ACC skill in DePr-
eSys3 computed for a moving 
window of 25 years (plotted at 
the central year of the moving 
window) for a SAF precipita-
tion and b MOZ precipitation 
(see the boxes on the Fig. 1a, 
b). c, d Same as in a, b but 
after having discarded the DJF 
of 1973–1974, 1975–1976 
and 1999–2000 (i.e. SAF* and 
MOZ*). Black circles indicate 
that the ACC is significantly 
different to zero at the 95% 
confidence-level according to 
the Monte Carlo significance 
test (see text; one sided test)

(a) (b)

(c) (d)
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in observed upper-level velocity potential (VP), which 
extend from southern Africa to the western Pacific 
Ocean, indicating an anomalous upper level convergence 
and descent (Fig. 8a). Over the 1990–2015 period, the 
observed VP anomalies are similar to those observed over 
the 1959–1985; however, negative VP anomalies, which 
are associated with an increase in deep convection North 
and East of Madagascar (Fig. S12) emerge over the Indian 
Ocean (Fig. 8c), highlighting that VP anomalies are sensi-
tive to changes in temperature over the Indian Ocean (they 
also for instance vary strongly from an El-Niño event to 
another; Fig. S13). The observed VP anomalies associated 

with ENSO are also stronger over the central Pacific Ocean 
in the 1990–2015 period than in the 1959–1985 period 
(Fig. 8e), consistent with a warmer central Pacific Ocean 
and a colder maritime continent (Fig. 6e).

Similarly, DePreSys3 simulates a weakening of the 
Walker-cell under El-Niño conditions resulting in upper-
level convergence and less air ascent over the equatorial 
Indian Ocean and southern Africa (Fig. 8b, d), albeit with 
a weaker intensity than in observations. In contrast, the 
ENSO-VP is not sensitive to the time periods in DePreSys3 
(Fig. 8f) and the divergence anomalies are not present over 
the Indian Ocean between 1990 and 2015 (Fig. 8c, d).

(a) (b)

(c) (d)

(e) (f)

Fig. 6  Surface air temperature (°C/STD) regressed onto the EN3.4 
index for NCEP (left column) and DePreSys3 (right column) for the 
first summer lead-time. Regressions are performed over the (top pan-
els) period 1959–1985 and the (middle panels) period 1990–2015. 
Difference between the top and middle panels is given within the 
bottom panels (middle minus top). a–d Stippling indicates that the 
regression is significantly different to zero at the 95% confidence-
level according to the Monte Carlo procedure (see text; two sided 

test) for the regression performed over the 1959–1985 and 1990–
2015 periods and e, f that the difference between the regressions per-
formed over the 1959–1985 and 1990–2015 periods are statistically 
different to zero (at the 90% confidence-level according to the Monte 
Carlo procedure, with one sided test). Events of 1973–1974, 1975–
1976 and 1999–2000 have been discarded from the time series. For 
DePreSys3 results were computed using the ensemble mean
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The observed precipitation anomalies associated with El 
Nino events in the 1959–1985 time period are consistent 
with the northward shift of the subtropical high pressure sys-
tem (see Fig. 9a for the climatology), which acts to weaken 
moisture transport from the ocean over most of southern 
Africa, and to carry more moisture north of 10°S (Fig. 9b). 
After 1990, regression pattern shows a positive anomaly in 
zg850 over the western region of southern Africa, and is 
associated with an anomalously strong anticyclonic circula-
tion. This weakening of the Angola Low leads to an increase 
in the moisture flux north of 15°S, and a decrease moisture 
flux south of 15°S, which is consistent with the changes 

in the precipitation relationship around 15°S (Fig. 7b). The 
difference of regression patterns against the EN3.4 index 
between the two sub-periods denotes an increase in zg850 
over and south of southern Africa while zg850 decreases 
eastward of Madagascar (Fig. 9f), with an increase in north-
ward moisture flux, and moisture convergence (Fig S14), 
over MOZ. A weakened Angola Low, and an export of mois-
ture northward, are also obtained at 500 hPa (Fig. S14 and 
Fig. S15).

In DePreSys3 we do not see similar changes in ENSO’s 
effect on the regional circulation as measured by zg850 
(Fig. 9). In both 1959–1985 and 1990–2015 periods, the 

Fig. 7  Precipitation (mm day− 1/
STD) regressed onto the EN3.4 
index for (left column) GPCC 
and NCEP (right column) 
DePreSys3 for the first summer 
lead-time. Regressions are 
performed over the (top panels) 
period 1959–1985 and the (mid-
dle panels) period 1990–2015. 
Difference between the top and 
middle panels is given within 
the bottom panels. a–d Stip-
pling indicates that the regres-
sion is significantly different 
to zero at the 95% confidence-
level according to the Monte 
Carlo procedure (see text; two 
sided test) for the regression 
performed over the 1959–1985 
and 1990–2015 periods and e, 
f that the difference between 
the regressions performed over 
the 1959–1985 and 1990–2015 
periods are statistically different 
to zero (at the 90% confidence-
level according to the Monte 
Carlo procedure, with one sided 
test). Events of 1973–1974, 
1975–1976 and 1999–2000 
have been discarded from the 
time series. For DePreSys3 
results were computed using the 
ensemble mean

(a) (b)

(c) (d)

(e) (f)
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northward shift of the anticyclonic circulation associated 
with ENSO variability extends from South Africa across 
the Indian Ocean (Fig. 9c, e). These anomalies lead to 
an anomalously anticyclonic circulation between Mozam-
bique and Madagascar and allow moisture fluxes and deep-
convection to weaken over land south of 20°S (Figs. 9c, 
e, S15). In contrast, moisture fluxes strengthen to north of 
25°S, in association with increased precipitation (Fig. 9c, 
e). Thus, DePreSys3 is able to simulate the impact of 

ENSO on the regional circulation over southern African 
in DePreSys3, especially for the period 1959–1985.

Observed changes in ENSO teleconnection have also 
been assessed using the NOAA-twentieth Century rea-
nalysis (Compo et al. 2006) to ensure that the results do 
not only rely on the NCEP reanalysis data. The twentieth 
Century reanalysis also revealed changes similar to those 
identified in NCEP (i.e. ENSO teleconnection is associated 
with a warmer central Pacific and South Indian Ocean, 

(a) (b)

(c) (d)

(e) (f)

Fig. 8  250  hPa Velocity Potential  (105  m−2s− 1/STD; shading) and 
divergent winds (m  s− 1/STD; vectors) regressed onto the EN3.4 
index for (left column) NCEP and for (right column) DePreSys3 for 
the first summer lead-time. Regressions are performed over the (top 
panels) period 1959–1985 and the (middle panels) period 1990–2015. 
Difference between the top and middle panels is given within the 
bottom panels. a–d Stippling indicates that the regression is signifi-
cantly different to zero at the 95% confidence-level according to the 

Monte Carlo procedure (see text; two sided test) for the regression 
performed over the 1959–1985 and 1990–2015 periods and e, f that 
the difference between the regressions performed over the 1959–1985 
and 1990–2015 periods are statistically different to zero (at the 90% 
confidence-level according to the Monte Carlo procedure, with one 
sided test). Events of 1973–1974, 1975–1976 and 1999–2000 have 
been discarded from the time series. For DePreSys3 results were 
computed using the ensemble mean
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a decrease in SLP East of South Africa and an increase 
in SLP over South Africa, and moisture flux divergence 
over southern Africa, after than before 1990), indicating 
observed decadal changes in ENSO teleconnection are 
robust.

5  Discussion: the role of the decadal 
warming of the Indian Ocean

GPCC indicates a change in ENSO impacts on southern 
African precipitation between two periods, i.e. 1959–1985 

Fig. 9  a Climatology (long-
term mean computed over the 
1959–2015 period in NCEP) of 
850 hPa Geopotential Height 
(m; shading) and moisture 
flux (g,  Kg− 1 m s− 1; vectors). 
850 hPa Geopotential Height 
(m/STD; shading) and moisture 
flux (g,  Kg− 1 m s− 1/STD; vec-
tors) regressed onto the EN3.4 
index for (left column) NCEP 
and (right column) DePreSys3 
for the first summer lead-time. 
Regressions are performed over 
the b and c period 1959–1985 
and the (d and e) period 1990–
2015. Difference between the 
top and middle panels is given 
within the bottom panels. b–e 
Stippling (red arrows) indicates 
that the regression is signifi-
cantly different to zero at the 
95% confidence-level according 
to the Monte Carlo procedure 
(see text; two sided test) for 
the regression performed over 
the 1959–1985 and 1990–2015 
periods and f–g that the differ-
ence between the regressions 
performed over the 1959–1985 
and 1990–2015 periods are sta-
tistically different to zero (at the 
90% confidence-level according 
to the Monte Carlo procedure, 
with one sided test). Events of 
1973–1974, 1975–1976 and 
1999–2000 have been discarded 
from the time series. For DePr-
eSys3 results were computed 
using the ensemble mean

(a)

(b) (c)

(d) (e)

(f) (g)
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and 1990–2015 (Fig. 7e), due to changes in low-level atmos-
pheric circulation (Fig. 9f). These changes are associated 
with ENSO leading to a stronger warming of the South 
Indian Ocean, and to a stronger SIOD over the period 
1990–2015 than over the period 1959–1985. These changes 
in ENSO teleconnections could be due to changes in climate 
mean state between two epochs, which are shown in Fig. 10.

Relative to the early period the western Pacific Ocean 
and the Indian Ocean have warmed more strongly than the 
eastern Pacific Ocean across 1990 (Fig. 10a), leading to an 
increased Indian Ocean Dipole (Abram et al. 2008). The 
warming over the equatorial Indian Ocean is associated with 
divergence at upper-level and convergence over the Pacific 
Ocean, in a way opposite as the El Nino impact (Fig. 10c). 
Changes in the mean state could, thus, have modulated the 
impact of ENSO over the equatorial Indian Ocean (i.e. in 
velocity potential anomalies) through a change in the atmos-
pheric bridge between the Pacific and South Africa, along 
with a less pronounced northward displacement of the high 
pressure systems over and south of South Africa, as observed 
in Figs. 9f and S15. These changes of the mean state are not 
reproduced by DePresys3, which simulates a homogeneous 

temperature increase due to climate change (Fig. 10b). In 
DePreSys3, the North Atlantic Ocean warms more than the 
global SAT over the Ocean, leading to an increase in air 
ascent over the tropical Atlantic Ocean, and subsidence over 
the western Indian Ocean and southern Africa (Fig. 10d). 
Therefore, the deficiencies in simulating a shift in ENSO 
impacts could be due to the inability of DePreSys3 to simu-
late the equatorial Indian and the western Pacific Ocean.

We therefore suggest that the decadal change in ENSO 
teleconnection with southern African precipitation has been 
modulated by the warming of the Indian Ocean. Although 
the Indian Ocean SSTs are strongly influenced by ENSO 
their anomalies can indeed in turn impact the atmospheric 
circulation leading to temperature changes over the Pacific 
Ocean (Krishnamurthy and Kirtman 2003; Kug et al. 2006; 
Xie et al. 2009). It has then been proposed that Indian Ocean 
warming can cause a rapid termination of El-Niño and a fast 
transition to La-Niña events by producing an easterly wind 
stress anomaly over the western edge of Pacific Ocean (Kug 
et al. 2006; Kug and Kang 2006). As a consequence Wu and 
Kirtman (2004) have shown that the Indian Ocean modulates 
the variability of the Pacific Ocean and warm Indian Ocean 

(a) (b)

(c) (d)

Fig. 10  Observed difference in a surface air temperature (°C) and c 
250 hPa velocity potential  (105 m2 s− 1) and divergent wind (m s− 1), 
averaged for the first DJF lead time, and between the period 1990–
2015 and 1959–1985. Simulated difference in b surface air tempera-
ture (°C) and d 250 hPa velocity potential  (105 m2 s− 1) and divergent 

wind (m s− 1), averaged for the first DJF lead time, and between the 
period 1990–2015 and 1959–1985. Values are considered as signifi-
cantly different to zero at the 95% confidence-level according to a 
two-sided Student t-test. For DePreSys3 results were computed using 
the ensemble mean
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SST anomalies have been associated with a reduced occur-
rence of El Niño events. The strong temperature increase of 
the recent decades has been associated with an increased 
Indian Ocean temperature variability (Abram et al. 2008) 
that have led to a weaker influence of ENSO over the Indian 
Ocean, as highlighted by the recent decreased impact of the 
Pacific Ocean and increased impact of the Indian Ocean over 
the Indian Monsoon Rainfall (Ashok et al. 2001).

Reason and Mulenga (1999) pointed out that the change 
in the temperature gradients over the Indian Ocean (i.e. 
SIOD) could be responsible for a decrease in sea-level pres-
sure and anomalously strong cyclonic anomalies extending 
from the coast of Mozambique to southeast Madagascar, 
along with anomalously strong anticyclonic circulations 
south of the African landmass, as seen in the Fig. 9f. Thus, 
we propose that changes in the Indian Ocean and/or over 
the Pacific Ocean to be responsible for the difference in the 
ENSO remote impact on southern African precipitation 
between two periods. Hence the changes in the teleconnec-
tions between ENSO and southern African precipitation 
could result from a change in climate mean state (i.e. mean 
temperature over the Indian and Pacific Ocean).

6  Conclusion

In this paper we evaluate the skill at predicting rainfall 
over southern Africa up to a year ahead in the UK Met-
Office Decadal Prediction System version 3 (DePreSys3), 
a high-resolution coupled climate prediction system. Spe-
cifically, we evaluate a set of 30-member hindcasts, which 
are initialised over the period 1959–2015 up to a lead time 
16 months ahead, and focus on regions over South Africa 
(SAF; 15–30°E; 35–25°S and MOZ; 20–35°E; 15–25°S) in 
the austral summer (DJF). Our main results are as follows.

Over the period 1959–2015 DePreSys3 is able to pre-
dict SAF and MOZ summer rainfall at a 2–4 month lead 
time (ACC = 0.45). DePreSys3 is also able to predict MOZ 
rainfall in the second summer (i.e. 13–15 month lead time, 
ACC = 0.37). However, the skill in predicting precipitation 
is not significant over South Africa for the second summer 
(ACC = 0.22, Fig. 1).

The overall skill over southern Africa in DePreSys3 is 
attributed to accurate predictions of the El-Niño Southern 
Oscillation (ENSO). The EN3.4 index has an ACC of 0.96 
and 0.43 for the first and second DJF, respectively. After sub-
tracting the influence of ENSO on remote rainfall via linear 
regression, DePreSys3 is then not able to predict southern 
African precipitation variability (Fig. S16). Moreover, the 
inter-member consensus in simulating below-normal (above-
normal) southern Africa precipitation is relatively high dur-
ing the strong El-Niño (La-Niña) events (Fig. S17), then sug-
gesting then a higher confidence in forecasting precipitation 

during ENSO events than during neutral years. This result 
is consistent with findings by Landman and Beraki (2012).

The remote impact of ENSO in DePreSys3 is consist-
ent with previous studies (e.g. Landman et al. 2001; Rea-
son et al. 2006; Landman and Beraki 2012; Dieppois et al. 
2015). DePreSys3 reproduces the modulation of the Walker-
Cell circulation associated with ENSO variability. El-Niño 
leads to an anomalously strong subsidence over the Indian 
Ocean and southern Africa, a northward shift of the subtrop-
ical high-pressure system, a weakening of the Angola Low, 
and a north-eastward shift of the South Indian Convergence 
Zone (SICZ) (Mason and Jury 1997; Reason and Mulenga 
1999; Cook et al. 2004; Rouault and Richard 2005; Reason 
and Jagadheesha 2005; Vigaud et al. 2009; Crétat et al. 2012; 
Ratnam et al. 2014; Dieppois et al. 2015).

The ACC skill in DePreSys3 is sensitive to the epoch over 
which it is calculated. For instance, ACC skill in predicting 
DJF(1) SAF precipitation decreases after the 1980s and skill 
for MOZ precipitation increases in the 1990s. The exclusion 
of large ENSO events also impact skill in predicting precipi-
tation. In particular, when large ENSO events are removed, 
skill in predicting MOZ precipitation for the first summer 
(DJF(0)) over the period 1990–2015 is high (ACC = 0.66) 
but not over the period 1959–1985 (ACC = 0.19).

The change in skill in different forecast epochs appears 
to be related to, at least in part, to the non-stationarity of 
the observed ENSO teleconnection. After 1990, when the 
skill in MOZ in DJF(0) increases, the impact of ENSO on 
precipitation over MOZ in observations is found to be larger 
and more consistent (i.e. stronger regressions and correla-
tions). The larger impact of ENSO over MOZ is consistent 
with a shift in the location of subtropical high-pressure sys-
tem location, and with a stronger eastward shift of the SICZ 
associated with more subsidence over MOZ (Figs. 9f, S12e).

We have demonstrated here that skilful prediction of 
southern African austral summer precipitation up to a year 
ahead is possible. Skill over the period 1959-present is asso-
ciated with DePreSys3’s ability to simulate both the SST 
variability over the tropical Pacific and the Indian Ocean, 
and the remote impact of ENSO over southern Africa. 
Predicting the EN3.4 index is crucial, but not sufficient to 
predict SAF and MOZ precipitation; skill in predicting pre-
cipitation varies through time, whereas skill in predicting 
EN3.4 is consistently high across different epochs. We have 
related the changes in skill described above to changes in the 
relationship between ENSO and precipitation over south-
ern Africa before and after 1990. These changes in ENSO 
teleconnection with southern Africa are consistent with the 
impact of a warming of the Indian Ocean (Krishnamurthy 
and Kirtman 2003; Wu and Kirtman 2004; Kug et al. 2006; 
Kug and Kang 2006; Xie et al. 2009) along with more Cen-
tral Pacific ENSO (as observed in Kao and Yu 2009), which 
also affects the precipitation over southern Africa (Ratnam 
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et al. 2014; Hoell et al. 2015). However, we cannot rule out 
that some other aspect of the initialisation (e.g. the quality 
of the initial state) did not change across different epochs. 
Nor can we rule out that the change was due to unpredict-
able climate variability; there is significant variability in the 
strength of the ENSO teleconnection in DePreSys3 when 
assessed in the same way as observations (i.e. one ensemble 
member per year, Fig. S10). However, it is clear that the 
strength of the relationship between ENSO and southern 
African rainfall appears to be weaker in DePreSys3 than in 
observations (Fig. S10).

We assume ENSO as a main source of skill in predict-
ing precipitation since removing its effects reduces the skill 
substantially. Southern African precipitation are also linked 
with the Indian SSTs and DePreSys3 exhibit a substantial 
skill in predicting SIOD for the first summer, which is how-
ever largely weaker than for EN3.4 (Fig. 4). SAF and MOZ 
precipitation variability have also been associated with SST 
variability over the South Atlantic Ocean in observations 
(Rouault et al. 2003; Vigaud et al. 2009; Manhique et al. 
2015). However, we found that the southern Atlantic Ocean 
does not strongly affect SAF and MOZ precipitation in 
DePreSys3 (Fig. S18). In particular the south-eastern Atlan-
tic region, as highlighted in Manhique et al. (2015), does 
not contribute significantly to the prediction skill for south-
ern African precipitation (Fig. S19). Therefore, we suggest 
that additional efforts should be devoted to a more process 
oriented analysis of ENSO predictions, and in understand-
ing how models simulate the global ENSO impacts (see for 
instance Dieppois et al. 2015) including over different time-
periods and different oceanic and atmospheric background 
states. Last but not least, a caveat of this study could arise 
from the non-stationarity in observational measurements 
over southern Africa from 1990 (see for instance Pitman 
(2011) and Fig. S1 of Dieppois et al. 2016).
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