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Abstract

In this paper, we present a novel system for cognitive stimulation therapy to pro-

gressively assess cognitive impairment and emotional well-being of dementia patients

in social care settings. The system assesses patients interactions and computes per-

formance scores for different areas of cognitive stimulation. Patient interactions

are initially classified into predefined performance categories through clustering of

a sampled population. New personalised stimulation plans tailored to match the

patient’s changing level of impairment are generated automatically through a set of

fuzzy rule based systems using quantitative attributes and the overall scores of pa-

tients interactions. Therapists can redefine, evaluate and adjust the rules governing

difficulty and activity levels for different stimulation areas to fine tune generated

activity plans. The system can also be combined with an Internet of Things (IoT)

enabled patient dialogue system for determining the affective state of participants

during therapy sessions that could be used as a pervasive condition monitoring plat-

form. Experiments consisting of therapy sessions of patients interacting with the
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system were performed in which the activity plans were automatically generated.

Initial results showed that the system outputs were in agreement with the thera-

pists own assessment in most of the stimulation areas. Simulation experiments were

also conducted to analyse the system performance over multiple sessions. The re-

sults suggest that the system is able to adapt therapy plans overtime in response to

changing levels of impairment/performance while supporting therapists to tune and

evaluate therapy plans more effectively.

Keywords: Fuzzy System, Computer Assisted Therapy, Cognitive Impairment,

Clustering

1. Introduction

One of the major public health challenges in which IoT and smart medical sys-

tems can assist is Alzheimer’s disease which affects a predominantly ageing popu-

lation. Treatments for this disease require novel interactive and unobtrusive ways

of both tracking disease progression and monitoring, emotional health and safety5

while accounting for the changing care needs of sufferers. Alzheimer’s Disease In-

ternational estimates that the number of people living with dementia worldwide is

estimated at 46.8 million and this number will reach 131.5 million in 2050 [24]. The

global cost of dementia is estimated at US $ 818 billion, and this is set to rise to $ 1

trillion by 2018 in part as a result of an ageing population brought about as a result10

of improvements in healthcare enabling more people to live longer [24].

Despite the lack of a cure for Alzheimer’s disease, non-pharmacological therapies

are often used (cognitive stimulation being one of the most advised therapies [37, 33])

with the goal of maintaining cognitive function or helping the brain compensate for

impairments in addition to improving quality of life or reducing behavioural symp-15

toms [2]. In this sense, Computer-Assisted Cognitive Therapy (CACT) systems

have been found to be valuable tools for the delivery of often low cost and effec-

tive interventions with a number of associated benefits such as: inducing cognitive

enhancement in older adults (60 to 85 years old) [1] and Alzheimer sufferers [31];

achieving more robust effects in reducing measures of cognitive distortion besides20

requiring reduced contact with therapists when compared to Standard Cognitive

Therapy [38]; monitoring older adults and detecting early signs of frailty [40]; de-

tecting sustained changes in cognitive performance [10].
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In this paper, we present an adaptive system for cognitive stimulation therapy

that analyses the performance of dementia sufferers during their interactions with25

computer-based activities to generate personalised stimulation therapies according

to the sufferers changing levels of cognitive impairment. The aim of the system

is to reduce the cognitive burden on care workers and therapists of supervision,

monitoring, assessment and adaptation of therapy plans by delegating these func-

tions to an intelligent system and enabling therapies to be performed at home via30

a mobile health computing infrastructure. These developments were integrated into

an existing CACT software called Mente Activa for the treatment of older adults

with cognitive impairment. The developed system makes use of Fuzzy Logic Sys-

tems (hereinafter, FLSs) for handling qualitative concepts (e.g., representation of

abstract terms such as “easy”, “difficult”, “good performance”, etc.), which can be35

used to describe the performance categories and characteristics of participants based

on their interactions with the stimulation activities.

We present unique experiments based on Alzheimer sufferers’ interactions with

Mente Activa while attending a day care centre. The experiments are used to eval-

uate the plan recommendations determined by the fuzzy system against therapists’40

own assessments of recommended therapy for individual sufferers. Simulations of

the system with data of different patients and cognitive areas are also carried out to

demonstrate its ability to automatically propose an initial plan according to their

mental health condition and adjust the subsequent generated therapy plans over

time in response to user performance. As a means for assessing the emotional state45

of the sufferers, we report on the piloting of an IoT enabled patient dialogue system

(using IBM’s TJBot) with preliminary results on affect recognition analysis in the

context of a targeted therapy session. We show how the proposed adaptive cognitive

stimulation system can be integrated with the patient dialogue system and affect

recognition system to enhance the system. This enhancement is achieved by process-50

ing context relevant quantitative and qualitative data streams including behaviour

and affect data in the cloud using IBM Watson services.

The rest of this paper is organized as follows: Section 2 discusses current Computer-

Assisted Cognitive Therapy approaches; Section 3 describes the software Mente Ac-

tiva and techniques used in developing the proposed support system; Section 4 de-55

scribes the developed intelligent performance assessment and plan recommendation
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system. Section 5 describes the integration of the IoT enabled patient dialogue sys-

tem with initial experiments on detecting affective states of participants interacting

with the Mente Activa software during a simulated therapy session. Evaluations

of the developed system on participating individuals with dementia and simulated60

sessions are presented in Section 6. Finally concluding remarks and future work are

discussed in Section 7.

2. Literature Review

Several approaches for CACT have been shown to provide effective intervention

for older adults with dementia to improve their cognitive functioning as well as qual-65

ity of life [40, 10, 25]. A study by Tarraga et. al. [31] performed 12 weeks of cognitive

stimulation using an interactive multimedia internet based system (IMIS) treatment

on a group of patients affected by Alzheimers. The results showed an improvement in

their condition (measured using the Alzheimer’s Disease Assessment Scale-Cognitive

and Mini Mental State Examination), which was maintained through 24 weeks of70

follow-up sessions as compared to two other groups receiving only an integrated

psycho-stimulation program and a stable treatment with cholinesterase inhibitors.

A commercial initiative by [7] performed a controlled pilot trial of computerised cog-

nitive training in older adults with mild cognitive impairment (MCI) also showed

that participants were able to improve their performance across a range of tasks75

with training. In [14], a CACT program was assessed for fostering patients verbal

engagement on previously selected life experiences/topics. In [21] a framework was

developed which focused on validating the appropriateness of a prototype cognitive

stimulation system for the elderly in terms of usefulness, ease of use, user experience

and intention of use perceptions of the users. CACT have also been used to provide80

cognitive training monitoring older adults to detect early signs of frailty [40], and

inferring a user’s cognitive performance to identify significant performance changes

as discussed in [10]. Lee et.al. [15] reported on the evaluation of a learning-based

memory training program for persons with early Alzheimer’s disease, finding posi-

tive effects on cognitive function. An online word training programme at home is85

presented in [27] as a therapy for Semantic Dementia sufferers achieving clear gains

on picture naming.
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Current research suggests that the early detection of cognitive decline has an

important role in effective clinical intervention and the detection of imminent func-

tional impairment [24, 34]. In order to facilitate effective clinical intervention, there90

is a need to gather and analyse data related to patients’ performance during stimu-

lation activities for physicians and care staff to easily interpret and make informed

decisions related to disease progression and its implication on the patients treatment.

The success of these forms of therapy relies heavily on the consistency of delivery

(where each session could typically be for around 45 minutes undertaken at least95

twice a week [36]), requiring constant participation from the therapists. Due to this,

there is a high cognitive load/burden of time and effort required from the therapists’

in therapy planning and adjustment of activities to suite patient conditions.

None of the existing systems found in the literature provide support to the spe-

cialist in providing an interpretable way of analysing stimulation therapies and their100

effectiveness on the patient. These systems also do not handle the subjectivity and

uncertainties associated with the evaluation of patients based on therapy perfor-

mance, levels of difficulty and time spent during the assessment of different cognitive

areas. Finally, these systems do not provide an integrated stimulation therapy and

monitoring platform that is capable of self-adjusting therapy planes based on eval-105

uating patient performance data and reducing therapist input for manually specify-

ing therapies over time. These limitations make constant participation of therapists

necessary in order to supervise the therapy intervention, assess patients’ cognitive

abilities while considering context and prior background details as well as keeping

patients engaged with the activities while manually and subjectively adjusting ther-110

apy features such as difficulty, type and amount of activities, etc. The increased

cognitive burden on the therapists to monitor these aspects may lead to possible

inconsistencies in the way combinations and levels of activity are adjusted resulting

in less effective therapy. There is therefore, a need to develop a therapy delivery

platform which is unobtrusive, easy to use, practical and able to provide automated115

approaches for assessing, designing, delivering and adapting therapies in response to

sufferers’ cognitive performance and changing level of impairment.

While the cognitive condition information obtained in therapy is important to

measure sufferers’ progress, their emotion changes throughout the day must be con-

sidered as part of such therapy since such behavioural and emotional changes are120
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often associated to Alzheimer symptoms [24]. The growing number of embedded

and network-enabled physical devices collectively termed as the Internet of Things

(IoT) has become an enabler for facilitating richer context awareness, personalization

through integration of information sharing and connectivity [39, 20]. This influx of

personal, mobile and wearable devices is set to revolutionize e- and m-health systems125

by bringing pervasive personalised real-time health informatics to consumers as well

as enhancing existing dedicated clinical, biomedical and therapy based healthcare

systems [9]. Contextually available data (e.g., wearable sensors, physiological indi-

cators, affective states) can therefore be used to enrich cognitive monitoring systems

to provide more patient-centred therapy and care planning decision support [13, 35].130

3. Technology Foundations

3.1. Mente Activa

Mente Activa is an interactive software developed as a result of a collaboration

between the Instituto Tecnológico de León and the Institute of Memory (hereinafter

ITL and IM respectively) aimed to provide Computer-Assisted Cognitive Therapy.135

This software is based on using auditory and visual stimuli prompting different cog-

nitive functions (based on [12], [31] and [28]). More specifically, the software allows

cognitive stimulation through the use of interactive games designed by psycholo-

gists, running on computers with touch screen and multimedia elements such as

audio instructions and interactive images. In Fig. 1, seven examples of activities140

corresponding to the seven areas of stimulation are being shown. For further details

on the activities see [22].

3.1.1. Cognitive Stimulation Activities used in Mente Activa

The activities are divided mainly by types of cognitive stimulation [29, 6] based

on seven key areas. For a brief description see Table 1.145
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Figure 1: Some activities of Mente Activa: (a) language, (b) gnosias, (c) executive functions, (d)

calculus, (e) attention, (f) memory and (g) orientation.

Table 1: Fields of cognitive stimulation

Field Definition

Attention It is a function under which a stimulus or object is in the focus of

consciousness, distinguished from the rest accurately by displace-

ment, attenuation or inhibition of irrelevant stimuli.

Memory The faculty of the brain that allows recording new experiences,

and remember past events.

Language It is a code of sounds and graphics that are used for social com-

munication among humans.

Gnosias Knowledge gained through the elaboration of sensory experiences.

Executive

Functions

Defined as the processes that associate ideas, movements and sim-

ple actions aimed to solve complex behaviours.

Calculus It involves aspects of basic mathematical concepts, cognitive de-

velopment, operational performance, reasoning, deduction and

perception skills.

Orientation It is the ability to establish relationships between events and ob-

jects in space.
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3.1.2. Therapist’s judgement based Computer Assisted Therapy

The purpose of this computer based therapy is to adapt the stimulation activities

to keep them being sufficiently challenging (keep the user engaged with the therapy)

while considering the patients’ cognitive abilities which may be changing due to

how their disease is progressing. In order to achieve this, the IM employs a team of150

psychologists who commonly treat a limited group of people due to the thoroughness

required which demands a substantial effort from the therapists for several reasons:

• Each stimulation plan must be customized to the patients’ conditions and

cognitive decline in a medium-long term.

• The patients’ performance might be monitored and assessed by different ther-155

apists and therefore, patients’ performance evaluation is subject to subjective

perceptions. In addition, there is a number of potential issues implied that

influence the evaluation (e.g., changes in therapists staff with different experi-

ence, patients’ mood, etc).

• Taking into account the last performance and/or current conditions, the ther-160

apists must propose further stimulation plans selecting individual exercises for

each activity based on their experience. This also implies that they must be

able to remember a wide variety of dynamics across the whole set of stimulation

activities.

Such level of engagement required from the psychologists makes it difficult to165

work with large groups of patients at once, which limits the number of people re-

ceiving this treatment.

3.2. K-Means Clustering

K-Means [16] is a well known unsupervised learning algorithm which creates k

hard partitions of data observations based on locations and distance between the170

input data. The algorithm requires the selection of k points representing initial

cluster centroids into the space. Posteriorly, each datum is assigned to the cluster

that has the closest centroid and, when all datums have been assigned, the k cluster

centroids are updated using the new data assignations. This allocation and recal-

culation is iteratively repeated until there is no changes in centroids/assignations of175

data observations.
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3.3. Fuzzy Logic Systems

Fuzzy Logic Systems (FLSs) can be considered as systems able to provide non-

linear mapping of input data to an output. They are widely used as rule induction

based approaches for extracting information in the form of IF-THEN rules from180

experts. FLSs have the capability of handling subjective and uncertain knowledge

[19] by accounting them with Fuzzy Sets defined by Membership Functions.

Rule based FLSs perform four processes: (1) in a first stage, the fuzzifier maps

crisp input values into input fuzzy sets (FSs) representing the input variables. (2)

Rules associating linguistic input variables (represented by FSs) to a linguistic output185

variable (represented by output FSs) are activated. The Rules are expressed as

a collection of IF-THEN statements and may be provided by experts or can be

extracted from numerical data [4, 5, 11]. (3) The inference engine maps input FSs

into output FSs by handling the way in which the rules are activated and combined

to generated an aggregated output FS which is converted (4) to a crisp value by the190

Output processor through a process of defuzzification.

Both K-Means and FLSs represent the main components of the proposed support

system used to learn from patients interactions and represent/use therapists knowl-

edge. The next section covers implementation details of our developed system.

4. Proposed Therapy Evaluation and Adaptation System195

In section 3.1, we have described a CACT tool used for cognitive stimulation

therapy which comprises a wide variety of activities of different cognitive areas and

difficulty. In its current form, this therapy requires constant supervision from a

therapist to assess the users’ interactions with the system and suitably adapt the type

and difficulty level of activities based on her/his own experience and knowledge. Due200

to the reasons mentioned in section 3.1.2, there is a need for an auto-adaptive therapy

delivery and assessment system able of monitor the user interactions on behalf of

the therapist. To achieve this, two main aspects are considered: (1) patient-software

interactions classification must be performed in order to assess their performance

on completed activities (e.g., good, bad, etc), (2) an interpretable and adaptable205

representation of the stimulation plans incorporating the knowledge normally held

by therapists needs to be designed.
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Consultation with therapists at the IM regarding their practical experience and

the involved dynamics on therapy evaluation determined that patients’ performance

can be assessed by recording the time required to complete an activity, achieve-210

ment of objectives and frequency of incorrect responses. Furthermore, circumstan-

tial characteristics which also have influence on individuals’ performance (e.g., years

of education, cognitive status) have been proposed. Together, these combined char-

acteristics can be used to provide more comprehensive performance data enabling

a better generalization and determination of recommended courses of therapy. For215

these reasons, we propose a model considering several aspects. We combine in a

tuple r = (e, t) two main characteristics during the interactions of users with the

stimulation software to represent the performance, namely: e for the number of er-

rors per activity, and t representing the time required to complete each activity. All

data considered by the system and its relevance to the creation of the stimulation220

plans are summarised in Table 2, while the notation used to describe all elements in

the system is provided in Table 3.

Table 2: Data considered in the IM for the design of stimulation plans.

Data Rationale Measurement

Frequency

Mini Mental

(MM) Test

Score

With this score [8] the user’s impairment can be categorized

into one or two cognitive states (i.e., indicating a possible course

of cognitive changes over time) according to the GDS scale [26].

Twice per year

Years of edu-

cation

People with fewer years of formal education are at higher risk

for Alzheimer’s and other forms of dementia than those with

more years of formal education [30]. Since there is a positive

correlation between years of schooling and cognitive status we

have considered this data as an input for the system.

Once

Performance

per area

It is defined based on the scoring over all activities performed

for a given stimulation area by using a scoring function (see

(5)). It uses the number of errors and the time required to

complete each activity.

Every session

Difficulty Given that the user performance should be evaluated according

to the level of difficulty set during a given simulation session.

Every session

Neuropsi

Punctuation

This test [23] is a more comprehensive measure of cognitive

status than MM, although the categories referred to depend

heavily on schooling and age.

Twice per year
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Considering that the data used to represent the performance r can be obtained

directly through the Mente Activa system, a learning approach is used to evaluate

the performance categories (e.g., good or bad performances) in a similar fashion as a225

therapist would describe them linguistically. This approach is described in the next

subsection.

Table 3: Notations used throughout this paper

Notation Meaning

c an item c ∈ k

g a cluster centroid

r a tuple r = (e, t) of errors and time for an specific activity

m an item m ∈ N associated to an activity

N the total number of interactions with an activity

r0 a tuple r = (0, 0)

ϕ the allocation function

v a cognitive area v = {a, ca, ef, g, l,me, o}

n the number of completed activities in a patient interaction

pv the performance score in the v area

A the set of all activities acts ∈ A

s an item s ∈ |A|

acts an activity with a name, area, level and N associated

SPj an stimulation plan in the j session

FLSv
j a FLS for the v area and j session

u a patient u ∈ U

L a list of activities L ⊂ A

Rv the set of tuples for activities performed in current SPj

dvj the average difficulty level of a set Lv

Dv the tuple of recommended features for an SP : difficulty

and amount

4.1. User Performance Modelling

Given a number of performance recordsm = 1, ..., N of interactions with an activ-

ity from patients with different diagnosis, we need to obtain k = 3 cluster centroids230

which will be used subsequently to classify further interactions in an unsupervised

manner. In our developed system, K-Means clustering is used as we want to initially

provide crisp partitions of the input space (a datum r is assigned to a single cluster).

We initialize the cluster centroids gc, c = 1...k using a distance-based criteria which
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allow us to clearly differentiate each cluster (initially with considerable separation)235

defining our performance categories in the feature space. The initial centroids are

chosen as follows:

• Selecting the point with a feature vector having the nearest distance d(r, r0) to

the origin of our feature space (r0 = (0, 0) i.e., 0 errors and 0 time in minutes)

based on the Euclidean distance metric. The cluster formed from this initial

centroid will have an association with a good performance given that, less

errors are committed and less time is required to perform an activity (see 1).

g0 = rm | min
m∈{1,...,N}

||rm, r0|| (1)

• Selecting the pattern with a feature vector having the highest distance to the

origin. The cluster formed from this initial centroid will have an association

with a poor performance (see 2).

g2 = rm | max
m∈{1,...,N}

||rm, r0|| (2)

• In the case of regular or average performance, the feature vector with the

median performance d(r, r0) over all patterns for a given activity and difficulty

level is selected as then initial cluster centroid (see 3).

g1 = rm | medianm∈{1,...,N}||rm, r0||, (3)

where ‖rm, r0‖ is a distance function.

The rationale of “grouping” the records in this way is to allow the system to differ-

entiate between 3 meaningful performance categories based on the assumption that

the less errors committed and the less time needed to complete the activity, the bet-

ter the performance. The clustering process is applied to collected data representing

different interactions with the simulation activities from a population of patients.

From this process we obtain k = 3 cluster centroids (per activity) which will be used

to classify in an unsupervised manner future performance vectors rm related to that

activity (see (4)). The allocation (represented with the function ϕ(r)) is performed

by assigning each datum ri to the nearest cluster centroid (based on the Euclidean

Distance) where each centroid is related to a numeric performance category (label)

0, 1, and 2 for ‘good’, ‘average’ and ‘bad’ respectively. Note that for this step, it

12



is necessary to have a minimum number of interactions beforehand (we used 20 as

minimum in experiments) in order to form the initial clusters.

ϕ(r) =


0 argminc=1,...,k = ‖r, g0‖

1 argminc=1,...,k = ‖r, g1‖

2 argminc=1,...,k = ‖r, g2‖

(4)

In the next section we explain how we convert the categorically assigned performance

scores obtained using the allocation function ϕ(r) for all the completed activities r240

to an overall performance score for each cognitive stimulation area.

4.2. Evaluation of user performance

Given a cognitive area v, the evaluation of user performance is made separately

by summing each labelled instance of performance data generated in (4) for each of

the n completed activities undertaken as part of current session with the system. The

sum of these scores is subsequently mapped from a range of 0 to 2n to a normalised

range between 0 and 10, since the number of activities per area in each session can

vary. This mapping is calculated as follows:

pv = 10

(
2nv −

∑nv

i=1 ϕ(ri)

2nv

)
, (5)

where nv is the number of completed activities in the current stimulation area v ∈

{a, ca, ef, g, l,me, o}, ϕ(ri) is the score (numeric labels) obtained from the allocation

function (4) and pv is the overall performance for the vth stimulation area. The245

calculated final evaluation values are used as crisp inputs (not rounded to integer)

to the therapy recommendation system for each of the seven cognitive areas assessed

by Mente Activa.

4.3. Therapy recommendation and adaptation system

In our application context, there are different sources of uncertainties involved250

in the formulation of stimulation plans (e.g., imprecise and subjective assessments

of the patients performances, their level of cognitive impairment and perception of

activities difficulty by the therapists) which can increase as the user completes stim-

ulation activities over time and is affected by their progressive condition. Therefore,

13



the therapy recommendation system must be able to automate the design of stimu-255

lation plans while dealing with such sources of uncertainty. In the next subsections

our proposed approach of therapy recommendation system is described.

4.3.1. Implementation of FLSs

A MIMO (Multiple input, multiple output) FLS is the core of the system, using:

Mamdani inference [17], singleton fuzzification and centroid defuzzification. In order260

to design the Membership Functions (MFs) and the initial set of rules for each FLS

we consider the current knowledge related to mental health diagnosis together with

a close consultation with staff at the IM. From this process, an intuitive set of

linguistic quantifiers (fuzzy sets) was derived for each of the input parameters being

considered. The design of these was based on subjective measurements, knowledge265

and experience of the therapists and physicians who were consulted.

(a) Neuropsi (b) MMSE (c) Scholarity

(d) Performance (e) Difficulty (f) Amount

Figure 2: Membership Functions for linguistic variables used in the FLSs.

• Neuropsi input value. Neuropsi comprises of several age groups and years

of education. We focused on the range listed for ages of 66 to 85 years (see

Fig. 2a)..

• MMSE input value. Mini Mental State Examination [8] is assessed and270

classified into 7 Geriatric Depression Scale (GDS) states. For our purposes,

the ranges from [26] were taken as basis for the trapezoid MFs (see Fig. 2b).
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• Scholarity input value. Since clinical assessments consider a person might

have an “expected performance” according to their years of schooling, we used

the age ranges proposed in Neuropsi [23] to represent different levels of educa-275

tion by using trapezoid MFs (see Fig. 2c).

• Performance input value. A range from 0 to 10 was chosen to ease the psy-

chologists’ interpretation of this variable. The MFs were chosen to be equidis-

tant and symmetrical triangular fuzzy sets in accordance with IM psycholo-

gist’s criteria (see Fig. 2d). Three fuzzy sets for Bad Performance, Medium280

Performance and Good Performance were defined. These fuzzy sets are related

to the performance categories used in the unsupervised classification process

described in section 4.2.

• Difficulty input/output value. The difficulty input parameter uses a range

from 1 to 10, as activities difficulty is defined over this range. MFs were285

chosen to be equidistant, symmetrical and overlapped triangular fuzzy sets in

accordance to IM psychologists criteria (see Fig. 2e).

• Amount output value. Often, the therapists may recommend to interact

with some stimulation areas to a greater or lesser extent. This can be achieved

with a FLS by adjusting the number of activities suggested per area. There-290

fore, four overlapping fuzzy sets were used to represent the activities’ amount

parameter through trapezoid MFs (see Fig. 2f). The parameters were based

on a range from 0 to 10 as follows: null amount, few amount, moderate amount

and quite amount.

4.3.2. Generation of Initial Stimulation Plan295

Following the registration of a new patient, parameters about the patient condi-

tion are entered into the system, namely: years of schooling, age, clinical diagnosis,

scores based on Mini Mental and Neuropsi tests and medication. That information

is used by the system through a set of dedicated FLSs for each of the seven assessed

cognitive areas in order to generate an initial stimulation plan SP0. Considering300

that in a first instance, there is no information related to performance and difficulty

available, the FLSs rules are initially only related to the inputs MM, Neuropsi and
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Schooling. More formally, the generation of the initial stimulation plans relating to

the different cognitive area specific FLSs can be described as follows:

Let L be a combined lists of activities, where L ⊂ A (recall symbols from Table

3), we need to associate the initial stimulation plan from session j = 0 represented

as SP0 = (u, L) to a patient u such that every Lv
j (see (6)) is proposed as a result

of the Dv outputs by the different FLSs.

L = La
0 ∪ Lca

0 ∪ ... ∪ Lo
0 (6)

Such lists Lv
j are generated by selecting activities which together, have similar or305

equal characteristics to the suggested Dv outputs of the FLSv
0 . The outputs are

tuples Dv = (lv, av) representing the lv average difficulty and av activity amount

characteristics in a cognitive area v. Hence each FLSv
0 recommends if the given

cognitive area needs to be worked on based on the amount of activities and also

their average level of difficulty. An example of the rules used in the system for a310

given cognitive area is:

• R1: IF Scholarity is High AND Neuropsi is Moderate AND GDS-5 THEN Level is

Medium

4.3.3. Consequent Stimulation Plans

Once a user has completed one stimulation plan SPj , the next plan SPj+1 can

be generated by taking into consideration the overall interaction data represented

by Rv and average difficulty dvj per cognitive area as is shown in Fig. 3. Note that

Rv represents only exercises that were completed:

Rv = {rv|rv 6= r0} (7)

As can be seen, the initial process depicted in Fig. 3 is being referred to here as315

the Initial SP Generation process. From that point, the system then, performs the

following steps in order to generate subsequent stimulation plan as follows:

1. Once a user has interacted with a stimulation plan SPj , we use Rv and dvj to

represent the interaction data which the system proceeds to analyse.

2. Each cognitive area v is evaluated by using (4) and (5). This evaluation gen-320

erates a number of scalars pv representing the performance score in the v area.
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Figure 3: Structure of the system

3. Based on the data described on Table 2, the pv performance scores, the average

level of difficulty per area dvj , and user information (years of school, Neuropsi

and Mini Mental scores) are used as crisp inputs for the different FLSv
j .

4. The FLSs generate the recommended difficulty and amount of activities per325

area as crisp outputs (lv and av).

5. In the Selection of activities process, the FLSs outputs are used to select

automatically a number of activities which approximate the required features

by choosing the nearest integer value for the amount of activities and, the

average difficulty for the set of activities in a each stimulation area. These330

selections generate the lists of activities Lv, which together, generate a new

stimulation plan SPj+1.

6. The plan SPj+1 can either be available to be directly performed by the patient

or analysed and adapted by the therapist to generate a modified version of the

new stimulation plan SP ∗j+1.335

Note that step 2, implies using the previously created cluster centroids which

must be periodically refined through re applying K-Means algorithm as new user
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interaction data is collected (this function is currently embedded in the software

system). Also, note that the patient information used in each FLS (e.g., Mini Mental

score) can be periodically revised based on routine medical assessments. In addition,340

therapists can revise therapy plans by modifying the set of rules for each FLS FLSv
p

based on their expert knowledge and assessment of the user. The system allows

the premises and consequents of the rules to be modified by a specialist using an

intuitive interface.

5. Integration of IoT enabled Patient Dialogue and Affect Recognition345

Our proposed integrated architecture is formed by different components arranged

in the following layered structure. The first layer is the user layer, who can be a

patient or a therapist that interacts with the system either on-site or remotely from

home (signified as the second layer). The third layer comprises of the physical de-

vices, that the users are able to interact with. Here two components are considered:350

the computer running Mente Activa software, and TJBot as a means for voice inter-

action with the user. The fourth layer contains the data components, namely: the

Mente Activa database (saving the information collected by the software) and IBM’s

servers (receiving the information from the TJBot and linking it to the IBM Watson

sentiment analysis service). The fifth layer consists of the application components:355

Mente Activa (software running the cognitive games) and IBM Watson. The sixth

and final layer contains the processes: intelligent methods to generate customized

stimulation plans as well as IBM Watson services.

IBM Watson uses linguistic analysis to detect emotional language (anger, fear, joy,

sadness) and language tone (analytical, confident and tentative) found in the dia-360

logue with the user2.

In order to evaluate IBM Watson as a tool for monitoring patients emotions

throughout the therapy, we performed initial tests with five different users at different

points of interaction with the system. In table 4, we show the dominant emotional

and tone scores obtained from common expressions in the dementia care scenario,365

where a score close to 1.0 indicates a high possibility of the emotion/tone presence.

2For further details, check https://console.bluemix.net/docs/services/tone-analyzer/

using-tone.html
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Figure 4: Block diagram showing communication among the different components.

Table 4: Initial test showing a short dialogue from the user, and the emotions detected.

Dialogue Emotional Tone

Today I don’t feel very well. I am tired. Sadness: 0.71 Analytical: 0.93

Good morning. Today is very sunny. Joy: 0.90 Confident: 0.99

I didn’t sleep very well. - Confident: 0.94

I like this game, is very funny and entertaining. Joy: 0.70 Confident: 0.66

When I don’t get the answer right, I feel disappointed. Sadness: 0.79 Analytical: 0.86

As can be seen from Table 4, emotional and tone scores obtained seem to be

consistent with the verbal expressions. These findings, while preliminary, suggests

that we can integrate emotional information into the therapy recommendation sys-

tem which will allow us to have a more comprehensive model and therefore, generate370

stimulation plans more in line with the real needs of the user. Hence the patients

can interact with the system (TJBot and Mente Activa), generating information re-

garding both their performance during therapy sessions and the emotions detected

by IBM Watson (see Fig. 4). This interaction can be given through a chat or voice

dialogue available at specific moments of the stimulation exercises. Moreover, the375

TJBot aesthetically appeals to patients due to its small form factor and engaging

appearance as part of proposed stimulation therapy system (see Fig. 5).
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Figure 5: TJBot integrated within the therapy environment for IoT connected dialogue.

6. Experts-based Evaluation of Mente Activa

In this section, we show the results of using this approach as a tool for dementia

therapy support. We focus on different aspects: (1) analysing the changes in users’380

responses over a number of sessions using the Mente Activa software (Section 6.2);

and (2) the practicality for modifying the system through the rule base between

sessions with patients, showing how stimulation plans are generated and therapy

features change over these sessions (Section 6.3). Lastly, we present a series of

simulation results focusing on analysing the consequent changes on therapy features385

over multiple sessions through different plan generations in response to changing

user interactions (in Section 6.4).

6.1. Collection of initial data

Before creating models for unsupervised performance classification, there was

a data collection process which involved recording all patients’ interactions during390

3 months in the IM. During that time frame the therapists manually designed the

stimulation plans for 39 patients diagnosed with mild cognitive impairment and early

stages of dementia.

The patients all consented to participate in 1 to 2 sessions per week in which

they interacted with the Menta Activa software for approximately 45 minutes per395

session and were excluded from further experiments. Data was collected on the time

and number of errors of each activity pertaining to a specific cognitive area that

a patient successfully completed during the sessions. The collected data was used

to construct the cluster centroids related to different activities which were used to

assess the performances of different areas (as described in 4.2).400
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6.2. Evaluating the Effect of Stimulation Plans on Patients

We are interested in a longitudinal study comparing a feature (performance) in

a population before and after stimulation. Thus, we designed 7 stimulation plans in

Mente Activa with the supervision of psychologists from the IM featuring a varied

selection of activities in term of difficulty (levels 1, 5 and 8) and all cognitive areas.405

The 1st and 7th plan were designed with the same activities to be able to carry out

the comparison of the participants performance related data from the initial and

last sessions.

A series of therapy sessions were developed to deliver the plans to a population

of dementia patients from a different Gerontology Center called DIF (standing for410

Desarrollo Integral de la Familia) to test if there were significant changes in user

responses after one month. The subjects were eligible to take part if: (1) they were

older than 60; (2) they had a low educational level (less than or equal 6 years of

education); and (3) they had reported low/no experience with computers. The study

was performed in accordance with approval granted by the IM, DIF and consent of all415

participants. We ran the sessions (limited to one hour per day) with 7 participants

diagnosed with mild levels of dementia who completed their assigned activities in

the time frame planned and agreed with the institution. Information from their

interactions with the different stimulation plans was recorded and, performance of

the first and last sessions was measured based on their errors and time required to420

finish each activity.

A Student T-test for paired samples was used to compare initial and last per-

formance related measurements. Such a test requires a dependant variable to follow

a normal distribution, hence, we analysed the Euclidean norm of both sets of data

in advance with the Shapiro-Wilk test of normality. In both sets of data, we found425

performance significances of 0.551 and 0.993 for the initial and last stimulation ses-

sions respectively. Therefore, given that both values are greater than the alpha

level (α = 0.05) it can be confirmed that both distributions are normal and we can

proceed to use the dependent T-test for paired samples.

In Table 5 we show the average performance for all stimulation areas using the430

Euclidean norm so that the lower the value (less errors and less time required) the

better performance. As can be seen by comparing the initial and last means, there

is a considerable decrease in the number of errors and time spent when interacting
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with the activities presented in the first session. Though there is a need to conduct

longer term future trials to measure and validate cognitive improvement as a result435

of the therapy, the observed differences do suggest a significant adaptation by the

user to an unfamiliar therapy approach (CACT).

Table 5: Mean and standard deviation of performance per user shown in initial and last sessions

Initial Last

User 1 1.0573(±) 1.3789 0.8507 (±)1.2676

User 2 0.8905 (±) 1.2789 0.6519 (±) 0.8576

User 3 1.3937 (±) 1.5831 1.1090 (±) 1.4643

User 4 1.8689 (±) 2.3604 1.3952 (±) 2.3604

User 5 1.2566 (±) 1.7712 0.9502 (±) 1.6301

User 6 1.9806 (±) 2.5457 0.9995(±) 1.3950

User 7 2.1566 (±) 2.8269 1.2657 (±) 2.2780

Averages 1.5149 (±) 0.4890 1.0317 (±)0.2509

By using a confidence interval of 95% we obtained a p-value = 0.007 thus leading

to conclude that there were significant differences in the overall performance of users

following a plan of cognitive stimulation applied during a month in the Gerontology440

Center DIF León. One could argue that these results might be affected by the users

having a biased advantage as they were presented with the same activity at the start

and end sessions of the month. However the fact that the users performed several

in-between activity sessions each spanning the seven cognitive areas, together with

their initial unfamiliarity with the tool and level of impairment, would suggest that445

the system can be an appropriate tool for stimulating and exercising users cognition.

The length of the period (one month) of study was not long enough to allow us

to test the patients’ cognitive change, as clinical tests to show significant conclusions

would require at least 6 months. However, this study has allowed us to: (1) measure

an improvement on participants performance in interacting with the Mente Activa450

tool (as seen in Table 5); (2) encourage participants to use CACT as they reported

that the system enhanced a sense of achievement; and (3) gather data on patients

interactions with different activities for generating and updating the cluster models

for unsupervised classification of performance.
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6.3. Rule-base initial development and tuning455

In order to perform an initial evaluation of the intelligent module in its ability

to generate appropriate and effective stimulation plans for patients, it was necessary

to create a set of rules through consultation with the IM specialists (based on their

experience and knowledge). To test the system plan suggestions we convened a

population of ten patients who had never interacted with the system before with460

moderate dementia. Two interactions within one week were authorized with the

patients in which, the stimulation plans generated by the system (initial SP0 and

subsequent SP1), were monitored by three IM psychologists in charge of leading

these sessions with patients with this level of impairment.

After the first interaction in which only MMSE, Neuropsi and Years of Education465

were used to generate the initial SP0. Subsequently, the intelligent module analysed

the outputs from these first interactions (now taking into account the user perfor-

mance and average difficulty per area) thus generating the subsequent features for

the stimulation plan SP1.

Considering that the developed system cannot be objectively validated with ex-470

pected or desired results due to the lack of a specific objective function to be opti-

mized, the evaluation of this system is largely based on comparing its performance

with the judgement of experts that would otherwise be manually and directly design-

ing the therapy plans. Therefore, we collected the opinions of the three psychologists

who designed the rule-base and supervised the interventions in order to measure the475

extent to which they agreed with the features of the automatically generated stim-

ulation plans. The opinions were based on their agreement with the proposed plans

SP0 and SP1. For this purpose, we designed a Likert-based survey with a range

from 1 to 5 (Strongly disagree to Strongly agree). The key aspects to evaluate were

the difficulty and amount (per stimulation area) proposed by the system in relation480

to the users’ condition and performance shown during the interactions. Thus, we

made two questions per cognitive area with a rating scale based on the aggregation

of 14 scores (i.e., 2 questions ×7 areas).

According to the opinion of psychologists from the IM, average agreement varies

considerably depending on the cognitive area in question. This is attributed to: (1)485

similar rulebases for most of the areas; and (2) there was a lack of standardization

in the levels of difficulty, i.e. a difficulty n does not require the same mental effort in
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Table 6: Averages of agreement towards system suggestions per are in a 5-point Likert scale for 10

patients

Area Difficulty Amount

Attention 3.89 (±0.93) 3.67 (1.00)

Calculus 4.33 (±0.87) 4.00 (±0.87)

Ex. Functions 3.40 (±1.14) 2.60 (±0.89)

Gnosias 4.63 (±0.74) 4.57 (±0.79)

Language 4.63 (±0.74) 4.00 (±0.93)

Memory 3.25 (±1.26) 3.50 (±0.58)

Orientation 4.02 (±0.60) 3.72 (±0.70)

all cognitive areas (e.g., Executive Functions, Memory, and Orientation) as some are

inherently more complex than others, since they involve using several brain functions

together to different extent. However, the stimulation plans proposed by the system490

can be manually improved by adding/removing individual activities which better

approximate therapist’s judgement. This was also reported as being useful for the

therapists by assisting them in the adjustment of activities in a more consistent and

time efficient way.

6.4. Simulation results495

We acknowledge that the results shown for the developed therapy approach,

in a real context are limited and a longer term trial is required to evaluate the

approach’s effectiveness (to be presented in a future publication). However, from a

computational perspective we are still able to evaluate the performance of the system

using simulated data to provide an insight into its functional capability when testing500

with practical limitations.

In order to develop the simulation experiments, we have used the information

from the 7 patients who completed the 7 sessions and follow the process sequence

depicted in Fig. 6. Firstly, we used the scored points in Mini Mental, Neuropsi

and years of school to generate the first stimulation plan by using rules which do505

not consider performance and level as input data in the FLS0. Following this, we

used the patients interaction records from the first two sessions as a single session

and performed bootstrapping (by sampling the difficulty dv and interaction records

Rv 1000 times per each v cognitive area) with each patient profile. Subsequently,
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Figure 6: Process sequence for generating simulation results.

we generated statistical estimations (µq and σq where q ∈ {1, 5, 8}) related to the510

patients’ initial performances. Given that the available data was related only to

difficulty levels of 1, 5 and 8, we subsequently employed linear interpolation in order

to estimate the statistics associated to missing levels, obtaining thus, two sets of

statistics S = {σ1, ..., σ10} and U = {µ1, ..., µ10}. These sets were used to generate

simulated patients’ responses based on statistics (represented by the simulator block515

in Fig. 6) over different levels and stimulation areas.

We then simulated 10 sessions by generating stimulation plans along with user

responses. More specifically, we created a first plan SP0 using only the initial infor-

mation as described in section 4.3.2. The patients’ interactions with this first stim-

ulation plan were simulated from the statistics generated in bootstrapping which520

were used to generate subsequent interactions SP1 to SP9 and the activities in each

plan were proposed by the FLS as described in Fig. 3. Due to space consideration

in this paper, we focus our results on the areas of Attention and Calculus. In Fig-

ures 7 and 8, we show the recommended levels and performance obtained by the 7

simulated patients’ interactions in each session for the Attention and Calculus areas.525

Note from the Figures that we are showing 9 simulated sessions because for the first

interaction, there is no performance input and the recommended level is calculated

by using other values (Neuropsi, GDS state and years of school).

As can be seen, for each change in simulated user performance there is a “slight”

adjustment of the recommended level. It is worth noting that despite both these530

25



(a) (b) (c)

(d) (e) (f)

(g)

Figure 7: Simulated performances and consequent level recommendations from Fuzzy Logic based

module for the Attention area. Dark grey and Light grey lines represent the performance and

recommended level respectively.

values being shown in the same chart, both values represent different indices and it

is not the aim of the FLSs to approximate the performance (i.e., difficulty 6= perfor-

mance) but to respond to performance changes according to experts’ criteria while

considering several other patients’ characteristics. In other words, adjustments in

recommended levels are partially correlated with the patients’ performance, which535

implies that system responses are driven by patients’ performance that has a bearing

on their cognitive state. To further verify this, we calculated the correlation coef-

ficients of the simulated patient’s responses and difficulty recommendations using

Pearson rank values and found a positive and significant correlation in all cases (see

Table 7).540

It is worth mentioning that, (1) the presented results come from rule-bases to-

tally designed by experts and further tuning is needed; (2) the preliminary results

obtained with this approach are useful to show the suitability of applying FLSs as an

interpretable and flexible methodology to provide automated plan suggestions which
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(d) (e) (f)

(g)

Figure 8: Simulated performances and consequent level recommendations from Fuzzy Logic based

module for the Calculus area. Dark grey and Light grey lines represent the performance and

recommended level respectively.

could be extended to use self adapting rule-base with rule generation, adaptation545

and removal; and (3), in order to develop a full care intervention with a self adapt-

ing rule-base an optimization approach with an evolving objective criteria should be

adopted.

6.5. Comparative

From a different perspective, the proposed approach can be considered as an550

instance of a knowledge-based (KB) recommender system, in which personalized

Table 7: Correlations between estimated performance and recommended level of difficulty in 10

simulated interactions.

Patient P1 P2 P3 P4 P5 P6 P7

corr A 0.596 0.844 0.774 0.563 0.874 0.896 0.703

corr C 0.721 0.897 0.867 0.558 0.896 0.693 0.713
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information is used to automatically select a set of items (tasks) on behalf of a

human according to a criteria (e.g., therapy suitability). Comparing conceptually

KB systems against other popular recommendation approaches such as collaborative

filtering (CF) methods [3], KB systems offer a functional knowledge able to reason555

about the relationship between a state (initial or subsequent) and a potential rec-

ommendation [18] while CF methods suffer from the so called: cold start problem

[32], i.e., new users with no prior interaction history with the system from which to

derive recommendations for personalised therapy plans. Lastly, the use of fuzzy sets

allows experts to express their (sometimes vague) assessments/criteria by means of560

linguistic terms, which can be directly associated to abstract terms commonly used

in therapy delivery and assessment. These advantages are corroborated through the

practical scenario in which the proposed system was evaluated to have a significant

occupational impact on therapists ability to provide efficient and consistent care

assessment regardless of the number of sessions with particular patients.565

7. Conclusions and Future Work

In this paper we have presented a game based cognitive stimulation system for

analysing unobtrusively the performance of Alzheimer’s sufferers during their inter-

actions. Besides delivering cognitive therapy as other CACT systems, the novelty of

the proposed system is that it is able to provide an auto adaptive computer-assisted570

therapy approach which can reduce input of the therapist in terms of assessment and

plan formulation. This can help to decrease cognitive effort and assessment of incon-

sistencies arising from changes in medical staff. Such “automation” non-existent in

current CACT systems, also enables learning different types of patients performance

in order to assess different interactions and more effectively use the therapists’ knowl-575

edge to provide consequent plan formulations according to the individuals cognitive

abilities and disease pathway.

We have shown in Fig. 4 that IoT connected dialogue devices for performing

cloud-enabled sentiment analysis and affect recognition can be integrated with the

stimulation therapy monitoring to provide richer behaviour and cognitive condition580

information which can be used as part of a pervasive m-health framework tailored

to the patient’s individual personality characteristics and care needs.
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Preliminary experiments were conducted based on patients’ interactions with

the Mente Activa software that found: (1) observed performance improvements on

patients’ interactions after a period of using the system; (2) acceptable levels of585

agreement from therapists towards the automatically generated stimulation plans;

(3) levels of difficulty suggested by the system are responsive to patients performance;

(4) the integration of an IoT connected device for emotion detection could be used

to enhance the therapy scenario and provide a contextual marker against which pa-

tients performance and mental state could be better understood. These combination590

of findings suggests that the presented CACT system can support therapists by pro-

viding a more accurate performance and mental health analysis of patients through

an automated and consistent selection of cognitive assessments which can help to

significantly reduce their workload.

In the future, we aim to perform more extensive experiments integrating the IoT595

enabled device for sentiment analysis as well as evaluating on larger patient groups in

order to analyse the effects of the system’s recommendation on performance changes

(due to cognitive decline).
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