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Abstract. Ising’s solution of a classical spin model famously demonstrated the

absence of a positive-temperature phase transition in one-dimensional equilibrium

systems with short-range interactions. No-go arguments established that the energy

cost to insert domain walls in such systems is outweighed by entropy excess so that

symmetry cannot be spontaneously broken. An archetypal way around the no-go

theorems is to augment interaction energy by increasing the range of interaction. Here

we introduce new ways around the no-go theorems by investigating entropy depletion

instead. We implement this for the Potts model with invisible states. Because spins

in such a state do not interact with their surroundings, they contribute to the entropy

but not the interaction energy of the system. Reducing the number of invisible

states to a negative value decreases the entropy by an amount sufficient to induce

a positive-temperature classical phase transition. This approach is complementary to

the long-range interaction mechanism. Alternatively, subjecting positive numbers of

invisible states to imaginary or complex fields can trigger such a phase transition. We

also discuss potential physical realisability of such systems.

PACS numbers: 64.60.De, 64.60.Bd, 64.60.F

Submitted to: J. Phys. A: Math. Gen.

E-mail: sarkanyp@coventry.ac.uk, hol@icmp.lviv.ua, r.kenna@coventry.ac.uk

1. Introduction

As is widely known, in his famous 1925 paper [1], and following a suggestion

by Wilhelm Lenz, Ernst Ising sought a positive-temperature phase transition in a

one-dimensional (1D) classical equilibrium system with short-range interactions [2]. To

some disappointment [3], there was none. This was the start of a vast amount of

literature on the statistical mechanics of critical phenomena, including a number of

studies on why it is impossible to have a phase transition in such systems [4, 6–8]. The

lower critical dimension is now defined as that below which a phase transition cannot
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occur at positive temperature and at least two physical dimensions are required for

many short-range classical equilibrium models.

Landau and Lifschitz gave heuristic arguments suggesting that entropic excesses

prevent phase transitions below the upper critical dimension [4]; later similar reasoning

was given rigorously by Simon and Sokal [5]; van Hove’s approach was based on proofs

of analyticity of the transfer matrix eigenvalues and free energy [6]; Ruelle extended

this giving rigorous theorems [7] and, more recently, Cuesta and Sánchez [8] presented

more general results about the non-existence of phase transitions in 1D short-ranged

systems. For such classical, equilibrium models with short range interactions in 1D

second-order phase-transition type phenomena can only occur at zero temperature. The

essence of early no-go arguments is that there is an entropy excess in 1D systems relative

to interaction energy so that the delicate balance that gives a phase transition is not

achieved. The role played by domain walls was further investigated in Ref. [9].

To escape the limitations of no-go theorems, interactions with sufficiently long

range can be introduced [10–12]. Another way out is provided by non-equilibrium

systems [13] and further exceptions are discussed in Ref. [8]. In particular one can

consider models with complex couplings [14–16]. In Ref. [17] we introduced a new

way around the no-go theorems involving models with a negative number of invisible

states or complex fields acting on them. Here we develop this circumvention through a

Lee-Yang-zero analysis [18], an approach described as fundamental to the theory of phase

transitions [19]. We also discuss potential physical realisations in real-world systems.

The Potts model with invisible states was introduced nearly a decade ago in

Refs. [20,21] to explain discrepancies between theoretical predictions and experimental

observations of phase transitions in some two-dimensional systems where the

Z3-symmetry is spontaneously broken [22]. It differs from the ordinary Potts model [23]

in that spins in an invisible state do not interact with their neighbours but they do

contribute to entropy. The corresponding Hamiltonian takes the form

H = −
∑
<i,j>

δsi,sj

q∑
α=1

δsi,αδsj ,α, (1)

where q and r are the numbers of visible and invisible states respectively, si =

1, . . . , q, q + 1, . . . , q + r is the Potts variable and δ is the Kronecker delta symbol.

The first sum in Eq. (1) is taken over all distinct pairs of interacting particles, and

the second sum requires both of the interacting spins to be in the same visible state.

We henceforth use the term “(q, r)-state Potts model” for systems with q visible and r

invisible states.

The usual concept of universality means that critical behaviour is determined by

dimensionality, the range of the interaction and the symmetries of the system. Although

the number of invisible states r does not change any of these properties, it was shown

to control the order of the phase transition in Refs. [20, 21, 24]. For example although

the two-dimensional (2, 0)−state Potts model (which is the ordinary Ising model) is



Phase transitions in one-dimension 3

the archetypal example of a continuous phase transition, the model with (2, 30) states

undergoes a first-order transition.

We confirm that the Potts model with a positive number of invisible states adheres

to the no-go theorems in one dimension in that the only possibility for a phase transition

is at zero temperature. However, if external magnetic field is allowed to be complex we

obtain positive temperature phase transitions [14–16]. The same phenomenon can be

achieved through introducing a negative number of invisible states. Although some of

these concepts are unphysical in and of themselves, they can be linked with physicality

in a number of interesting ways.

Long thought to be entirely mathematical constructs whose roles, while important,

are restricted only to fundamental theories that underlie phase transitions, the notion

of complex magnetic fields has recently gained physical traction too. Following on

from an earlier theoretical proposal [25], Peng et. al. have shown that complex fields

associated with a spin bath are related to the quantum coherence of a probe spin

coupled to the bath [26]. The results demonstrate that the times at which quantum

coherence reaches zero are equivalent to the complex values of magnetic fields at which

the partition function vanishes: i.e., Lee-Yang zeros [18]. The zeros method is considered

of fundamental importance in understanding phase transitions [19] and a powerful tool

to analyse critical behaviour [27]. The Lee-Yang zeros give direct access to the partition

function itself and as such give important information on the nature of phase transitions.

Very recently exact results on the classical antiferromagnetic Ising chain in a magnetic

field showed an infinite cascade of thermal phase transitions, the origins of which were

traced to the lines of the Lee-Yang zeros, opening a way to relate to observable and

potentially measurable quantities [28].

Low-dimensional models are of continued theoretical and physical interest [8]. A

new combinatorial approach was used to solve Ising’s model in Ref. [29] and it was

suggested that the method could be applied to the 2D problem. The first experimental

verification of Onsager’s 1943 solution of the 2D Ising model [30] is also a very recent

development, offering a “promising candidate for numerous applications” [31]. This

recent experimental advance inspired the question “are we going to see a transition

. . . in a chain of . . . molecules (1D)” [32]. This is the question addressed in this paper.

For these reasons, we analyse 1D models with invisible states using Lee-Yang

zeros. There have been other approaches to access phase transitions in 1D models.

Following on from suggestions by Anderson [10], Dyson [11] proved that systems

with long range order can have positive-temperature phase transitions and Fröhlich

and Spencer proved the existence of a spontaneous magnetization at positive low

temperature for the one-dimensional Ising model with long-range interactions. Later,

Asorey and collaborators showed that in 1D short range models with complex values of

the interaction constant, phase transitions at positive temperatures are possible [14–16].

Cuesta and Sánchez gave three further examples of phase transitions, both of purely

academic interest and with importance for phenomena such as surface growth and DNA

denaturation [8]. For quantum phase transitions the critical dimensionality is also
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reduced relative to the corresponding classical transition [33]. Some chemical compounds

are well described by quasi one dimensional models [34–39]. Here we are interested in

pure 1D equilibrium models which are both classical and short-range.

The Potts model with invisible states describes a number of models of physical

interest. Notably, the (1, r)-state case is equivalent to the Ising model in a temperature

dependent field and can be mapped to the Zimm-Bregg model for the helix-coil

transition [40]. The long-range extension of the (1, r)−state model possesses a reentrant

phase transition and is in good agreement with experimental observations for polymer

transitions [41]. The (2, r)−state Potts model without external fields is equivalent to

the Blume-Emery-Grifiths model [20,42,43]. The general q and r case can be interpreted

as a diluted Potts model [20,24].

In Section 2 we present the exact solution for the 1D Potts model with invisible

states using the well-known transfer matrix approach [44–51]. Some results from such

well-established material were presented in the letter [17] where the focus was on

Fisher-zeros [52] (zeros in the complex temperature plane) and we elaborate on these in

Appendix A. Here our focus is on Lee-Yang zeros (zeros in the complex magnetic-field

plane). We present a duality relation between field and temperature in Section 3.

In Section 4 we investigate the Lee-Yang zeros for the ordinary Potts model and for

its counterpart with a positive number of invisible states. Singular behaviour of the

Lee-Yang zeros is discussed in Appendix B. In Section 5 we relax the constraints involved

in conventional studies by allowing the number of invisible states to be negative and/or

the magnetic fields to be complex. These enable positive-temperature phase transitions

to be achieved — of the type sought by Ising nearly 100 years ago. We draw our

conclusions in Section 6.

2. Potts model with invisible states

We consider the Potts model with invisible states [the (q, r)−Potts model] with

nearest-neighbour interactions on a 1D chain of N spins with periodic boundary

conditions. The partition function is

Z =
∑
s

exp
(
−βH(q,r)

)
, (2)

where
∑
s

denotes the sum over all possible spin configurations. With periodic boundary

conditions the Hamiltonian can be rewritten as a sum of terms representing one bond

each, namely

H(q,r) =
∑
i

Hi, where Hi = −δsi,si+1

q∑
α=1

δsi,α − h1δsi,1 − h2δsi,q+1, (3)

where the variable i spans the N sites of the chain, si = 1, . . . , q, q + 1, . . . , q + r is a

Potts variable and h1 and h2 are two ordering fields acting on the first visible and first
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invisible states respectively, so that

Z =
∑
s

∏
i

exp (−βHi) . (4)

The final term in Eq. (3) selects only one of the r invisible states as interacting with

the external field h2. As such, it contributes to the energy if h2 6= 0. The r−1 remaining

identical invisible states contribute only to the entropy, as do all invisible states if h2

vanishes. This means that different microscopic configurations could be understood as

the same macroscopic configuration. In terms of the partition function the effect is to

multiply some of the terms by (r−1). Similarly, as was done in Ref. [20], we can collect

all invisible states into a single one with appropriate weight and consider the equivalent

Hamiltonian of a diluted Potts model:

Heq
(q,r) = −

∑
i

δσi,σi+1

q∑
α=1

δσi,α− h1

∑
i

δσi,1− h2

∑
i

δσi,q+1− T ln(r− 1)
∑
i

δσi,q+2, (5)

where σi = 1, . . . , q, q + 1, q + 2 is a new Potts variable and all (except the one along

the field h2) the invisible states are gathered into one with the appropriate weight.

The Hamiltonian (5) is, of course, different to that in Eq. (3). But the corresponding

partition functions are the same.

2.1. Transfer matrix

To develop the formalism to solve the model (3) exactly, we define the transfer matrix

T = T(si, sj) as [44–47]

T(si, sj) = exp

[
β(δsi,sj

q∑
α=1

δsi,α + h1δsi,1 + h2δsi,q+1)

]
, (6)

so that, in the explicit form of a (q + r)× (q + r) matrix,

T =



yz1 1 1 · · · 1 z2 1 · · · 1

z1 y 1 · · · 1 z2 1 · · · 1

z1 1 y · · · 1 z2 1 · · · 1
...

...
...

. . .
...

...
...

. . .
...

z1 1 1 · · · y z2 1 · · · 1

z1 1 1 · · · 1 z2 1 · · · 1
...

...
...

. . .
...

...
...

. . .
...

z1 1 1 · · · 1 z2 1 · · · 1


(7)

where the columns are given by the values of si, the rows are given by the values of si+1

and where temperature and field dependencies have been absorbed into the variables

y = eβ, z1 = eβh1 , z2 = eβh2 . (8)
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Along with the temperature variable y we use another variable t = y−1 = e−β to map

the infinite range 0 ≤ T <∞ to the finite region 0 ≤ t ≤ 1.

The partition function can then be recast as

Z =
i=N∏
i=1

∑
{si}

T(si, si+1) = TrTN =
∑
i

λNi , (9)

where λi are the eigenvalues of T.

Some of the eigenvalues can be found using the symmetry of the transfer matrix. It

is easy to show that matrix (7) has five different eigenvalues. On the one hand, because

the final r columns of the matrix are proportional, one eigenvalue is zero and is r − 1

times degenerate. On the other hand, because (q−1) elements of the main diagonal are

equal to y, choosing λ = y − 1 leads to q − 2 linearly independent eigenvectors. This

leaves only three unknown eigenvalues. They can be found using invariant permutations.

This approach leads to the equation for the three remaining eigenvalues:

(r−1−λ+z2)(yz1−λ−z1)(y−λ−1)−λz1(y−λ−1)−(q−1)(yz1−λ−z1)λ = 0. (10)

This is an equation of third power and can, therefore, be solved exactly. Since the

partition function (9) is defined by eigenvalues and all the λ’s have been found, the

problem is solved exactly [17].

2.2. Partition function zeros

Critical behaviour of equilibrium systems can be extracted from the partition function.

In our case, the latter is described by the eigenvalues of the transfer matrix (9) and,

since we have shown that they can all be found explicitly, the critical properties of the

Potts model with invisible states can, in principle, also be found explicitly. This allows

us to access the Lee-Yang zeros in complex magnetic field [18]. For completeness, we

also discuss the Fisher zeros [52] in the complex temperature planes in Appendix A.

The standard approach is to label the eigenvalues of the transfer matrix in such

a way that they are ordered in magnitudes; |λ1| ≤ |λ2| ≤ |λ3| ≤ . . . . The partition

function zeros are then found using the condition that (at least) two eigenvalues are

largest by modulus [53]

|λ1| = |λ2| . (11)

Since the partition function is analysed in the complex (T or h) plane, the eigenvalues

are complex as well. Therefore condition (11) can be written as

λ2 = λ1e
iφ . (12)

From Eq. (9), the partition function is a sum of eigenvalues to the power N . In

our case the eigenvalue λ = 0 makes no contribution so that the partition function

takes the form Z = λN1 + λN2 + λN3 + λN4 . Of these four eigenvalues, three are roots

of the polynomial (10) and the fourth equals y − 1. Taking into account the orders of
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magnitude of the eigenvalues, the partition function may be rewritten in such a way as

to single out the main terms:

Z = λN1

[
1 + eiNφ +

(
λ3

λ1

)N
+

(
λ4

λ1

)N]
. (13)

In the limit of large N only the leading two terms in the expression in parentheses on

the right-hand side of Eq. (13) contribute so that we obtain the phase φ given by

1 + eiNφ = 0 or φ =
2k − 1

N
π, k = 1 . . . N . (14)

In the thermodynamic limit values of the phase φ span the whole region 0 ≤ φ ≤ 2π.

Therefore the coordinates of the partition function zeros are found solving Eq. (12) with

the phase given by Eq. (14). This method is appropriate when all the eigenvalues are

given explicitly. However, when they are given as the roots of the polynomial, one can

use the method suggested in Ref. [54] for models with three non-zero eigenvalues or that

put forward in Ref. [39] adapted for models with four non-zero eigenvalues.

Following this method, the four eigenvalues of the transfer matrix are presented as

the roots of the polynomial of fourth order ‡. In the most general case it has the form

λ4 + a3λ
3 + a2λ

2 + a1λ+ a0 = 0 . (15)

For the Potts model with invisible states Eq. (15) is obtained by multiplying Eq. (10)

by [λ− (y − 1)]. The corresponding coefficients have the form

a0 = (y − 1)3z1(r + z2 − 1) ;

a1 = −(y − 1)2(z1(q + y − 1) + (2z1 + 1)(r + z2 − 1)) ; (16)

a2 = (y − 1)((z1 + 1)(q + y − 1) + (z1 + 2)(r + z2 − 1) + yz1 − 1) ;

a3 = −q − r − yz1 − 2y − z2 + 4 .

The goal of the method is to obtain a λ−independent equation linking together

temperature, fields and other model parameters. To derive this we use four equations

from Vieta’s theorem together with the condition (12). Excluding all eigenvalues from

these five equations we obtain

F (q, r, z1, z2, y) = F1F2(f1 + f2 + f3 + f4), (17)

where

F1 = 8a2 cos2

(
φ

2

)
cos(φ)− a2

3[2 cos(φ) + 1];

F2 = 4a1[2 cos(φ)+1]

[
cos

(
φ

2

)
+ cos

(
3φ

2

)]2

−32a2a3 cos4

(
φ

2

)
cosφ+a3

3[2 cos(φ)+1]2;

‡ Since one does not know in advance which eigenvalue is the maximum one, all four eigenvalues have

to be considered.
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and

f1 = 16a3
0

[
cos

(
φ

2

)
+ cos

(
3φ

2

)]4

;

f2 = a2
1

[
a2

2

(
a2

3 − 2a2(cos(φ) + 1)
)
− a2

1(1 + 2 cos(φ))3 +

2a1a3

(
a2(5 cos(φ) + cos(2φ) + 3)− a2

3(1 + cos(φ))

)]
;

f3 = − 2a0

[
a3

2

(
8a2 cos4

(
φ

2

)
− a2

3(cos(φ) + 1)

)
+

a2
1

(
4a2 cos2

(
φ

2

)
(7 cos(φ) + 5 cos(2φ) + cos(3φ) + 5)− a2

3(2 cos(φ) + cos(2φ))

)
+

a1a2a3

(
− 4a2 cos2

(
φ

2

)
(6 cos(φ) + cos(2φ) + 3) + a2

3(5 cos(φ) + cos(2φ) + 3)

)]
;

f4 = a2
0

[
128a2

2 cos4

(
φ

2

)
cos2(φ) + a4

3(2 cos(φ) + 1)3 −

8a2a
2
3 cos2

(
φ

2

)(
7 cos(φ) + 5 cos(2φ) + cos(3φ) + 5

)
+

8a1a3

(
cos

(
φ

2

)
+ cos

(
3φ

2

))2

(2 cos(φ) + cos(2φ) + 3)

]
.

For each value of φ given by Eq. (14) all the roots of Eq. (17) provide the values of

parameters when two eigenvalues are equal by modulus, but not all of them are actual

partition function zeros. Actual zeros are characterised by the condition that two largest

eigenvalues are equal by modulus.

We analyse the zeros of the partition function in the plane of complex magnetic

field (Lee-Yang zeros). According to the Lee-Yang theorem, for the ferromagnetic Ising

model on a d−dimensional regular lattice, these zeros are purely imaginary [18]. This

statement can be generalised to many other models [27]. Transforming to the complex

z = e−βh−plane, the counterpart zeros lie on an arc of the unit circle. Lee-Yang zeros

have been called “protocritical points” [53] because they have the potential to become

actual critical points. The protocritical point at an end of the arc which lies closest to

the positive real axis is referred to as the “Yang-Lee edge” (henceforth also referred to

as the “edge”) [55]. If the temperature is higher than the critical one, the circular arc

is open, i.e. it does not cross the positive real axis. As the temperature is lowered, the

arc becomes a circle and the edge pinches the real axis when the critical temperature

is reached, precipitating the phase transition. For temperatures lower than the critical

value, the arc is closed into a full circle so that zeros cross the real z axis.

In Eq. (17), φ takes discrete values for finite systems according to Eq. (14). Having

these data, we used finite-size scaling to determine the critical exponents (Appendix A).

To establish whether the phase transition occurs at positive or negative temperature,

we determine the critical temperature by enabling the zeros pinch the real axis. This

only occurs for infinite volume and we achieve this simply by setting φ = 0 in Eq. (17).
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Alternatively, one can directly access zeros in the thermodynamic limit and the true

(infinite N) Lee-Yang edge by using the Beraha-Kahane-Weiss (BKW) theorem [56–59].

3. Duality relations

To facilitate the analysis of the partition function zeros, we first discuss some properties

of the eigenvalues, which will be used later in the text.

In Eq. (10), the quantities r and z2 appear only in one term together as a

sum. We conclude that the magnetic field acting on the invisible states plays the

same role as additional invisible states. In this way r + z2 − 1 can be treated as a

temperature-dependent number of invisible states. For this reason, in this section z2 is

included in r and is never shown explicitly.

Duality means that under a certain unitary transformation S, the transfer matrix

changes according to the rule [60]

ST(y, z1)S−1 = αTT (yD, zD1 ), (18)

where yD = yD(y, z1), zD1 = zD1 (y, z1) denote variables dual to y, z1, and TT is the

transposed transfer matrix. Eq. (18) can be rewritten in terms of the eigenvalues

λ(yD, zD1 ) =
1

α(y, z1)
λ(y, z1). (19)

Eq. (19) is useful when explicit expressions for the eigenvalues are known. But in

our case solving the third-order equation (10) results in having cumbersome expressions

for each λ and thus Eq. (19) will be hard to handle. Instead, let us derive relations for

the coefficients in the third-order polynomial in the left hand side of Eq. (10). In the

most general case the equation reads

λ3 + A1(y, z1)λ2 + A2(y, z1)λ+ A3(y, z1) = 0. (20)

Eq. (20) holds for both ordinary and dual variables. Substituting (19) into (20) we get

the following transformation rules for the coefficients A1, A2, A3:

A1(yD, zD1 ) =
1

α
A1(y, z1),

A2(yD, zD1 ) =
1

α2
A2(y, z1), (21)

A3(yD, zD1 ) =
1

α3
A3(y, z1).

Using the first two equations of (21) and Eq. (19) with λ = y − 1 one recovers

expressions for the dual variables:

α =
(y − 1)(q(z1 − 1) + (r − 1)z1 + 1)

q2 + q(2r − 1) + (r − 2)r
,

yD =
(q + r − 1)(q + r + z1 − 1)

q(z1 − 1) + (r − 1)z1 + 1
, (22)

zD1 =
q2 + q(2r + y − 2) + r2 − 2r − y + 1

(y − 1)(q + r − 1)
.
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Figure 1. Lee-Yang zeros in the complex z1 = e−βh1−plane of the 1D Ising model

(q = 2, r = 0) for fixed values of T . The plots are for finite N but the curves become

continuous in the thermodynamic limit. The left panel displays Lee-Yang zeros with

a positive value of the temperature (T = 1.091). The Yang-Lee edges, represented as

large red stars, do not reach the positive real axis indicating no phase transition. The

right panel displays zeros with with vanishing temperature (T = 0). The approach of

the zeros to the real axis at z1 = 1 at infinite N indicates a zero-field (h1 = 0 ) phase

transition.

These expressions allow us to substitute temperature by field and vice versa without

changing the behaviour of the system. Substituting r = 0 into (22) one recovers the

duality relations for the ordinary 1D Potts model obtained in [61].

4. Lee-Yang zeros for models with direct physical realisability

4.1. Lee-Yang zeros for the ordinary Potts model

We first consider the ordinary q−state Potts model when the number of invisible states

and, correspondingly, the second magnetic field are set to zero (r = 0 and h2 = 0). This

ordinary Potts model is thoroughly investigated so our results can be compared to those

previously obtained [61]. In this case one of the roots of Eq. (10) becomes λ = y − 1,

reducing the number of different eigenvalues to three. The remaining two eigenvalues

are found as the roots of Eq. (10) and fully recover results obtained in Ref. [61]. The

three eigenvalues are

λ1,2 =
1

2

[
(y(z1 + 1) + q − 2)±

√
(y(1− z1) + q − 2)2 + (q − 1)4z1

]
, λ3 = y − 1. (23)

In Ref. [53] it was shown that the edge can be recovered from the condition that the

largest eigenvalues of the transfer matrix are degenerate. Two of these eigenvalues in

Eq. (23) are degenerate when the expression under the square root sign vanishes.

We plot the resulting loci of Lee-Yang zeros of the 1D Ising model (q = 2) in Fig. 1.

The T > 0 case is illustrated in the left panel. There the edge is strictly complex meaning

there is no phase transition in the symmetric phase. As the temperature decreases, the
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Figure 2. Edge loci in the complex z1−plane for three Potts models (q = 1.5, q =

2, q = 4, moving inside out) without invisible states (r = 0). Each locus spans the full

range of temperature values (0 ≤ T ≤ ∞) and intersects the Re z1 axis at T = 0.

edge approaches the real axis. The limiting case of T = 0 is represented in the right

panel, albeit for a finite-size system (the circle is complete for an infinite chain of sites).

In the thermodynamic limit the approach of the edge to the critical point (h = 0 or

z = 1) triggers the zero-temperature spontaneous (zero-field) phase transition. Fig. 1

illustrates the q = 2 case only, for which the Lee-Yang unit-circle theorem is obeyed.

Altering the number of Potts states alters the loci of zeros (not shown in the plot); while

they remain circular, their radii are q-dependent for positive temperature. If q < 2 the

radii of these circles are less than 1 and if q > 2 the radii exceed 1. However, at T = 0

all Lee-Yang arcs close into circles and cross the real axis at Re z1 = 1.

To more compactly illustrate the dependencies of zeros on the both temperature

and on the number of states, instead of plotting the loci of the full sets of zeros as in

Fig. 1, we plot the coordinates of the edges for different values of T and q in Fig. 2. We

call these “edge loci”. Such plots allow us to capture a greater span of q and T values

while keeping the essential information because where the edge loci cross the real axis is

where a phase transition can happen. For different given values of q the edge loci form

different closed curves. But in each case the real axis is crossed at T = 0 confirming that

the only possibility is for a phase transition at zero temperature, as observed nearly a

hundred years ago by Ising (in the q = 2 case) [1].

To summarise, in this subsection we have recovered known results, supporting the

viability of the approach.
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Figure 3. Lee-Yang zeros for the (2, 2)−state Potts model in the complex z1 =

e−βh1−plane at y = eβ = 2 (outer locus), y = 4 and y → ∞ (inner, closed circle,

representing T = 0) for systems of size N = 100. The inner circle is identical to the

right panel of Fig. 1 for the Ising model. As in the left panel of Fig. 1, the outer two

loci indicate there is no transition at non-zero temperature. The Yang-Lee edges are

highlighted in red.

4.2. Lee-Yang zeros for the Potts model with invisible states

Having recovered well-known results for the ordinary Ising model in Fig. 1 and the

ordinary Potts model in Fig. 2, and illustrated how the loci depend on q, we turn

our attention to the Potts model with invisible states. As follows from Eq. (10) an

external field acting on invisible states effectively works as an additional number of such

states. We elaborate on this duality in Section 3 where we present a similar relationship

between field and temperature. Therefore, without loss of generality, we can set h2 = 0

(or z2 = e−βh2 = 1) in Eq. (10) arriving at

(r − λ)(yz1 − λ− z1)(y − λ− 1)− λz1(y − λ− 1)− (q − 1)(yz1 − λ− z1)λ = 0. (24)

Setting z2 = 1 in Eq. (17), and using the method described earlier, we extract the

Lee-Yang zeros in the complex z1−plane for any value of T at fixed values of q and r.

As a counterpart of Fig. 1 for the ordinary Potts model we plot Lee-Yang zeros of the

(2, 2)-state Potts model for different temperatures in Fig. 3.

As seen from the plot, zeros form circular arcs, but their radii are not unity and

increase with increasing temperature (lower y-values) as the system is driven further

away from the (zero-temperature) phase transition. The same behaviour was observed

even in the ordinary Potts model (Fig. 2). The difference is that even in the Ising case

(q = 2) the presence of the invisible states changes the radius of the circle. It is only at

T = 0 that zeros lay on the closed circle of unit radius.
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Figure 4. The edge loci in the complex z1−plane for q = 2 and r = 0, 1, 6, 13 moving

inside out. All plots cross at the real axis at z1 = 1 indicating only zero temperature

phase transitions. This is the invisible-states counterpart of Fig. 2.

It also is worth noting here that Lee-Yang zeros become increasingly dense as the

edge is approached. This behaviour is quantified by the edge singularity exponent σ [62].

The precise value of this exponent is discussed in Appendix B.

To find the Yang-Lee edge one has to identify when the two largest eigenvalues of

the transfer matrix are equal. This means that the polynomial (10) also has degenerate

roots. This condition is equivalent to the discriminant D(y, z1, z2, q, r) of Eq.(10)

vanishing [63]:

D(y, z1, z2, q, r) = 0 . (25)

The discriminant D is a polynomial function of its arguments y, z1, z2, q and r. By

setting z2 = 1 and fixing the numbers of visible and invisible states (q and r, respectively)

we can scan values of the temperature (y = eβ) to determine the coordinates of the

edge points. Finding these coordinates for all possible temperatures 0 ≤ T < ∞ (or

1 ≤ y < ∞) we obtain the edge loci as shown in Fig. 4. This is the counterpart of

Fig. 2 (it is the Ising model with invisible states). Comparison between the two figures

illustrates that invisible states (entropy augmentation the energy lives in the density)

are manifest in Lee-Yang-zero terms by widening the edge loci. But the behaviour of

Lee-Yang zeros discussed above signals that the presence of invisible states does not

change the fact that there is only a zero-temperature phase transition.

To summarise, in this subsection we have shown that systems with a positive

number of invisible states also fail to manifest a positive-temperature phase transition

in 1D.
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5. Phase transitions at positive temperatures

In this section we introduce new ways to instigate positive-temperature phase transitions

in a one-dimensional classical model with short-range interactions.

We start with analysing Lee-Yang zeros in the complex z2−plane in Subsection 5.1.

This will give us an insight into what is needed to shift the phase transition to positive

temperatures. Earlier we have already mentioned that r and z2 contribute only as

a sum. It appears that having a negative value of this sum is key to achieving a

positive-temperature phase transition in the current context. While mathematically

identical, this mechanism can be interpreted physically in two different ways. Negative

values of z2 lead to complex values of the external magnetic field h2. The effect of

complex model parameters on the phase transition in 1D was already discussed in

Refs. [14–16]. In our case similar behaviour is achieved by tuning h2 as is discussed

in Subsection 5.2. Alternatively, negative values of invisible states r < 0, based on the

duality discussed in Section 3, have the same effect and are discussed in Subsection 5.3.

Although both of these conditions are exotic, they either have connections to physical

systems or have potential to be manifested physically in the future [25,26,64].

5.1. Zeros in complex z2 for h1 = 0

To begin our investigations we take inspiration from the analysis of so-called Potts

zeros. In the ordinary Potts model, these are studied by an extended Fortuin-Kasteleyn

representation [65] by promoting the Potts variable q to a complex number. Zeros

in the complex q−plane are used to find the critical number of states for a given

temperature [66–68]. While values of q below 2 are unphysical in terms of spin models,

they can have physical manifestations — for example q = 1 describes percolation, q = 0

spanning trees and Abelian sandpile model for self-organised criticality [69,70].

We have seen earlier that r acts similarly to an external magnetic field h2. One can

therefore interpret zeros in the complex r−plane as Lee-Yang-type zeros in the complex

plane of z2. We obtain partition function zeros in the complex z2−plane by substituting

values of q, r, h1 into Eq. (17) in a similar manner as in the previous section. On the

other hand, we can analyse the behaviour of the edge coordinates directly by solving

Eq. (25). The corresponding plot is given in Fig. 5 for the particular case q = 2.

For positive values of r, the only crossing point with the real z2 axis is located on

the negative part. This is illustrated in Fig. 5. The middle edge locus in Fig. 5 was

obtained for r = 1. Increasing r serves to shift the locus to the left; but its shape

remains the same. This confirms our interpretation of Fig. 4 that increasing the value

of r pushes the loci further away from a physical phase transition. One may infer that

the converse also holds; decreasing r to a negative number of invisible states may shift

the real edge locus from the negative real semi-axis to its positive counterpart. This is

supported in the rightmost locus of Fig. 5 where r = −4.

To summarise this section, we have observed that zeros in complex h2 cross the

real axis at negative values of z2 when r is positive, or vice versa, when r < 0, z2 ≥ 0.
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Figure 5. Yang-Lee edge locus corresponding to complex z2 for q = 2, h1 = 0 and

r = 4 (dashed line), r = 1 (solid line) and r = −4 (dotted line). Each point of the

lines represent a certain temperature in the region 0 ≤ t ≤ 1.

Of course, the figure refers to the complex z2−plane, corresponding to a field acting on

entropic (invisible) states only. To connect with previous studies of Lee-Yang zeros we

have to examine the complex h1 or z1−plane. We start in Subsection 5.2 by considering

complex values of h2 and r > 0 and defer r < 0 to Subsection 5.3.

5.2. Lee-Yang zeros in the complex z1−plane with a complex field acting on invisible

states: The case z2 < 0 (h2 ∈ C).

Following on from the above considerations, we extend our search for positive-temperature

phase transitions in one dimension to an analysis of the effects of negative values of z2

(meaning a complex external magnetic field h2) through Lee-Yang zeros in the complex

h1−plane. Using the same method as previously deployed, we substitute into Eq. (17)

negative value of z2 and obtain Lee-Yang zeros for various values of q, r and temperatures

t. Results are represented in Fig. 6, which is the positive-r and negative-z2 counterpart

of Fig. 1 (which has vanishing values of r and h2). At small temperatures these zeros

lay close to the unit circle of Fig. 1, but increasing the temperature does not leave

the Lee-Yang zeros on the unit circle. Instead they assume rather moon-like shapes.

Moreover, although the locus of Lee-Yang zeros opens with increasing temperatures as

in Fig. 1, the orientation of the arcs is reversed. It is worth noting here, that in order

to obtain plots shown in Fig. 6 we fixed z2 and not h2, meaning that with the change

of temperature t the external magnetic field is changed.

To further analyse the complex values of h2 that shift the phase transition to positive

temperatures, we set h1 = 0 and use the condition (25) for the discriminant to find when
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(a) (b)

(c) (d)

Figure 6. Lee-Yang zeros in the complex z1−plane for the (2, 2)-state Potts model

with z2 = −5 for different temperatures (a) t = 0.05, (b) t = 0.25, (c) t = 0.3 and (d)

t = 0.4. Large red stars correspond to the edges. Overall behaviour of zeros is similar

to that described in the previous subsection.

two eigenvalues are equal and largest by modulus. This leads to a relation between the

critical temperature and field h2, namely

z2 = y − q − r ± 2i
√
q(y − 1) . (26)

In this equation both y and z2 = yh2 are temperature dependent. Fixing q, r and

sweeping through the region 1 ≤ y < ∞ (meaning a temperature range 0 ≤ t ≤ 1), we

solve numerically Eq. (26) and obtain complex values for h2. In Fig. 7 we plot these

values for the (2, 3)−state Potts model in the form e−βh2 . The curve forms two lines,

each point of which corresponds to a certain positive critical temperature. The upper

and lower branches correspond to complex conjugate values of the field.
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Figure 7. Values of e−βh2 , for which the phase transition in the (2,3)-state Potts

model occurs at positive temperature. Each point of the plot corresponds to a certain

physically accessible critical temperature.

To summarise this subsection, we have observed that a complex field acting purely

on invisible states can induce a positive-temperature phase transition in 1D. Although

this appears exotic, 60 years after their introduction [18], it has recently been established

that complex external magnetic fields h1 can be mapped into physically accessible

quantum coherence times [25]. Similarly, tuning complex values of the external field

h2 may one day be accessible, perhaps by changing the “invisible” part of a system’s

behaviour from classical to quantum.

5.3. Zeros in the complex z1−plane for h2 = 0 and r < 0

We build upon the observation in Fig. 5 that the edges in the complex z2−plane are

horizontally shifted to the right by reducing r to negative values. Moreover, taking into

account results of the previous subsection, where the transition is observed for negative

values of z2 and the duality relation between r and z2, we expect to obtain a phase

transition for r < 0 as well. Using an extended Fortuin-Kasteleyn representation we

relax the condition of positivity on the number of invisible states r. In Fig. 8, we plot

the Lee-Yang zeros in complex z1 for the (2,−5)−state Potts model for different values

of temperature. Fig. 8 is a negative-r counterpart of Figs. 1 and 3. Our principal result

in this subsection is that loci of zeros cross the real axis at positive temperatures for

negative values of r. In particular, the left plot in the second line shows that, in the

absence of field h1 (i.e., when z1 = 1), the zeros cross the real axis at a positive value of t

(namely t = 0.25). This is the sought-after spontaneous, zero-field, positive-temperature
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phase transition in 1D. The correlation length is infinite at the critical temperature but

the entropy has discontinuity. Therefore the phase transition can be interpret as of

first order. However, small part of the entropy dependency on the temperature has an

unphysical region. This can be as a consequence of unphysical values of the model

parameters. Similar behaviour was earlier established in the models with complex

interactions [14–16]. This connection is obvious, since we showed earlier that negative

values of r have the same effect on the system as complex external magnetic field.

Each of the loci in Fig. 8 crosses the real axis, corresponding to a critical point.

Negative values of z1 represent complex values of physical field h1. Values z1 > 1

represent h1 > 0 — a positive field acting on the first state s = 1. Positive values

in the range 0 < z1 < 1 correspond to negative values of h1. Such negative values of

the external magnetic field are effectively the same as positive external fields acting on

the other (s 6= 1) states. For the ordinary Ising case (q = 2, r = 0) negative values of

the external magnetic field acting on the first state (s = 1), say, effectively represent

the same physics as a positive external field acting on the other (s = 2) state. For

the ordinary Potts model with q > 2, r = 0, negative external fields disfavour one of

the states reducing the symmetry from Zq to Zq−1. In three dimensional three state

Potts model this affects the phase diagram; weak magnetic fields do not change the

order of the phase transition, while strong negative magnetic field changes it to the

three-dimensional (3D) Ising universality class [71].

The figure also illustrates that, as for the ordinary Potts model, the Lee-Yang circle

theorem is violated for the Ising model with a negative number of invisible states; the

loci of zeros are not circular.

The set of crossing points for various temperatures in the range 0 ≤ t ≤ 1 can

be interpreted as a phase diagram and is shown for the (2,−5)-state model as solid

black line in Fig. 9. The spontaneous transition is identified at t = 0.25, z1 = 1. The

counterpart for the ordinary Ising model is at t = 0, z1 = 1 — i.e., at vanishing instead

of positive temperature. To further illustrate this representation, in Fig. 9 we divide the

(t, z1)−plane into regions. The different colours represent different eigenvalues which

are maximal by absolute values. Where they coincide is where criticality occurs.

A curious phenomenon in Fig. 8 is the flipping with increasing T of the edges of the

loci (illustrated as large stars, red online) from the positive to negative half planes. This

happens not at the zero-field critical point but at a lower value of T . The reason for

this is that the edges in Fig. 8 are each away from the real axis and are pseudocritical

points with Im z1 6= 0 — not zero-temperature critical points. The phase diagram of

Fig. 9 has vanishing imaginary field Im z1 = 0. To access the LY edges, and their

flipping, requires non-zero values of Imz1 and three examples of this are depicted in

Fig. 10. Different colours in the plot represent different eigenvalues. These are basically

three slices through of a 3D plot with axes t (temperature), Re z1 and Im z1. These

plots are given for the fixed temperature, when flipping occurs and coordinates of the

edge. Three eigenvalues are equal by modulus exactly at the point where flipping occurs.

Such a behaviour signals existence of a point with unusual Lee-Yang edge singularity
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Figure 8. Lee-Yang zeros of the (2,−5)-state Potts model at different values of

temperature (a) t = 0.15, (b) t = 0.2, (c) t = 0.25, (d) t = 0.3 in the complex

z1−plane for the system size N = 256. Panels (a) and (b) illustrate zeros below the

zero-field critical temperature tc = 0.25, panel (c) and (d) illustrate zeros at and above

tc. Large red stars show edges and black dots ordinary Lee-Yang zeros. For small

temperatures the edge is located in the positive semi plane Re z1 > 0, while at higher

temperature it jumps to the region Re z1 < 0. This jump occurs below the critical

temperature tc.

exponent [72].

To summarise this section, while positive values of r do not change the order and

temperature of the phase transition, negative numbers of invisible states shift it to

positive temperatures. In addition, there is a curious phenomenon involving the flipping

of the locations of the edges relative to the other Lee-Yang zeros. This occurs at a value

of temperature below the critical one and is explained by complex fields.
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Figure 9. Phase diagram of the (2,−5)-state Potts model. (t, z1)−plane is divided

into regions according to the maximal eigenvalue. Values z1 < 0 correspond to the

complex values of magnetic field h1, while 0 < z1 < 1 corresponds to negative values

of physical field h1.

(a) (b)

(c)

Figure 10. Three cross-sections of the 3D phase diagram. Each section is given at

the fixed values of parameters when flipping of the edge occurs: (a) - fixed Im z1, (b)

- fixed t, (c) - fixed Re z1. Colour of the region represent the eigenvalue, which is the

largest by modulus inside this region. When three colours meet is the point where

flipping of the edge occurs.

6. Conclusions

The possibility of classical, equilibrium phase transitions below the lower critical

dimension is important at a fundamental level as well as for potential manifestations
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in real-world systems. Onsager’s solution of the 2D Ising model [30] was only recently

confirmed experimentally [31] and theoretical investigations have shown that adding

invisible states can alter the type of phase transition present in such models [20,21,24].

Other recent theoretical and experimental developments include the establishment of

a link between complex fields and quantum coherence times [25, 26], opening up new

ways to access complex fields physically [32]. Still more recent experiments in entropy

depletion involve realising Maxwell’s demon by sorting ultracold atoms in an optical

lattice [77]. Here we combine some of these developments with an exact solution of the

Potts model with invisible states on a 1D chain with two distinct ordering fields. We

use a Lee-Yang zeros analysis to investigate the effects of negative numbers of invisible

states and the complex fields acting on them.

We found that the loci of Lee-Yang zeros and of the Yang-Lee edges strongly depend

on the number of invisible states r. The area covered by the locus of the Yang-Lee edge

increases with r but, if the convention of a positive number of invisible states and real

fields are adhered to, the real part of the z1-axis is only crossed at zero temperature.

This extends the original result of Ising to generalisations of the eponymous model; there

is no positive-temperature phase transition. Nonetheless, the fact that invisible states

alter the locus of the partition function zeros opens up new possibilities to achieve this

end. Interesting results are obtained when either number of invisible states is negative

or the external field h2 is complex. Both these cases are shown to deliver the possibility

for the system to undergo phase transition at positive temperature. Ref. [9] contains a

review of 1D lattice models with entropic stabilities, showing that the temperature at

which the energy cost of producing a domain wall is balanced by gain of entropy matches

the temperature at which the transitions occur, thus asking the question if all phase

transitions in 1D are driven by the formation of domain walls. Here, we have established

that 1D phase transitions are achievable by negative numbers of invisible states and by

complex magnetic fields. These would appear to be outside the domain-wall criterion.

The reason why our results are not governed by the rigorous theorems [4, 7] is the

following. A negative number of invisible states is equivalent to complex values of the

external magnetic field. Ruelle in his proof requires all physical parameters to be real.

Thus the conditions of this well-known theorem are violated, making it non-applicable

in our case. Fields acting on conventional states have been shown to be mappable to

quantum coherence time. This suggests that allowing h2 to be complex may similarly

endow our classical system with an element of quantum properties. Moreover, based on

the energy-entropy arguments, the addition of a negative number of invisible states can

be interpreted as a sort of indirect or artificial ordering mechanism, whereby the entropy

is decreased by an amount sufficient to bypass the no-go theorems. This suggests that

the introduction of a more physically direct ordering mechanism might overcome the

no-go theorems in a new manner. Finally, according to the equivalent Hamiltonian (5), a

negative number of invisible states plays the same role as a complex chemical potential,

suggestive of a possible link between both bypass mechanisms.
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Appendix A. Fisher zeros

In Ref. [17], we reported on an analysis of the Fisher zeros in the complex temperature

plane [52]. Here we present a brief version of that study because (i) it shows how we

extract zero field critical points needed for Section 5 and (ii) it provides information on

phase transition strength.

Fisher zeros are usually considered at the critical value of the external field. For

the spontaneous phase transition the critical value of the field is h1 = 0 corresponding

to z1 = 1. In this case one of the roots of the polynomial (10) becomes λ = y − 1

so that the polynomial (10) has only three different eigenvalues. Fisher zeros can be

obtained from the condition that (at least) two eigenvalues of the transfer matrix are

largest by modulus [53]. This approach allows to obtain zeros of the finite-size system

and thus use the finite-size scaling technique (FSS) for the Fisher zeros coordinates. In

the thermodynamic limit the line of zeros crosses the real axis at the transition point.

Appendix A.1. Critical temperature

Fixing z1 = z2 = 1 in Eq. (17) we arrive at the equation for the coordinates of the

partition function zeros in the complex y−plane at given pair of (q, r). It is most

convenient to display Fisher zeros in the complex t = y−1−plane. In this case they

form closed curves around the origin t = 0 (rather than the “run-away” behaviour at

y → ∞). The infinite region 0 ≤ T < ∞ corresponds to the section 0 ≤ t ≤ 1. In

Fig. A1(a) we plot coordinates of the zeros for q = 2 and r = 0, 1, 2, 5 at fixed N = 128.

The case r = 0 recovers results for the 1D Ising model. For q = 2, r = 0 zeros lie on the

imaginary axis. With increasing N , the zero closest to the real axis closes in and with

N → ∞ it crosses the real axis at t = 0 (T = 0), implying again that there is only a

zero temperature phase transition for the 1D systems [4, 7].

As one can see from Fig. A1(a), the presence of invisible states changes the locus

of Fisher zeros. Now the zeros have both real and imaginary parts and in addition one

more crossing point of the real t−axis appears. However this crossing point is located

in the unphysical region t < 0 (complex values of T ). t = 0 remains the point where

the Fisher zeros approach the real axis and this confirms that the phase transition in

the 1D Potts model is not changed by the presence of the invisible states. The critical

exponents of this transition are further discussed in Appendix A.2.

We extend these considerations and show in Fig. A1(b) the locus of zeros for the

(2, r)−state Potts model with negative values of r. §
As we can see from the figure, the locus of Fisher zeros in case r = −5,−7

intersect the real axis at the value tc = − 1
q+r−1

. This means that besides the ordinary

zero temperature phase transition we observe finite temperature phase transition in

1D model. The equivalent representation of the Potts model with invisible states

through Eq. (5) indicates that the chemical potential is µ = −T log r. Therefore the

§ We do not show in the plot some points in the region t > 1 that correspond to negative temperatures.
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Figure A1. Fisher zeros of the (2, r)−state Potts model in t = y−1 = e−β−plane

for system size N = 128 with a) r = 0(blue), 1(yellow), 2(green), 5(red) and b)

r = 0(blue), −2 (yellow), −5 (green), −7 (red).

negative number of invisible states is equivalent to a model with complex chemical

potential. Again, via the aforementioned relation between the complex external field

and decoherence time [25], this gives a connection to the behaviour of quantum systems.

Appendix A.2. Critical exponents

With the coordinates of the Fisher zeros to hand it is possible to obtain values of critical

exponents. The first method to use is the scaling of the zero closest to the critical point.

The corresponding scaling law has the form

Re t = tc + A ·N−Λ (A.1)

Im t = B ·N−1/ν , (A.2)

where tc is the critical temperature, ν is the correlation length critical exponent, Λ is

so-called shift exponent and N is the system size [73].

Another approach to analyse the partition function zeros is to use partition function

zeros density [74]. This method allows to use not only coordinate of the closest zero but

consider zeros density function which scales as

G(R) ∼ R2−α, (A.3)

where R is the distance to zero from the critical point α is the specific heat critical

exponent.

We have used both techniques to extract the critical exponents from the coordinates

of the zeros. Using system sizes from N = 500 to N = 1000 with increment ∆N = 20

q = 2 and r = 6 we obtained ν = 0.9998(2), Λ = 1.9997(2) and α = 1.002(2), which are
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in a good agreement with the hyperscaling relation α = 2− dν. Moreover these values

remain close to the values ν = 1, α = 1,Λ = 2 with q and r changing.

It is worth mentioning that in the absence of magnetic field exact solution can be

obtained and critical exponents are the same as in 1D Ising model (ν = 1, α = 1, η =

1, γ = 1, µ = 0, β = 0, δ =∞).

Appendix B. Yang-Lee edge singularity exponent

In this appendix we show that the value σ = 1
2

remain unchanged by introdusing invisible

states. To do so we closely follow the method developed in Refs. [39,54].

With increase of system size, Lee-Yang zeros z1 = |z1|eiθ terminate in the complex

plane at the Yang-Lee edge ze1 = |ze1|eiθe . Their density g(z1) in the vicinity of ze1 is

governed by the edge singularity exponent σ [62]:

g(θ) ∝ |θ − θe|σ . (B.1)

In circumstances where, for a given value of T , the zeros are located on curves (the

so-called singular line [75] as opposed to two dimensional regions [74]), the function g

can be written for a fixed |z1| keeping dependency of the phase θ only. The exponent σ,

like the other critical exponents, is characteristic of a given universality class. For the

1D Ising and q−state Potts models its exact value is σ = −1
2

[18, 54, 62]. Another

known exact value for the σ−exponent has been obtained for the spherical model,

where σ = 1
2

independently of the type of interaction (short- or long-range) and space

dimensionality [76].

The density of the partition function zeros in the region (φ, φ+ ∆φ) is proportional

to the number of zeros in this region divided by the length of the part of the cord these

zeros occupy. Since for each φ there is a certain zero, than the number of zeros in the

region (φ, φ+ ∆φ) is proportional to ∆φ. Therefore, the density can be written as

g̃(φ, φ+ ∆φ) ∝ ∆φ∫ φ+∆φ

φ

√
(∂Rez1

∂φ
)2 + (∂Imz1

∂φ
)2 dφ

. (B.2)

In the thermodynamic limit zeros form continuous curve with density at the point φ

given by

g̃(φ, φ+ dφ) = g(φ) ∝
1√

(∂Rez1
∂φ

)2 + (∂Imz1
∂φ

)2
. (B.3)

In the vicinity of the edge θe (which corresponds to φ = 0) coordinates of zeros can be

expanded into the Taylor series

z1(φ) ≈ ze1 +
∂2z1(0)

∂φ2
φ2 + . . . , (B.4)

The linear term is absent since Eq. (17) is an even function of φ. Substituting the

expansion (B.4) into Eq. (B.3) we obtain a simple relation between the density function
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g(φ) and the phase φ:

g(φ) ∝ |φ|−1 . (B.5)

In the thermodynamic limit, close to the edge point, the phase and coordinates of zeros

are connected through

θ − θe ∝ |z1 − ze1| . (B.6)

Using expansion (B.4) in the right-hand side of the Eq. (B.6) we arrive at

φ2 ∝ (θ − θe) . (B.7)

Relation (B.5) together with Eq. (B.7) lead to the power-law behaviour of the density

of zeros as a function of their phase close to the edge point

g(θ) ∝ |θ − θc|−1/2 . (B.8)

Thus the Yang-Lee edge singularity exponent is σ = −1
2
. This value follows immediately

from the symmetry of zeros under the substitution φ → −φ, which is observed for the

models considered in Refs. [39, 43,54,61].
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