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Abstract:  

 

Adaptive behaviour has a significant impact on the quality of indoor environment, comfort, and energy 

consumption. Therefore, facilitating positive occupant behaviours will improve these three factors.  

The aim of this paper is to develop a design framework that can be used as part of the design process 

to facilitate adaptive behaviours.  

This paper reviews studies that focus on reasons behind adaptive behaviours, and implication of these 

adaptive behaviours on the built environment. This paper highlights that ‘Context’, ‘Occupant’, and 

‘Building’ (COB) have the most influence on adaptive behaviours. However, in most cases their 

influence is not considered holistically. This study also illustrates that adaptive behaviour has 

implications for the quality of Indoor environment, level of Comfort, and Energy consumption (ICE).    

This paper introduces a framework consisting of three stages: 1) Evaluate the relation between COB 

and ICE factors with adaptive behaviours holistically; 2) Design building’s controls for ‘environmental 

behaviours’, set-up strategies for ‘personal behaviours’, and find a balance between these two; 3) 

Monitor the performance of adaptive behaviours through Post Occupancy Evaluation (POE). 

 

Key Words: Adaptive Behaviours; Built Environment; Overall Comfort; Energy; Framework 

 

Highlights:  

 To design building’s controls and setup strategies for personal behaviours, factors related to 

behaviours are studied.   

 Adaptive behaviours can create balance between indoor quality, comfort and energy use (ICE 

factors).  

 A design framework is proposed to facilitate environmental and personal adaptive behaviours.   
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1. Introduction 
Occupants usually respond to discomfort in two regulative ways: by adapting their environment 

(environmental adaptive behaviour) or adapting themselves (personal adaptive behaviour) [1]–[5]. 

Many studies have referred to the role of adaptive behaviour on improving the occupant’s state of 

comfort and quality of environment [4]–[11], and its effect on the occupant’s forgiveness and 

satisfaction [12]–[19]. Occupants who can control their environment suffer from fewer building 

related symptoms [20]–[22] and report lower degrees of discomfort [9]. Occupant behaviour is a 

major source of building performance uncertainty [23]–[25] and is the main reason for the gap 

between predicted and measured energy performance of the building [24], [26]–[29].  

Limited understanding of occupants’ behaviours in buildings results in increased energy consumption, 

poor indoor quality and discomfort. The relationship between comfort and adaptive behaviours is 

quite complex, mainly because factors affecting one aspect of comfort also impact on other aspects 

[30], [31]. For example, opening or closing curtains affects both visual and thermal comfort, possibly 

in an opposing way. State of comfort and energy consumption can also conflict with each other. 

Occupants’ comfort can affect energy demand significantly [31]; for example, the study by Dubrul 

(1988) suggests that while ventilation rate in housing needs to be minimized to save energy, an 

adequate supply of ventilation is required to maintain comfortable and healthy conditions for the 

inhabitants and to avoid damage to the building fabric from pollutants like moisture [32]. It is 

important to find a balance between different aspects of comfort [33], indoor environment and energy 

consumption in order to have efficient and comfortable buildings. This balance can be achieved by 

taking appropriate adaptive behaviours, therefore, it is important to provide opportunities for 

facilitating and practising adaptive behaviours in buildings. The main contribution of this paper is to 

develop a design framework that is recommended to be considered as a part of design process to 

facilitate adaptive behaviours. The results can be used by building designers to design and retrofit 

buildings that better account for occupant comfort, can provide quality of indoor environment and 

save energy.  

2. Methodology  
To develop a design framework to facilitate adaptive behaviours, it is necessary to study factors that 

affect adaptive behaviours and factors that are affected by adaptive behaviours. For this reason, the 

inclusion criteria for selecting materials to review are studies that focus on the reasons for occurring 

or not occurring adaptive behaviours (Group A studies) and studies that examine the implications of 

adaptive behaviour on the built environment (Group B studies). Group A studies look at situations in 

which adaptive behaviours happen, change in frequency and time, or how behaviours are restricted 

or facilitated. Group B studies highlight the direct consequence of adaptive behaviour as it can change 

occupants’ perception of behaviour. As a result, 150 studies are selected for more than four decades 

(1973 to 2018), from 23 countries (Figure 1) based on their connection to group A or group B studies. 
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This paper critically reviews group A and B studies with the aim of developing a framework that can 

be used by building designers to facilitate adaptive behaviours and improve the quality of built 

environment.    

 
Fig 1. The number of studies in each country based on different building use 

 

Reviewing group A studies categorizes all the factors that affect adaptive behaviours into three main 

groups: Contextual, Occupant and Building related (COB). Contextual factors include climatic factors, 

such as ‘temperature and seasonal changes’ and ‘sun effects and its direction’, and urban factors, such 

as background noise level, pollution level, and outside views. Building related factors include type and 

design of spaces and controls, and interior layouts. Occupant related factors are related to the 

occupant’s individual characteristics (i.e. psychological, physiological, economic and social 

background) and their occupancy patterns in the building. Reviewing group B studies reveals how the 

occupant’s behaviour impacts on the Built Environment by changing the Indoor quality, Comfort 

perceived by occupants, and Energy consumption (ICE factors). Figure 2 shows a research taxonomy 

of structure and logical flow for the paper.  

 
Fig 2 Research taxonomy of structure and logical flow for the paper.  

 

This paper reveals the most important and most recurring factors affecting adaptive behaviours and 

also the factors that are influenced by adaptive behaviours. The outcome of this study is to help 

building designers maximize occupant’s interaction with building’s controls and also facilitate 

strategies for beneficial personal behaviours.  
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3.1. Influencing Factors
of adaptive behaviours,
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(Climatic and urban)
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(Personal elements and 
Occupancy patterns)

•Building-related Factors
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•Personal (changing
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level, posture, metabolic
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•Environmental
(operation on controls)

Group B studies: 

3.2. Influenced factors 
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ICE Factors

•Indoor Quality

•Comfort

•Energy Consumption



4 
 

3. Adaptive Behaviours 

3.1. Adaptive Behaviours and Influential Factors in Various Buildings  
 

The first part of the paper considers factors that impact on both environmental and personal adaptive 

behaviours in office, residential and educational buildings.  

3.1.1. Office Buildings  

 Environmental Behaviours  

Environmental adaptive behaviours, including the operation of windows and shades, have a direct 

consequence on energy consumption. Windows and shades are among the controls that can easily 

and quickly change environmental conditions and are closely connected to thermal comfort, visual 

comfort [34]–[37], indoor air quality, acoustic comfort [37], privacy [38]–[41] and outside views [42]. 

Studies show that window operation is related to contextual factors, such as  temperature and 

seasonal changes [2], [8]–[10], [43]–[57], building-related factors, such as previous state of windows 

[44], [52], [54], window size [10], [43], distance to windows [9], and occupancy patterns [10], [45], 

[48], [54], [57].  

The operation of shades is also correlated with COB factors. Firstly, contextual factors such as ‘sun 

effects’ [50]-[71], ‘temperature changes’ [52], [60], [63], [68], [70], [73] and also outside views affect 

shade operation. There is an evidence that, when there is a pleasant view to the outside, shades are 

closed less frequently as occupants like to enjoy the outside view [58], [39], [65], [38], [71], [77], [41]. 

Blinds, as one the shading devices, are usually closed to avoid direct sunlight and glare [39], [38], [69]–

[71]. Sun effects influence the Mean Shade Occlusion (MSO) 1  in each orientation; in northern 

hemisphere, higher MSO is observed on south facing façade [58]–[60], [39], [61]–[63], [40], [64], lower 

MSO on north façade [58], [59], [39], [61]–[63], [40], [64], [74] and intermediate results for east or 

west facades [59], [63], [40], [74]. The frequency of shade adjustment is higher on south [64], [65], 

[72] and west facades [72], [75], and is lower on north and east facades [72]. Several studies suggest 

that the ratio of south MSO to north MSO is between 1.4 and 2.6 [58], [39], [61], [40], [64], [76].  

Secondly, shade operation is affected by building related factors such as type of office, interior layout 

and type of blind. More operation is observed in single occupancy offices than in double-occupancy 

and open plan offices [64], [71], [78], which is due to having higher level of control over shades. Shades 

are opened more when occupants are sitting near the windows [9]. Type of blind affects rate of blinds’ 

operation [38], [70], [79]; automated, remotely controlled and motorized blinds show a higher 

operation rate than manual ones. Thirdly, shade operation is correlated with occupancy patterns 

(arrival and departure) and occupant’s individual characteristics. Psychologically, occupant’s 

behaviour on the operation of blinds is affected by long term perception of the environment rather 

than by short term dynamics [58], [63], [65], [67], [69], [72]; e.g., the state of blinds remains usually 

unchanged for weeks or months [58], [70], [80]–[82]. Behaviour is also affected by the need for privacy 

in the workplace [39], [40], [38], [41]. Physiologically, blind adjustment is predicted by occupants’ 

brightness sensitivity [61]; and socially, blind operation is influenced by trying not to upset colleagues 

in the workplace [60]. Blind operation is also correlated with the occupant’s pattern of arrival and 

departure, with more operation upon entry or at the end of the work day [39], [65], [69], [83] .  

                                                           
1 Mean Shade Occlusion (MSO)1 in each orientation is defined as the average fraction that shades are closed 
for some group of windows [67].  
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Occupants operate artificial light to satisfy their visual needs and comfort [84]. Bordass (1995) 

suggests that limited understanding of occupant behaviour is one of the reasons for uncontrolled 

levels of lighting in many open-planned offices, even with automatic controls [78]. Studies have shown 

that operation of lights is correlated with illuminance level and work plane illuminance [66], [38], [77], 

[85]–[89], type of office (open-plan or individual) [78], [90], access and proximity to controls [75], [87], 

[90], control’s ease of use [91], occupant’s physiological elements (e.g. mood, eyestrain and metabolic 

rate) [86] and occupancy patterns [59], [66], [38], [81], [85], [87], [88], [90], [92]–[94]. Lights are 

switched on when occupants enter offices [59], [38], [81], [85], [87], [88], [90], [92]–[94] and are 

usually switched off when they leave or are absent for a long time [59], [66], [85], [87], [88]. 

Intermediate ‘switching on’ usually occurs at lower illuminance [62], [92], [95] or at clearly 

uncomfortable situations, indicating that switching is usually not an intermediate event [87].  

Research on doors, fans and HVAC is not as comprehensive as that on other controls such as windows, 

shades and lights. Studies illustrate that door operation is connected to indoor temperature [52], [53], 

occupancy patterns and working hours [57], internal noise level [23]. Fan operation is correlated with 

temperature changes [9], [45], [52], [53], [96]–[98], and frequency of heater use is correlated with 

temperature [2], [96] and type of heating system [99].  

 Personal Behaviours:  

Studies on personal behaviours that make the occupant more comfortable by changing metabolic rate 

or internal heat are not developed compared to studies on environmental behaviours. Studies 

highlight that clothing level depends on the variation of temperature [20], [45], [52], [96], [100]–[104]. 

Drink consumption is also correlated to temperature and seasonal changes [52], [101]. However, 

activity level is either negatively correlated to indoor temperature [105] or not correlated to indoor 

temperature [103]. COB factors affecting adaptive behaviours and controls in office buildings are 

presented in Table 1. 
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Table 1. Factors affecting adaptive behaviours and controls in office buildings 

Group Study  Country Outcome of the Study   How outcome can facilitate adaptive behaviours  
W

in
d

o
w

 o
p

e
ra

ti
o

n
 

C [43] UK Window operation is related with Tout (76%), solar gain (8%) and wind speed (4%).  Window’s size and number of openings should be 

designed by considering changes in seasons and outdoor 

variables (i.e. temperature, solar gain, wind), especially 

when variables fluctuate significantly during day and night 

or during different seasons. For example, the operation of 

windows is less frequent during winter compared to 

summer, however designing small openings alongside 

larger openings can provide natural ventilation without 

significant loss of heat and energy. Window operation will 

not be limited by factors such as rain, snow, wind and 

security concerns if window is efficiently and properly 

designed. 

[49] China Few window openings occur when the outdoor temperature is less than 10oC -15oC, but 

the percentage increases when the temperature is between 15oC-30oC and is at 

maximum when temperature is between 25oC-30oC.  

[9], [46] UK 

[51] UK  Window control is affected by T in in summer and by T in/out in winter.  

[106] Pakistan Opening windows is influenced by indoor temperature while how long it stays open is 

influenced by outdoor temperature.  

[9], [45], [56]  Window opening increases when indoor temperature is above 20oC in Switzerland and 

UK [9], [56] and when is above 16oC in US [45].  

[8], [46] UK The percentage of window opening area is the highest in summer, the lowest in winter 

and is in between in spring and autumn, with the highest frequency of window operation 

in spring and autumn and the lowest frequency of window operation in summer.  

[10] Germany 

B [10] Germany Small clerestory windows are opened less frequently, remained open for a longer time 

and are usually used for night ventilation, however large windows are opened more 

frequently for a shorter time and are mostly closed during the night.  

Windows in different designs and sizes can provide 

different aspects of comfort (thermal comfort and indoor 

air quality) and can be kept open/closed for a 

shorter/longer period.   

Workstations should provide occupant’s easy access to 

windows, without locating them in sun patches. 

[43] UK Small windows are usually opened to provide indoor air quality while opening large 

windows is strongly influenced by outdoor temperature. 

[9] UK Window operations are mostly done by occupants sitting near windows (interior layout).  

O [9] UK Window open is closely connected with thermal sensation of occupants.  Understanding occupants’ thermal sensation (based on 

age group and activity) and occupancy patterns to design 

an environment that is positively perceived by them, 

facilitates their efficient window operation.  

[55] Cambridge, 

UK 

Windows are used often by occupants with high perceived control and positive cognition 

over environment than with low perceived control.  

[10] Germany Windows are more manipulated in the morning, at lunchtime and then in the evening, 

according to their occupancy schedule.  

Sh
ad

e
 o

p
e

ra
ti

o
n

 

C [65] UK 30% of the blind occlusion is explained by the amount of sunshine on the façades.  Occupants’ type of activity and amount of daylight they 

need during their occupancy schedule help to decide over 

the best orientation for their shared space.   

[64] Canada Shade movement rate is reported 5 times higher for south facing façade than for north 

facing façade (sun effects).  

[71] Switzerland Upper blinds are lowered four times more compared to the other blinds as they do not   

obstruct occupant’s view when lowered. 

Careful attention should be paid to the site in which 

buildings are constructed to provide occupants pleasant 

outside views and visual comfort. Outside views 

encourage occupant’s efficient operation on blinds.   

[77] Denmark Blinds are left more open to have outside views although occupants would have been 

more comfortable if they had pulled down to control solar radiation. 

B [64], [78] UK, Canada Blinds are less frequently operated in open-plan office compared to individual office 

because it limits controls’ adjustment and makes occupants more inactive.  

If designing individual or cellular office is not possible, 

number of occupants sharing an open-plan office should 
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[9] UK Blind adjustment is more frequent when occupants are sitting near the windows.  be reduced to have more active occupants. Similarly, if 

locating blinds close to workstations is not possible, 

remotely controlled blinds can be designed.  
[70] France In similar context, remotely controlled blinds are used three times more than manually 

controlled blinds.   

Li
gh

t 
O

p
e

ra
ti

o
n

 

B [78] UK Lights are often left on in an open-plan office that limits operation of controls compared 

to an individual office.   

The location and friendly-design of the lighting controls 

affect frequent and efficient operation of lighting systems 

because they will be operated when light level is low 

rather than switching lights on upon arrival and then 

switching them off on departure.  

Furthermore, local controls can satisfy visual needs of 

higher number of occupants.  

[90] Salford, UK Lights’ switches closer to occupants are turned on more frequently.  

[75] US  Having access to light dimmers on occupant’s desk results in more dimming adjustment.  

[91] UK  Where lighting controls are not easy to use, occupants choose lighting levels that reduce 

the need for frequent operation.   

[87] Switzerland Lights are switched on and off upon arrival/departure as lights are placed close to the 

door rather than close to occupants’ workplace.  

O [86] France 12% of the subjects change electric lighting according to their type of activity.  Number of occupants sharing an open-plan office should 

be reduced with a good understanding of their activity 

type to provide them higher levels of control.  

[90] Salford, UK Light switch frequency reduces due to high number of occupants in an open office due 

to social aspect of trying not to upset colleagues.  

Fa
n

/H
V

A
C

 

C [96] Pakistan  Proportion using fans and heaters is correlated with Tin (R2≅0.75) and Tout (R2≅0.8).  The operation of fans/AC/heating systems is mostly 

related to climatic conditions in office buildings. However, 

occupants are less concerned about system’s energy use 

compared to residents, which suggests designing more 

energy efficient cooling or heating systems in offices.  

[2] 6 countries2 AC application for cooling starts at Tout >25oC and for heating stops when Tout >15oC.  

[45], [52]  More fans are on when Tin>26oC in Canada, USA [45] and when Tin is 20-25oC in 

Switzerland [52].  

[97], [98] 6 countries 3  Fans are used when Tout>20oC, and their use is at Max when Tout>30oC.  

P
e

rs
o

n
al

 B
e

h
av

io
u

rs
 

C [96] Pakistan Clothing worn is correlated with both T in/out (R2≅0.65), but it remains constant outside 

the interval 20oC -30oC as occupants reach limits of acceptable clothing in offices.  

The correlation between temperature and clothing level 

shows how occupants adjust themselves to reach comfort. 

Therefore, giving occupants the freedom to choose their 

clothing level without imposing strict uniform policies 

helps reaching higher levels of comfort without using 

excessive energy.  

Similarly, having frequent short breaks in between 

working hours to change metabolic rate and activity level 

can help achieving more comfort.   

[100] UK  Mean Clo values decrease from 0.8Clo to 0.66Clo as mean external temperature 

increases from 6.7oC to 27.3oC. 
[102] Australia, 

Canada, US 

Clothing insulation is correlated with Tout (r=0.45), Top (r=0.3), Hr (r=0.26), and has very 

insignificant correlation with air velocity (r=0.14) and metabolic activity (r=0.12).  

[45] Alameda, 

CA 

Clothing level changes from 0.5-0.6 Clo in the summer to 0.7-0.8 Clo in the winter which 

is best explained by running mean outdoor temperature.  

O [105] Australia Activity level is negatively correlated to indoor temperature as occupants purposely 

reduce activities as temperature raises.    

                                                           
2 UK, Pakistan, Sweden, France, Greece Portugal 
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3.1.2. Residential Buildings 
Researches on occupants’ adaptive behaviours in residential buildings are mainly focused on window 

operation, and then on Air Conditioning (AC) and heating systems. The operation of shades and 

lighting controls, and personal behaviours are not treated comprehensively, however, their effect on 

comfort and energy saving is significant. Contextually, studies have shown that window operation is 

affected by temperature and seasonal changes [32], [107]–[119], CO2 level [3], [4], [114], [117], [120], 

wind speed [32], [110], [111], relative humidity [108], [111], [113], [114], solar radiation [32], [112], 

precipitation levels [32], and background noise level [32], [112], [121]. Building related factors that 

affect window operation include type of dwelling [32], [111], room type [32], [108], [110], floor area 

[112], window size and design [32], [107] and security [32], [121], [122]. Occupant related factors that 

affect window operation are residents’ energy saving concerns [32], [121], [122], number of residents 

[3], [108], [111], resident’s activity and lifestyle [32], [108], [111], [114], [115], [122] and occupancy 

patterns [32], [111]. 

Fans and doors are usually operated to provide cross ventilation and to increase air movement [119]. 

AC operation is correlated with temperature changes [123]–[129], occupancy patterns and activities 

[124], [126], residents’ health concerns [130] and their energy saving concerns [5]. The operation of 

heating systems and thermostats in households is correlated with outdoor and indoor temperature 

[112], [117], [125], [129], [131], poor thermal integrity [132], room and house type [133], [134], type 

of heating systems and thermostat [112], [135]–[138], resident’s age [99], [139]–[143], and energy 

saving concerns [133].  Door operation is also found to be correlated with temperature and seasonal 

changes [109], [116]. COB factors affecting adaptive behaviours and controls in residential buildings 

are presented in Table 2.  

3.1.3. Educational Buildings  
Adaptive behaviour in educational buildings is important because it affects student’s state of comfort 

[144] and consequently health and performance [145]–[147]. There are fewer studies in educational 

buildings compared to office and residential buildings. Generally, less adaptive behaviours are taken 

during teaching activities than during breaks as pupils are concentrated on lessons [34], [148]. Window 

operation is influenced by indoor and outdoor temperature [4], [34], [144], [148], [149], CO2 level 

[149], humidity [119], [149], noise level [37] and security [150] in educational buildings. Blinds are 

adjusted to control glare or sunlight [151], [152], prevent overheating [152], limit outside distractions 

[152], provide outside views [153] and to darken the room for presentations [151]. Window and doors 

are operated more when temperature is high [4], [149] rather than when indoor air quality is low 

[154], because air quality is not perceived as temperature due to gradual sensory fatigue or adaptation 

[155]. Blind’s ease of use  [153], [156] and window design [153] also affect the operation of blinds. 

Use of heaters is affected by interior layout; the air flow through the heater battery is reduced to 

decrease discomfort to the students sitting near the trench [150]. Studying personal behaviours in 

primary schools in UK shows that the time personal behaviours happens is more related to occupancy 

patterns and type of activity, but the frequency of personal behaviours is more related to season and 

outdoor temperature [144]. Students’ clothing level usually follows running mean temperature, 

sequence of temperature and long term fluctuation in temperature [157]–[159]. COB factors affecting 

adaptive behaviours and controls in educational buildings are presented in Table 3. 
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Table 2. Factors affecting adaptive behaviours and controls in residential buildings 

Group Study  Country Outcome of the Study   How facilitating adaptive behaviours  

W
in

d
o

w
s 

 

C [108] Wales, UK  Window opening is related to humidity in winter and to mean daily temperature in summer.  Apart from environmental variables, 

type of room (bedroom, living room or 

kitchen), security and energy saving 

concerns of residents should be 

considered for deciding over window’s 

size, design and opening to facilitate 

residents’ efficient window operation.  

Factors affecting window operation in 

residential buildings are more varied 

than those in office buildings because 

of residents’ more varied occupancy 

patterns, age range, personal adaptive 

behaviours, household activities, 

number of residents in a house, their 

energy saving and security concerns.  

[32] 5 countries3 Windows are operated more at higher temperatures, higher solar radiation, lower precipitation 

levels and lower wind velocities.  

[109], [113], [115] CN, US, KR Windows are opened more often and stay open longer in summer than in winter (Tout).  

B [32] 5 countries 4 Windows in bedrooms are left open for longer periods and the percentage never opened is higher 

in living rooms. Window design, its frame and how it opens, affects window opening behaviour.  

[32], [108], [110] 5 countries4  Window opening is more common in bedrooms that are the buildings’ main ventilation zones. 

[160] Denmark Smaller windows are used seldom.  

O [32], [121], [122] 5 countries4, 

US 

Windows are kept closed mainly due to security and energy saving concerns. 

[32], [108], [111], 

[114], [115], [122] 

5 countries4, 

Korea, US 

Windows are operated more in dwellings with smoking behaviour, with more house-keeping, 

cooking, showering activities and in dwellings that are occupied longer.  

[3], [108], [111] UK, US, DE Windows are operated more in households with larger families.  

[32] 5 countries4 Window opening is maximum in the morning, stays high in afternoon and decreases gradually until 

5 p.m. when another peak happens due to return of work and decreases again during evening.  

A
C

 

C [123]–[126] CN, KR, JP The probability to switch on AC increases when Tin overcomes 25-30oC.  Type of room, type of AC and heating 

systems, residents’ activity and their 

age range affects temperature set for 

cooling and heating systems.  

 

To provide thermal integrity, the 

location of these systems should be 

carefully designed. To save energy and 

to respond to needs of all residents, 

energy efficient heating/cooling 

systems alongside with other controls 

such as windows should be designed.   

 

O [124], [126] China, Japan Turning on AC is frequent before eating and sleeping but tuning it off is more frequent after getting 

up and when leaving the room.  

[130] Japan AC is not used by half of the respondents due to its harmful effects on health.  

H
e

at
in

g/
Th

e
rm

o
st

at
s 

C [131] China Heating systems are more frequently on when indoor temperature is between 10-14oC.  

[134] US Different temperatures are chosen for different parts of the houses, with living rooms being about 

2°C higher than bedrooms. 

[132] US Thermostats are manipulated frequently due to poor thermal integrity to keep Tin more tolerable. 

B [136]–[138] US, UK Programmable thermostats compared to manual thermostats are less likely to be kept at a 

constant temperature, with programmable thermostats having higher settings.  

O [99] Netherland Heating systems are on for more hours and ventilation systems are on for less hours in presence 

of elderly people and children.  

[139]–[143] NL, CN, UK Higher temperature settings are preferred by older people.   

[133] Sweden Residents in detached houses adopt to lower Tin than those in apartments to save energy.  

                                                           
3 Belgium, Germany, Switzerland, Netherland, UK 
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Table 3. Factors affecting adaptive behaviours and controls in educational buildings 

B F Study  Country Outcome of the Study   How facilitating adaptive behaviours 

W
in

d
o

w
s 

C [149] Primary 

schools, UK 

Window operation and window intervention (changing window state) is influenced by 

Tout, Hr, fresh air and CO2 level. Window closing is influenced by cold draughts and Tin.  

Apart from environmental variables, background noise 

level and security concerns can restrict adaptive 

behaviours on windows.  

Appropriate site selection (avoiding noisy areas) and 

secure operable windows that are designed based on 

height of children can facilitate adaptive behaviours on 

windows.  

[34], [148] IT, GR Window opening and closing can best be predicted by Indoor temperature.  

[37] Primary 

schools, UK 

Windows are closed by teachers and pupils in noisy areas to reduce the effect of noise 

especially during quiet activities, resulting in overheating and poor air quality.  

B [150] Secondary 

schools/UK 

Automatic windows in classroom located on the ground floor are shut due to security 

reasons and classrooms rely on mechanical ventilations to provide sufficient ventilation.  

Sh
ad

e
s 

C [151] USA  Closing blinds is mainly for controlling sunlight (92%) in south facing classrooms and for 

darkening the classroom for media presentation (81%) in north facing classrooms.  

To increase the operation of windows and blinds, dividing 

windows by light shelves is a good design solution to 

provide thermal and visual comfort, reduce glare, increase 

daylight level and provide outside views. Dividing windows 

into two can also increase natural ventilation. To facilitate 

efficient operation of blinds, the best orientation for 

classroom activities and its effect on size and design of 

windows should be considered. Blinds should be easy to 

access and use for its frequent operation as it can save 

lighting energy, reduce glare and provide outside views.  

[152] UK Blinds are closed to reduce glare, prevent overheating and limit outside distractions.  

B [156] New York, 

USA 

31% of the teachers never operate their blinds, 21% adjust them monthly, 18% adjust 

on a weekly basis, 17% daily and 13% selected other. Not operating blinds is because 

blinds are difficult to use or broken after years of use.  

[153] Studio/US The major factor for not operating blinds is their hard operation. 

[153] Open-plan 

studio/US 

Blinds are closed less by occupants whose workstations are located within the light shelf 

zone than those who are in the area with conventional windows. Occupants raise shades 

more often when they are given full control over the view part of subdivided windows.  

Li
gh

ts
 C [88] USA In intermittently spaces like schools switching activity occurs throughout the day, with 

a decline in use of artificial light as daylight level increases. The probability of switching 

on artificial light is correlated to minimum working plane illuminance; illuminance levels 

less than 100 lx lead to significant increase of the switch on probability.  

To promote intermittent light switching in schools, blinds 

should be accessible and easy to use to provide as much 

natural light as possible in the classroom and to block 

unwanted sunlight and heat.  

P
e

rs
o

n
al

 B
e

h
av

io
u

rs
 

C [157] England, 

UK 

Children’s clothing and their behaviour usually follows running mean temperature or the 

sequence of temperatures than actual temperature.  

Students should be given the freedom to take personal 

behaviours, such as drinking or changing the combination 

of their school uniform (socks/tights, skirts/trousers, 

trousers/shorts, with or without jumper/cardigan). It is 

important that students, especially primary and secondary 

school children, be advised and reminded on personal 

behaviours, because they sometimes do not think of it or 

forget it. When temperature causes discomfort, type of 

activity in the classroom can be changed shortly to provide 

higher levels of comfort.  

[158] UK Clothing changes little with short term variation of temperature but more with long term 

fluctuation in temperature. Clothing weight depends on the room temperature; 

optimum temperature for students with winter clothing occurs at 18.5oC, for students 

with heavy clothing occurs at 21.5oC and for students with light clothing occurs at 24.5oC.  

[159]                                                                                                                 five local 

primary 

schools/UK 

The number of clothes follows long-term trend of temperature and there is a little 

change in clothes during the day as students do not think of changing or cannot make 

any adjustment to the combination.  

O [161] UK Open activities are preferred within activities’ limitation as temperature increases more.  
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3.1.4. Results 

The summary of review over Contextual, Occupant and Building related (COB) factors influencing 

environmental and personal behaviours in different building types is highlighted, and areas that need 

further development for future studies are discussed.  

 To facilitate adaptive behaviours, COB factors should be studied holistically for designing 

building’s controls or setting up strategies for personal behaviours. Firstly, contextual factors need 

to be considered to avoid scenarios in which adaptive behaviours are restricted; for example, noisy 

areas can restrict the operation of windows specifically in educational buildings. Secondly, building 

related factors need to be examined to measure the degree of personal and environmental 

behaviours occupants can take based on type and architectural features of the spaces; for 

example, shared spaces in office buildings can restrict operations on controls. Thirdly, occupant 

related factors should be studied to discover the effect of personal characteristics of occupants 

and their occupancy patterns; for example, energy saving concerns of residents can restrict their 

efficient operation on controls.   

 The common factor affecting window operation in buildings is indoor/outdoor temperature and 

seasonal changes, with 95% of studies in office, 70% of studies in residential and 63% of researches 

in educational buildings. This study suggests that considering COB factors in window design can 

secure different aspects of comfort, such as visual, thermal, acoustic and indoor air quality, and 

can facilitate safe operation of windows without increasing energy use.  

 Confirmed by 70% of studies, the most recurring variable on shade operation in office buildings is 

‘sun effects and orientation’. Shade operation has not received much attention in residential and 

educational buildings; however, few studies confirm that blinds are adjusted to control sunlight, 

heat and to darken the room for presentations in educational buildings. Blinds should be easy to 

use, accessible and user-friendly for frequent operation to provide more comfort and save energy.  

 The most recurring variable on light operation in office buildings is primarily arrival and departure 

patterns, confirmed by 60% of sampled studies, and then illuminance level. However, not many 

researches are done in residential and educational buildings. For intermittent operation on lights, 

local lighting controls can be designed or the number of occupants sharing an office can be 

reduced, encouraging light operation when light level is low to save energy.    

 Studies on doors, fans, air conditioners and heating systems are not as comprehensive as studies 

on other controls such as windows, blinds and lights. However, most reviewed researches show 

that their operation is related to indoor/outdoor temperature. Similarly, these controls should be 

designed and selected based on COB factors and it should be possible to override them, if needed.  

 Studies on personal behaviours are not developed compared to studies on environmental 

behaviours, especially in residential buildings where residents can take different personal 

behaviours. Changing clothing level as one of the most important personal behaviours is shown 

to be mostly correlated with outdoor temperature in office buildings and with ‘long term trend in 

temperature’ or ‘sequence of temperature’ in educational buildings. Changing policies towards 

personal behaviours within acceptable limits and promoting them can provide higher level of 

comfort and decrease energy use.  

3.2. Adaptive behaviours and Affected Factors (ICE Factors) 
The second part of this paper, group B studies review the effect of adaptive behaviours on indoor 

quality, energy consumption and comfort (ICE factors).  
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3.2.1. Adaptive Behaviours and Indoor Quality  

Adaptive Behaviours help occupants feel more comfortable by changing the quality of indoor 

environment. Several studies have shown that using the means of controls like windows and fans in 

office buildings can improve air movement and consequently decrease peak operative temperature 

[8], [9], [106], [162]. Environmental variables in residential buildings also get improved by the 

operation of window, door [109], [119], [163] and fans in summer [119], and by heating systems in 

winter [109]. There is a large difference between ‘basic ventilation’ during un-occupancy with closed 

windows and doors, and ‘user-influenced ventilation’ during occupancy with operation on windows 

and doors [130]. Low air exchange rates and consequently high indoor concentrations of air 

contaminates are found in California homes as 10% of 63 homes did not open their windows/doors at 

all and only 16% opened their windows with doors being open less than an average of 0.05 m2 [121]. 

In educational buildings, the efficacy of improving indoor air quality by opening windows is 

significantly influenced by location of the school, climatic conditions, occupants’ behaviour towards 

controls, and classroom’s and windows’ design [164]. Indoor air quality in primary schools with manual 

operation of windows is significant, especially during heating seasons [148], [165]–[168], when most 

of windows are closed to save energy [154]. Therefore, it is important to facilitate adaptive behaviours 

towards windows during all seasons to provide indoor quality, especially during heating seasons when 

window operation is lower [165], [169]. Studies show that night ventilation, pre-ventilation and cross-

ventilation can improve indoor air quality [150], [170] and not practising efficient adaptive behaviours 

can result in poor indoor quality [121], [160].  

3.2.2. Adaptive Behaviours and Occupants’ Comfort 
From the biological perspective, if opportunity is provided human being interacts with the 

environment to secure and restore their comfort [171]. According to the adaptive approach by Nicol 

and Humphreys (2002), “if a change occurs such as to produce discomfort, people react in ways which 

tend to restore their comfort” [11]. Table 5 shows how adaptive behaviours affect comfort in office, 

residential and educational buildings. Generally, higher levels of comfort and satisfaction are observed 

when type and level of controls are considered to provide efficient, easy and accessible operations on 

occupants [20], [52], [68], [41], [78], [89], [172]–[177] and when occupants can take personal adaptive 

behaviours [144], [157], [178]. Thermal and visual comfort are significantly affected by type of 

windows and shades and their efficient operation. Size and type of windows are key factors for 

providing thermal comfort for occupants, connecting inside to the outside and maintaining natural 

ventilation [4]. Occupants usually control shades to improve visual comfort than thermal comfort [67], 

because visual stimuli like glare provokes a more immediate behaviour change than thermal or 

olfactory stimuli [179]. However, Ne’eman et al. (1984) shows that office occupants rate controls over 

visual comfort among the least important ones and controls over thermal comfort as the most 

important ones [180]. Studying the effect of personal behaviours on comfort has shown that 27% of 

students in primary schools in UK could improve their thermal comfort vote by putting on or off their 

jumper or cardigan [144]. 
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Table 4. Effect of adaptive behaviours on comfort in office, residential and educational buildings 
 Study  Country Outcome of the study   How facilitating efficient adaptive behaviours 

O
ff

ic
e

 

[20], [52] CH, US Occupants’ comfort temperature increases as their control over the environment increases.   Higher level of visual comfort, thermal comfort, 

indoor air quality and satisfaction is reported by 

having more access to user-friendly and easy to 

use controls.  

 

Mode and type of controls are significant factors 

to achieve comfort and satisfaction among 

occupants. Automatic controls should be easy to 

use and occupants should be able to override 

them if needed.  

 

To avoid conflicting situations among occupants, 

individual controls for each station can be 

designed or the number of occupants sharing a 

control can be reduced. By providing individual 

controls, occupants can adjust their preferred 

outside view and lighting level, which increases 

visual comfort and reduces light-related health 

problems.   

 

Increasing freedom for taking more personal 

behaviours can also provide higher levels of 

comfort.  

[172] Finland Low comfort levels are due to low level of control over room temperature, few adaptive opportunities 

and difficult to use thermostats.  

[178] France Thermal comfort is affected by operations on set point temperature, clothing insulation, and blinds.   

[19] US, Canada, 

Finland 

Occupants with and without access to windows show average air quality satisfaction vote of 0.48 and 

0.14, respectively. Occupants with access to thermostats show improvement in satisfaction of 0.93. 

[55] UK The highest level of comfort is observed in an office with user-friendly windows and the lowest degree 

in an office with high glazing-to-wall area ratio.  

[181] USA Satisfaction is higher among occupants who know how to operate automatic blinds.  

[58], [69], [70] US, JP, FR Higher levels of visual comfort can be provided by providing outside views.  

[68], [175] NL, CA Occupant’s state of comfort is influenced by controls’ availability, mode and level of control.  

[40] Washington  Dissatisfaction and stress is caused by occupants’ inability to access controls, resulting in light-related 

health problems such as migraine.  

[89]  California, 

UK  

Occupants’ satisfaction over controls is affected by mode of controls, with 85%, 78% and 57% of 

occupants finding manual, semi-auto and auto mode of lighting comfortable, respectively.   

[174] Belgium Discomfort is reported when automatic systems make sudden and unexpected changes or when 

occupants are negatively affected by behaviours of others in their environment.  

[78] UK Discomfort is reported due to automatic blinds that operate at wrong time and create conflicting 

situations by not allowing individual control for each station, resulting in system deactivation.  

[176] UK  Occupants prefer to choose their own lighting environment rather than accepting even the ‘better’ 

lighting level chosen for them.  

[173] France Most occupants prefer automatic lighting systems but appreciate having control over the system and 

being able to switch lights on and off.  

[91], [177] UK Occupants are more dissatisfied where many light fixtures are grouped together and automatic 

controls are difficult to use, resulting in systems being deactivated. 

R
es

id
en

ti
al

 [3] Germany Occupants’ perception of comfort is improved by opening windows, and is affected by CO2 level.  Providing more controls for residents can 

provide higher levels of comfort and make them 

more tolerable to uncomfortable situations.  

[116] India Number of uncomfortable residents decreases from 60% to 7% by taking more adaptive behaviours.  

[5] Indonesia Residents are more tolerable of less comfortable conditions when they can adjust controls.  

Ed
u

ca
ti

o
n

al
 [157]  England Students feel more comfortable if they can change clothing level and metabolic rate (posture and 

activity). Sometimes constraints on clothing can cause 4oC departure from the optimum temperature.  

Students can reach higher levels of comfort by a 

short change in type of activity under teacher’s 

permission, or by changing clothing level within 

acceptable limits in times of discomfort.  

[182] Canada Satisfaction is higher when students have access to lighting controls. The more important daylight is 

to them, the more they want to control it.  
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Table 5. Effect of adaptive behaviours on energy consumption in office, residential and educational buildings 

 Study  Country Outcome of the Study   How facilitating efficient adaptive behaviours 
O

ff
ic

e
 

[176] UK  Energy can be saved by installations that allow user control without affecting negatively occupant’s 

perception of visual environment.  

Energy can be saved when occupants have a 

positive perception over controls and have an 

ability to operate them easily. Therefore, type and 

design of controls is significant for energy 

consumption. Appropriate design of windows and 

blinds with effective operation, can control the 

energy needed to maintain thermal and visual 

comfort by inviting more daylight and controlling 

solar radiation. Lighting energy can also be 

reduced by easy-to-access, easy-to use dimmable 

electric lights and well-programmed occupancy 

sensors. Mixed-mode ventilation than mechanical 

ventilation can provide higher levels of comfort 

and save more energy.  

[178] France Total energy demand is mostly affected by operations on set point temperature, blinds and lights.  

[8] UK Annual heating energy demand can be reduced by adding thermal mass to shading.  

[91] UK Where controls are complex to use occupants choose lighting levels that reduce the need for using 

controls, resulting in increased energy consumption.   

[41] Indiana, USA Lighting energy can be decreased by easy-to-access dimmable electric lights and motorized roller 

shades as daylight utilization is increased.   

[60] UK  Increased use of electric light is due to over glazed building as blinds are down most of the time.   

[59] Wisconsin, USA Energy saving is reduced by 30 percent by relying on occupancy sensors for switching lights off than 

switching them off immediately after leaving office.   

[62] Austria Electrical energy use for lighting can be reduced to 66-71% by using occupancy sensors and daylight-

responsive dimming devices.   

[183] USA Substantial HVAC energy savings can be provided by using mixed-mode ventilation for core zones.   

R
e

si
d

e
n

ti
al

 

[184] Spain Peaks of energy consumption occur in the morning and at night as occupancy rates are higher and 

there is no or little sunlight. The peaks can be lowered by using LED technology; replacing 50% and 

80% of lamps with LED technology results in 40% and 65% energy reduction, respectively.  

To explain differences in energy consumption in 

residential buildings, physiological, personal, 

demographic and economic variables should be 

considered.  

 

Well-insulated buildings and efficient lighting 

technologies, for example LED technology, can 

help to reduce energy. Operation of controls is 

facilitated when controls save more energy and 

remove energy saving concerns of residents.  

[32] Footnote 4 Heating demand can be quantified by the effect of window use in uninsulated (5 to 13%), moderately 

insulated (15 to 33%) and well insulated dwellings (25 to 50%). Heating demand is mostly affected by 

occupant behaviour toward windows in well insulated buildings (25 to 50%).  

[185] Greece  The differences toward energy consumption for heating space can be explained by physiological, 

personal, demographic and economic variables like respondents’ age, family size, dwelling size, 

occupancy patterns and income.   

[99] Netherlands Energy consumption is more affected by the number of hours that the heating system is in operation 

than by temperature setting.  

Ed
u

ca
ti

o
n

al
 

[153] An open plan 

studio, US 

More energy can be saved and better daylight conditions can be provided by using a subdivided 

window than by using unified window design. Averagely, 2 hours less electric light is used per day by 

using light shelves.  

Subdivided windows can secure different aspects 

of comfort, visual, thermal and air quality, and can 

save energy due to providing more natural light. 

Night ventilation can reduce cooling costs next 

day, therefore, designing secure windows for night 

ventilation is important (Providing windows in 

different sizes and designs).  

[152] UK  Energy consumption is affected by closing blinds as occupants keep artificial light on most of the time 

to provide adequate amount of light.  

[170] School in 

Germany 

Energy use depends on the room temperature set-point and occupancy; energy costs for cooling for 

the next day can be reduced by night ventilation.  
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3.2.3. Adaptive Behaviours and Energy Consumption  

 

Calculating and simulating building energy performance without considering occupant behaviour 

results in error [186]. Careless behaviour can add one-third to the energy consumption of the building 

[187] while appropriate behaviour can save one-third [188]. Sonderegger (1978) shows that 71% of 

the unexplained variation for space heating in 205 townhouses in Twin Rivers is caused by occupant’s 

energy consumption patterns [189]. Therefore, to address the issue of energy consumption in housing, 

residents and their behaviours should be considered in studies [189]. Bourgeois, Denis et al. (2006) 

show that active occupants that rely on daylight than the ones who constantly use artificial light 

reduce overall expenditure on energy by more than 40% [190]. Similarly, Hong & Lin (2013) employed 

building simulations to show that energy saving occupants consume up to 50% less energy while 

occupants with wasteful lifestyle consume up to 90% more energy than standard occupants [191]. The 

study by Masoso & Grobler (2010) in six commercial buildings illustrates that more energy is used 

during non-working hours (56%) than working hours (44%), due to occupants’ behaviour of leaving air 

conditioning systems, equipment and lights on at the end of day [192]. Another study in Canada shows 

that 66% increase in lighting energy and 33% increase in total energy are caused by inefficient blind 

use [193]. Even occupants’ perception toward environmental controls is found to affect energy 

savings. Barlow & Fiala (2007) show that positive impression of the occupants towards opening 

windows, controlling shading and use of localized switching affects energy consumption [100]. 

Studying the effect of personal behaviours on energy consumption, Newsham (1997) suggests that as 

clothing flexibility increases, occupants adapt to higher cooling set points and lower heating set points 

so they save energy without affecting their state of comfort [194]. Generally, total energy saving is 

increased by allowing user control [176], easy to use controls [41] and efficient design of lights, 

shadings and windows that provide more daylight [8], [32], [59], [60], [62], [41], [153], [178], [183], 

[184]. Table 5 shows how adaptive behaviours affect energy consumption across different building 

usage. The most recurring factors affecting energy consumption in all building use include type and 

design of controls, occupancy patterns and set point temperatures. 

3.2.4. Results 

 

Summary of factors that are influenced by adaptive behaviours including indoor environment, comfort 

and energy consumption (ICE factors) are listed in the following.  

 To provide indoor quality, it is important to facilitate adaptive behaviours towards controls in all 

seasons, especially during heating seasons when windows are less in operation. The efficacy of 

improving indoor quality is significantly influenced by design of controls and occupants’ behaviour 

towards controls, therefore, design of controls should provide opportunities for various types of 

ventilation (e.g. night ventilation, pre-ventilation and cross-ventilation).  

 Higher levels of comfort and satisfaction are reported when more personal and environmental 

adaptive behaviours are provided (i.e. higher level of control). Therefore, individual controls or 

controls shared by fewer number of people in the space can increase comfort level. Comfort is 

increased when building’s controls are easy to use, accessible and can be overridden, if needed. 

This also saves energy as controls are operated more frequently and efficiently.  

 Energy consumption can be explained by environmental variables, building characteristics, 

efficiency of the systems and occupants’ behaviour. Designing a suitable control system is the 

most important factor that enables occupants to achieve a higher level of comfort and save energy 
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in all building use. For example, subdivided windows allow occupants to pick and choose which 

parts of windows need to be opened or closed to maintain thermal comfort, visual comfort and 

air quality. In fact, instead of opening a whole widow to have fresh air during winter and lose large 

amounts of heat, only one part of it can be opened for natural ventilation when it is needed.  

 Mode, type and design of building’s controls are the most recurring factors affecting adaptive 

behaviours and consequently indoor quality, energy consumption and comfort. 

 The importance of facilitating adaptive behaviours can be explained by its effect on indoor quality, 

comfort level and energy consumption (ICE factors) and its role on achieving a balance between 

ICE factors. Better indoor quality, more energy saving and high levels of perceived comfort make 

occupant’s perception toward adaptive behaviours more positive.  

 Adaptive behaviours can create balance between ICE factors to design more comfortable spaces 

for occupants without increasing energy demand.  

 

As a result, besides COB factors that should be studied to design/set up adaptive behaviours, 

awareness of ICE factors influences occupant’s perception toward adaptive behaviours. In fact, 

occupant’s positive impression of adaptive behaviours makes them practise adaptive behaviours more 

effectively.   

4. Discussion 
 

This study has reviewed factors relating to adaptive behaviours with the aim of developing a design 

framework for facilitating occupant’s adaptive behaviour. Developed framework, derived from 

overviewing selected studies, consists of three stages:  

The first stage is to examine the influence of context, occupant and building related factors (COB 

factors) on adaptive behaviours and study how adaptive behaviours impact on indoor quality, comfort 

and energy (ICE factors), with relation to each other. This study shows scenarios in which adaptive 

behaviours happen, change in frequency and time, and are restricted/facilitated with relation to COB 

factors. On the other hand, adaptive behaviours by affecting ICE factors and improving built 

environment can encourage occupants in adaptive behaviours. Adaptive behaviour can also be 

implemented in design process to achieve a balance between ICE factors. Therefore, ICE factors should 

also be explored to facilitate suitable adaptive behaviours.  

The second stage is to design user friendly and efficient buildings’ controls for environmental 

behaviours and set up strategies for practising suitable personal adaptive behaviours and find a 

balance between these two. Designing controls and setting up strategies for personal behaviours 

should be based on findings from the first stage to find out how adaptive behaviours turn 

discomforting conditions to comforting conditions. Balance between personal and environmental 

behaviours can be achieved by ‘doing more personal behaviours when environmental behaviours are 

restricted’ and by ‘doing more environmental behaviours when personal behaviours are limited’.  

The third stage of the framework is running Post Occupancy Evaluation (POE) to control the 

performance of proposed adaptive behaviour. Providing opportunities for adaptive behaviours does 

not guarantee occupant’s efficient adaptive behaviour. POE is required to find out how occupants 

interact with controls, in what sequence occupants take adaptive behaviours, and to predict how 

behaviours affect ICE factors. Results of post-occupancy evaluations obtain influential factors on 

adaptive behaviours, which can again be used in the first stage of framework to design future buildings 
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more efficiently. Post-occupancy evaluations can also educate occupants to interact more efficiently 

with controls and to take appropriate personal adaptive behaviours. Based on above three stages, a 

design framework is advised to be considered as part of design process for providing efficient adaptive 

behaviours, which can be found in Fig 3. 

 

Fig 3. Proposed Framework as part of design process to facilitate adaptive behaviour 

Future studies should focus more on the performance of adaptive behaviours in educational buildings, 

especially among children, while existing studies are mainly focused on adults in residential and office 

buildings. Research on adaptive behaviours towards integrated aspects of comfort needs to be 

expanded as well since different thermal, visual, air quality or acoustic stimuli influences adaptive 

behaviours differently. Furthermore, the sequence of taking adaptive behaviours can be different in 

different building use [5], [7], [195] and its sequence can change energy consumption of the buildings 

[117]; therefore it is also important to find out in what sequence occupants adjust themselves or the 

environment to reach comfort.  

5. Conclusion 
 

This study has reviewed researches on adaptive behaviour of occupants in different building use with 

the aim of developing a framework that is advised to be considered in design process. The first part of 

the paper studies the influence of three factors of Context, Occupant and Building (COB factors) on 

both environmental and personal adaptive behaviours to discover the occurrence and change of the 

adaptive behaviours. The second part reviews studies on the effect of adaptive behaviours on Indoor 

environmental quality, Comfort and Energy consumption (ICE factors) to find out how the relation 

between these factors can be balanced by adaptive behaviours and how occupant’s perception of 

behaviours can be improved. Based on this review, the authors introduce a framework that urge 

building designers to consider all related factors holistically to facilitate occupants’ behaviour. 
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Therefore, designers should evaluate how adaptive behaviour is influenced by COB factors and impact 

on ICE factors at the first stage of this framework. According to the factors studied in the first stage, 

efficient and user-friendly controls are designed for environmental behaviours and strategies are set 

up for practising personal behaviours in the second stage. Personal and environmental adaptive 

behaviours complement each other; therefore, one can be exercised more when the other one is 

restricted. The performance and efficiency of adaptive behaviours are controlled through Post 

Occupancy Evaluation (POE) in the third stage. This framework can be used as a part of design process 

by building designers to facilitate adaptive behaviours and create a positive influence on built 

environment. 
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