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Abstract:  

 

The high level of air pollution in urban areas, caused in no small extent by road 

transport, requires the implementation of continuous and accurate monitoring 

techniques if emissions are to be minimised. The primary motivation for this paper is 

to enable fine spatiotemporal monitoring based on crowd sensing, whereby the 

instantaneous fuel consumption of a vehicle is estimated using smartphone 

measurements. To this end, a surrogate method based on indirect monitoring using 

Recurrent Neural Networks (RNNs) that process a smartphone’s GPS position, speed, 

altitude, acceleration and number of visible satellites is proposed. Extensive field 

trials were conducted to gather smartphone and fuel consumption data at a wide range 

of driving conditions. Two different RNN types were explored, and a parametric 

analysis was performed to define a suitable architecture. Various training methods for 

tuning the RNN were evaluated based on performance and computational burden. The 

resulting estimator was compared with others found in the literature, and the results 

confirm its superior performance. The potential impact of the proposed method is 

noteworthy as it can facilitate accurate monitoring of in-use vehicle fuel consumption 

and emissions at large scales by exploiting available smartphone measurements. 
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Road transport contributes about one-fifth of the world’s total emissions of carbon 

dioxide (CO2) and is the only primary sector in the EU where greenhouse gas 

emissions are still rising1,2. In the UK specifically, transport has become the most 

polluting sector3. Cities are required to monitor emissions and implement short- and 

long-term mitigation measures to avoid pollution episodes (Dey et al., 2017). For 

example, the Low Emission Zone operates to minimise the use of the most-polluting 

heavy diesel vehicles driving in London4. 

 

Researchers argue about the need to monitor emissions at a high spatiotemporal 

resolution (Madrazo and Clappier, 2018, Sun et al., 2018b). To this end, some 

methods combine sporadic air pollution sampling with dense traffic flow or vehicle 

count measurements (Zaldei et al., 2017, Forehead and Huynh, 2018). The latter 

predicts emissions by extrapolating the officially reported CO2 values of the vehicles. 

However, this is not an accurate monitoring method as there is a difference of 30-40% 

between theoretical values and real-world emissions (Fontaras, Zacharo and Ciuffo, 

2017). The discrepancy is mainly due to the mismatch between real driving behaviour 

and that assumed in the test protocols.  

 

In-use monitoring using instrumented vehicles can alleviate this problem (Pucher, 

2016). However, it is very difficult to scale up this approach (Boer, 2012). An 

alternative way, which can be scaled up, is to use indirect monitoring methods based 

on fuel consumption models. Different types of model have been used in the literature 

(Zhou et al., 2018). White-box models are detailed physical models usually developed 

by car or engine manufacturers (Rajamani, 2014). They are highly accurate and 

transparent. Nevertheless, they require detailed information that is generally not 

available such as engine friction or pumping losses. Grey-box models combine simple 

physical models and data obtained from controlled experiments. The most popular 

grey-box model is the Comprehensive Modal Emissions Model (CMEM), widely 

used in traffic-simulation. The accuracy of CMEM depends mainly on the vehicle 

                                                           
 
1 https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-
gases/transport-emissions-of-greenhouse-gases-10  
2 https://data.worldbank.org/indicator/EN.CO2.TRAN.ZS  
3 https://www.independent.co.uk/environment/air-pollution-uk-transport-most-polluting-sector-
greenhouse-gas-emissions-drop-carbon-dioxide-a8196866.html  
4 https://tfl.gov.uk/modes/driving/low-emission-zone  

https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-10
https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-10
https://data.worldbank.org/indicator/EN.CO2.TRAN.ZS
https://www.independent.co.uk/environment/air-pollution-uk-transport-most-polluting-sector-greenhouse-gas-emissions-drop-carbon-dioxide-a8196866.html
https://www.independent.co.uk/environment/air-pollution-uk-transport-most-polluting-sector-greenhouse-gas-emissions-drop-carbon-dioxide-a8196866.html
https://tfl.gov.uk/modes/driving/low-emission-zone
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speed and data fidelity. For example, when average speed profiles are used, the fuel 

consumption estimate can be less than half of the actual value (Turkensteen, 2017).  

 

Black box models are based only on data, usually obtained from naturalistic driving 

trials. The models are clustered into average and instantaneous fuel consumption 

models. Wu and Liu (2011, 2012) investigated the performance of Back-Propagation 

(BP) neural networks (NNs) and Radial Basis (RB) neural networks for predicting 

average fuel consumption. Both NNs used the make of car, weight of the vehicle, 

engine style, vehicle and transmission type as input variables. The BP-NN estimated 

fuel consumption with an accuracy between 93-98.2%, and the RB-NN between 97.7-

98.2%. In the same category, Masikos et al. (2014) studied a General Regression NN 

for the energy consumption of an electric vehicle. The model performed with an 

accuracy of 96% using the inputs: the battery’s states of health and charge, the use of 

auxiliary equipment, the vehicle’s weight, the day of the week, the month, the hour 

band of the day, the slope and class of the road segment, the ambient temperature and 

relative humidity, and the driver’s average energy consumption rate. Yamashita et al. 

(2018) employed a BP-NN depending on the vehicle position, driving time, speed, tri-

axial accelerations, angular velocity, engine revolutions, throttle position and throttle 

nozzle. The accuracy of the model was approximately 95%. Vilaca et al. (2015) 

compared different machine learning algorithms. Inputs to the models were the GPS-

derived speed, vehicle acceleration, and road inclination. Vehicle acceleration was 

calculated indirectly from the GPS speed. The best performing algorithm was the 

Boosted Trees methods. An NN model with only one hidden layer presented the worst 

performance. Zeng, Miwa and Morikawa (2015) studied the use of Support Vector 

Machines (SVM). The inputs to the SVM were the trip distance, average travel speed, 

intersection density (number of intersections per km), engine displacement, and the 

coefficient of variance of speed. The correlation achieved with the SVM was 0.92, 

compared to only 0.86 for a BP-NN with one hidden layer. Du et al. (2017) explored 

a BP-NN model with the driver’s gender, age, the vehicle’s transmission type, fuel 

type, weight, mileage, speed, time, and location as inputs. The NN comprised one 

hidden layer and 13 neurons. The fuel prediction accuracy was 0.82. Table 1 

compares different NN-based fuel consumption models found in the literature. 

 

Table 1: Comparison of Neural Network– based fuel consumption models  
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 Spatio-

temporal 

scale 

NN type Inputs Performance 

Velocity 

data 

CAN-bus 

data 

GPS data 

Wu and 

Liu, 2011 

Low BP    MPE:  

1.8-7% 

Wu and 

Liu, 2012 

Low RB    MPE:  

1.8-2.3% 

Masikos 

et al., 

2014 

Low GR    MAPE:  

3.96% 

Yamashit

a et al., 

2018 

Low N/A    MAPE: 95% 

Zeng, 

Miwa and 

Morikawa

, 2015 

Low BP    R: 0.92 

Vilaca et 

al., 2015 

Fine N/A    RMSE  

3-13 L/km 

Du et al.,  

2017 

Fine BP    R: 0.82 

GR: General Regression, BP: Back-propagation, RB: Radial basis, MPE: Mean percentage error, 

MAPE: Mean Absolute Percentage Error, RMSE: Root mean squared error, R: correlation, N/A: not 

available, L/km: Litres per km 

 

Smartphone data have been utilised for eco-driving purposes already (Kanarachos, 

Christopoulos and Chroneos, 2018). However, the focus was not on the instantaneous 

fuel consumption but the classification and improvement of driver behaviour 

(Meseguer et al., 2013; Orfila et al., 2015; Chen et al., 2017). This paper proposes the 

estimation of a vehicle’s instantaneous fuel consumption using smartphone 

measurements. The potential impact is noteworthy as it can be scaled up and thus 

facilitate accurate monitoring of in-use vehicle fuel consumption and emissions at fine 

spatiotemporal accuracy. The novelty of the findings reported in the manuscript can 

be summarised as: 



 
 

 
 

5 

•    The use of a Deep Neural Network model, in particular, a Recurrent Neural 

Network (RNN), for the estimation of the instantaneous fuel consumption. 

•    Smartphone accelerometer data and number of visible GPS satellites as inputs to 

the DNN-based soft sensor. 

•    A thorough investigation and comparison of different NN architectures and 

training methods for tuning the soft sensor.  

•    The derivation of a probabilistic criterion based on Bayesian binomial inference 

technique for switching between global and local training methods. 

•    An appreciation of performance loss when less information-rich inputs are utilised. 

 

The rest of the paper is structured as follows: in Section 2 the challenges for tuning 

NN-based soft sensors are reviewed. Section 3 presents the steps for designing the 

soft sensor. Section 4 provides a comprehensive evaluation of the soft sensor for 

different training methods and inputs. Conclusions and future research directions are 

given in Section 5. 

 

 

2. NN-based soft sensors design – Related literature 

When it is impossible or impractical to build a sensor for measuring a quantity of 

interest, a soft sensor is often employed. Soft sensors estimate a feature by combining 

a system model with other physical measurements. NNs are often utilised to develop 

the system model, and RNNs are particularly suited for noisy dynamical systems. An 

increasing number of NN-based soft sensors have been developed for the automotive 

industry (Arsie, Pianese & Sorrentino, 2010; Capriglione et al., 2016; Acosta and 

Kanarachos, 2017; Acosta et al., 2017; Nweke et al., 2018).The most common RNN 

soft sensor types are the Nonlinear Autoregressive Networks with exogenous inputs 

(NARX-RNN), Long-Short Term Memory NNs (LSTM-NNs), and Echo-State 

Networks (Ferreira et al., 2012). Bianchi (2017) provided a benchmark study 

considering a set of test functions. A soft sensor's performance depends heavily on its 

architecture, which is problem-specific, and the training method (Pascanu, Mikolov & 

Bengio, 2013; Ferreira et al., 2018).  

 

The most popular method for training NNs is Back-Propagation (BP). However, BP 

often converges to local minima and presents poor performance. An alternative is to 
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have population-based optimisation algorithms. For example, Ibrahim and El-Amary 

(2017) employed Particle Swarm Optimisation (PSO) to train an RNN soft sensor for 

voltage instability and improved the estimation performance by 2.4% compared to 

BP. In another RNN soft sensing application concerning a manufacturing process, 

Patel et al. (2017) employed a Genetic Algorithm (GA) and reduced the mean squared 

error (MSE) by 11% compared to BP. Differential Evolution (DE) was used by 

Duchanoy et al. (2017) to train an RNN sensor that estimates the tyre-contact-patch 

area for a vehicle. Remarkably, population-based algorithms have a significantly 

higher computational burden compared to gradient-based algorithms (Piotrowski et 

al., 2014).  

 

Additionally, in many cases when the ratio of the NN size to the population size is 

high, standard population-based algorithms perform worse than gradient-based ones 

(Piotrowski et al., 2016). This is due to the lack of exploitation capability of 

population-based algorithms in high-dimensional spaces. Unique large-scale 

algorithms have been developed for solving such high-dimensional problems; 

however, their performance in training NNs and specifically NN-based soft sensors 

has not been investigated (Ismkhan, 2017; Nakib et al., 2017; Peng & Wu, 2017; Gao 

et al., 2018; Sun et al., 2018a). Large-scale optimisation performance is usually 

evaluated based on 3.0∙106 function evaluations, which is considerably higher than the 

few thousand typically applied in soft sensor training (Piotrowski and Napiorkowski, 

2018). Table 2 summarises the strengths and weaknesses of NN-based soft sensor 

training algorithms. 

 

Table 2: Qualitative comparison of NN training algorithms considered in this paper 

 Global 

optimisers 

High-dimensional 

problems 

Computational 

load 

Gradient-based algorithms    

Population-based 

algorithms(standard 

version)  

   

Large-scale optimisation 

algorithms 
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3. Fuel consumption soft sensor design  

3.1 Fuel consumption soft sensor: Experimental data & inputs  

Road grade, driving style, and start-stop conditions are the principal factors increasing 

fuel consumption, by up to 20%, 25% and 40% respectively (Fontaras, 2017). Kumar 

et al. (2016) highlighted the relative importance of acceleration. Modern smartphones 

have embedded sensors that measure a vehicle’s position, velocity, acceleration, as 

well as altitude, and therefore can infer the above critical parameters. Nevertheless, 

some of the smartphone signals are noisy, and others can present significant errors. 

For example, the GPS position can have errors up to 75 m, when contact with 

satellites is lost. Consequently, the uncertainty and discrepancies influence the 

estimation accuracy negatively compared to other data sources like the Controller 

Area Network (CAN). 

 

To gather the data a large number of field trials was conducted in Coventry, UK. 

Different driving styles were exhibited to produce an information-rich dataset. We 

recorded the time, GPS position (latitude, longitude, altitude), speed, acceleration 

(longitudinal, lateral, vertical), and the number of visible satellites during the trials. 

The sampling rate was 1 Hz. The data were acquired using an off-the-shelf 

smartphone application (AndroSensor). The CAN-bus of the vehicle through the 

OBDII port provided the fuel consumption data. The soft sensor was trained using a 

dataset comprising 3693 samples. 

 

3.2 Fuel consumption soft sensor: Type and architecture 

To select a suitable NN type a comparison between the nonlinear autoregressive 

network with exogenous inputs (NARX-RNNs) and Long-Short-Term-Memory NN 

(LSTM-NN) was conducted. Since a suitable NN architecture is not known a priori, a 

parametric analysis was performed. 

 

3.2.1 NARX-RNN-based fuel consumption soft sensor 
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The NARX-RNN soft sensor architecture employed in this study is shown in Figure 1. 

The hidden layer includes a log-sigmoid activation function, and the output layer a 

linear one. The number of lags was varied between one and six. The number of 

neurons in each layer was in the range 27-62, in increments of five. The NARX-RNN 

was trained using the Levenberg-Marquardt (LM) method. To obtain statistically 

meaningful results each configuration was trained thirty independent times. The 

training termination criterion was 1000 function evaluations.  

Figure 1: The proposed nonlinear autoregressive neural network with exogenous 

inputs (NARX-RNN) architecture for estimating the instantaneous fuel consumption 

 

The output oNN,t of the NARX-RNN is a function of the inputs [𝐱𝐭, … , 𝐱𝐭−𝐍], outputs 

[oNN,t−1, … , oNN,t−N], the neural network weights 𝐖 = [𝐖𝟏, 𝐖𝟐, … , 𝐖𝐍] =

[… , 𝑊𝑖, … ], the nonlinear activation function 𝜎 = 1/(1 + 𝑒−𝑎)and biases 𝐛𝟏 and 𝐛𝟐: 

 

oNN,t = f(𝐱t, 𝐱t−1, … , 𝐱t−N, oNN,t−1, … , oNN,t−N, 𝐖, 𝐛𝟏, 𝐛𝟐) (1) 

 

where 𝑁 is the lag. The Mean Squared Error 𝑒𝑓𝑢𝑒𝑙 is the performance metric for the 

NARX-RNN: 

 

𝑒𝑓𝑢𝑒𝑙 =
1

𝑁𝑠
∑(𝐨𝐦𝐞𝐚𝐬 − 𝐨𝐍𝐍)2

𝑁𝑠

𝑖=1

 (2) 

 

where 𝐨𝐦𝐞𝐚𝐬 = [… , 𝑜𝑚𝑒𝑎𝑠,𝑡−1, 𝑜𝑚𝑒𝑎𝑠,𝑡, 𝑜𝑚𝑒𝑎𝑠,𝑡+1, … ] is fuel consumption 

measurements vector and 𝐨𝐍𝐍 = [… , 𝑜𝑁𝑁,𝑡−1, 𝑜𝑁𝑁,𝑡, 𝑜𝑁𝑁,𝑡+1, … ] is the estimated one. 

Figure 2 illustrates the results of the parametric analysis. There is an area, lags 

between 2-5 and hidden neurons in the range [32-47], where similar results were 
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produced. The minimum error value of 𝑒𝑓𝑢𝑒𝑙_𝑚𝑖𝑛 = 0.66 was obtained for five delay 

inputs and 47 neurons in each hidden layer. 

Figure 2: Mean squared error results 𝑒𝑓𝑢𝑒𝑙 in 𝑘𝑝𝑙 (kilometres per litre) for the NARX-

RNN soft sensor using the Levenberg-Marquardt training algorithm. Parametric 

analysis for different number of time lags (1-6) and number of hidden neurons in each 

layer (27-62). 
 

3.2.2 LSTM-NN-based fuel consumption soft sensor 

The LSTM-based soft sensor comprised one hidden layer, followed by a regression 

layer. A parametric analysis with 100, 200, 300, 400, 500 hidden units was conducted. 

The stochastic gradient descent method (SGD) and Adam optimiser (ADAM) 

(Pascanu et al., 2014, Kingma et al., 2014) were applied to train the LSTM. Thirty 

(30) independent runs were conducted to obtain statistically meaningful results. The 

same objective function 𝑒𝑓𝑢𝑒𝑙 as with NARX – RNNs was employed. The training 

termination criterion was 6000 iterations.  Table 1 lists the results of the parametric 

analysis. As observed, the best performance with SGD is obtained for 50 hidden units, 

while with ADAM optimiser the best performance is for 400 and 500 units. The 

NARX-RNN seems to perform better compared to LSTM, as the minimum error 

value obtained using the latter was 𝑒𝑓𝑢𝑒𝑙_𝑚𝑖𝑛 = 0.97. 
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Table 1: Mean squared error results �̅�𝑓𝑢𝑒𝑙 in 𝑘𝑝𝑙 (kilometres per litre) for the LSTM-

NN. Parametric analysis for different number of hidden units 50-700 and two 

different training methods: stochastic gradient descent method (SGD) and ADAM 

optimiser. 

𝑒𝑓𝑢𝑒𝑙 [𝑘𝑝𝑙] 

Units SGD ADAM 

50 1.78 1.17 

100 1.88 1.07 

200 1.97 1.00 

300 1.99 1.03 

400 2.00 0.97 

500 2.04 0.97 

600 2.03 0.99 

700 2.02 1.01 

 

3.3 Fuel consumption soft sensor: Tuning 

Since it is unknown a priori which method tunes the soft sensor better, a range of 

training algorithms were explored to select the most appropriate one. These can be 

clustered into three main categories: gradient-based, population-based, and large-scale 

population-based optimisation algorithms.   

 

In the first category, the popular Levenberg–Marquardt (LM) and Bayesian 

Regularisation Back-Propagation algorithms were included. From the second category 

the standard Genetic Algorithm (GA) and Particle Swarm Optimisation (PSO), the 

contrast-based Fruit Fly Optimisation (c-FOA), the c-FOA with group policy (c-

FOA/g), the cloud model-based FOA (CMFOA), and the chaotic Fruit Fly 

Optimisation algorithm (DLSC-FOA) were studied. CMFOA has been shown to 

obtain better or competitive performance for most test functions compared with three 

improved FOAs and seven state-of-the-art intelligent optimization algorithms (Wu, 

Zuo and Zhang, 2015). DLSC-FOA has been shown to have a competitive 

performance compared to GA, PSO and other FOA algorithms (Du et al., 2018).  The 

c-FOA version implemented in this paper is from Kanarachos et al. (2018), while a 

description of c-FOA/g is in Appendix A. From the third category we explored the 



 
 

 
 

11 

SHADE algorithm (Tanabe and Fukunaga, 2013), LSHADE (Tanabe and Fukunaga, 

2014), LSHADE44 (Polakova, 2017), the Enhanced Unidimensional Search and 

adaptive Enhanced Unidimensional Search algorithms (Gardeux et al., 2017), 

Differential Search Algorithm (Civicioglu, 2012) and Self-adaptive Differential 

Evolution with Multi-trajectory Search (Zhao et al., 2010).  

 

Training was completed for a fixed number of 6000 function evaluations. The 

threshold was selected based on the number of function evaluations required for 

gradient-based algorithms to converge, as well as considering the number of function 

evaluations reported in other scientific contributions (Ibrahim and El-Amary, 2017; 

Patel et al., 2017; Duchanoy et al., 2017). The same criterion was applied to all 

algorithms to allow a fair comparison. 

 

 

4. Results & discussion 

4.1 Soft sensor tuning using gradient-based, population-based and large-scale 

algorithms 

The NN was trained using a dataset comprising 3693 samples. To avoid overfitting, 

70% of the samples were used for training, 15% of the samples for testing, and 15% 

of the samples for validation. Furthermore, the number of hidden units was iteratively 

optimised. The gradient-based algorithms were terminated for 1000 epochs. For the 

population-based algorithms, 85% of the data were used for training, and 15% of the 

data for testing. They were terminated for 6000 function evaluations. The NN weights 

𝑊𝑖 were bounded in the range 𝑊𝑖 ∈ [−10,10]. The NN weights were initialised 

randomly. The population size was 𝑁 = 100 for all large-scale algorithms following 

Piotrowski (2018). GA, PSO, CMFOA and DLSC-FOA had the same population size. 

The population size for c-FOA/g was N=10, equal to the number of groups. For 

comparison reasons, we selected the same population size for c-FOA. Each training 

algorithm was run 30 independent times to obtain statistically meaningful results. 

 

Table 3 lists the results for the mean squared error 𝑒𝑓𝑢𝑒𝑙 in kilometres per litre [𝑘𝑝𝑙].  

They are the mean value 𝜇, standard deviation 𝜎, median value 𝐷∗̃ and minimum 

value 𝑚𝑖𝑛 of 𝑒𝑓𝑢𝑒𝑙 for the thirty independent runs. The results presented consider the 
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training, testing and validation data. Bayesian-Regularisation achieved the best 

performance in the gradient-based group, c-FOA/g in the group of population-based 

algorithms and LSHADE44 in the group of large-scale algorithms. It is known that 

Bayesian-Regularisation reduces overfitting (Cawley & Talbot, 2007). 

 

Table 3. Training results obtained following 30 independent runs. 𝑒𝑓𝑢𝑒𝑙 is the 

minimum mean squared error value 𝑒𝑓𝑢𝑒𝑙 in kilometres per litre [𝑘𝑝𝑙]. The training 

algorithms studied are: Levenberg–Marquardt Back Propagation (LM-BP), Bayesian 

Regularisation Back Propagation (BR-BP), Genetic Algorithm (GA), Particle Swarm 

Optimisation (PSO), contrast-based FOA (c-FOA & c-FOA/g), cloud-based FOA 

(CM-FOA), chaotic-based-FOA (DLSC-FOA), SHADE, LSHADE, LSHADE44, 

Enhanced Unidimensional Search (EUS), adaptive Enhanced Unidimensional Search 

algorithm (aEUS), Differential Search Algorithm (B-DSA), and Self-adaptive 

Differential Evolution with Multi-trajectory Search (SaDE-MMTS). 

 𝑒𝑓𝑢𝑒𝑙 [𝑘𝑝𝑙]  

 𝜇 𝜎 𝐷∗̃ 𝑚𝑖𝑛 𝑡̅_𝑐𝑜𝑚𝑝 / s 

LM-BP 6.9∙10−1 1.5∙10−1 6.5∙10−1 5.8∙10−1 54 

BR-BP 6.7∙10−1 2.3∙10−1 5.8∙10−1 4.1∙10−1 3932 s 

GA 1.3∙102 4.7∙101 1.2∙102 6.1∙101 3620 

PSO 3.3∙103 2.1∙103 2.4∙103 1.9∙103 4124 

c-FOA 1.5∙101 1.3∙101 1.1∙101 2.6 2887 

c-FOA/g 1.0 0.2 9.8∙10−1 9.1∙10−1 3835 

CM-FOA 1.7∙106 3.1∙105 1.6∙106 1.1∙106 3181 

DLSC-FOA 3.3∙105 1.5∙105 2.5∙105 1.7∙105 3506 

SHADE 5.4∙105 9.5∙104 5.5∙105 3.4∙105 3539 

LSHADE 4.3∙104 2.8∙104 1.1∙104 3.5∙104 2671 

LSHADE 44 1.3∙103 3.2∙102 1.3∙103 7.8∙102 3195 

EUS 2.1∙103 1.1∙103 1.7∙103 9.6∙102 3986 

aEUS 2.1∙103 1.1∙103 1.8∙103 9.6∙102 4017 

B-DSA 2.2∙104 7.1∙103 2.1∙104 1.4∙104 130 

SaDE-MMTS 4.6∙103 9.9∙102 4.9∙103 3.2∙103 3571 

𝜇: mean value, 𝜎: standard deviation, 𝐷∗̃: median value, 𝑚𝑖𝑛: minimum value, 𝑡̅_𝑐𝑜𝑚𝑝: average 

computational cost for one solution 
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The statistical analysis rejected the null hypothesis that BR-BP and c-FOA/g data 

samples come from the same distribution at a 1% significance level. In particular, the 

Kruskal-Wallis test returned a value of 𝑝 = 3.8 ∙ 10−11 with 𝜒2 = 43.7.  

 

In general, the population-based algorithms produced worse results compared to the 

gradient-based ones. Furthermore, their computational burden was more significant. 

Figure 3 illustrates the convergence diagrams for the best-performing population-

based algorithms: GA, PSO, Sade-MMTS, LSHADE44, c-FOA and c-FOA/g. The 

convergence diagrams show the evolution of the best objective function value for 

each independent run. On the longitudinal axis is the number of iterations, a function 

of the population size (and local search for Sade-MMTS), and on the vertical axis the 

objective function value. In SHADE44 the population size is diminishing while 

converging and hence requires more iterations. As observed, c-FOA/g achieved the 

best convergence rate.  

 

GA PSO 

SaDE-MMTS LSHADE44 
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c-FOA c-FOA/g 

 

Figure 3 Convergence diagrams for the Genetic Algorithm (GA), Particle Swarm 

Optimisation (PSO), Self-adaptive Differential Evolution with Multi-trajectory Search 

(SaDE-MMTS), Linear population size reduction Success-History Based Adaptive 

Differential Evolution Algorithm (LSHADE44), contrast-based Fruit Fly optimisation 

(c-FOA) and contrast-based Fruit Fly optimisation with group policy (c-FOA/g). The 

graphs show the evolution of the best objective function value for each independent 

run. Termination criterion was set to 6000 function evaluations. The number of 

iterations depends on the population size and whether local search algorithms were 

applied. 

 

4.2 Soft sensor tuning by combining global and local search methods  

Population-based algorithms are expected to be more effective in global search, while 

gradient-based ones are expected to be better in local search. To this end, it was 

examined whether the combination of c-FOA/g (global search) and BR-BP (local 

search) produces better results. c-FOA/g was first applied and then BR-BP was 

initiated using as starting vector the final solution of c-FOA/g. BR-BP was run for 50 

epochs. 

 

A vital issue in the combination of global and local search methods is the decision 

when to switch between them. In this paper, an automatic trigger using a Bayesian 

binomial inference technique was applied (Gunawan and Papalambros, 2006). The 

trigger is based on the assumption that c-FOA/g optimisation can be modelled as a 

Bernoulli process, such as a coin toss, whose probabilities of “success” and “failure” 

are 𝑝 and (1 − 𝑝), respectively. “Success” is when a population member produces an 

objective function value lower than a threshold (function of the best current value), 

while “failure” is the opposite case. Given 𝑁𝑡 independent trials (population 

members), the probability of having 𝑟 successes out of these trials follows a Binomial 



 
 

 
 

15 

distribution: 𝑟~𝐵𝑖𝑛(𝑁𝑡 , 𝑝). Given 𝑟 successes out of 𝑁𝑡 trials, the probability 

distribution of 𝑝 can be calculated using Bayes’ theorem: 

 

𝑓(𝑝\𝑟) =
𝑓(𝑝) ∙ 𝑓(𝑟\𝑝)

∫ 𝑓(𝑝) ∙ 𝑓(𝑟\𝑝) ∙ 𝑑𝑝
1

0

 (3) 

 

The posterior distribution is the distribution of interest. It is the estimate of 𝑝 based on 

the outcome of the trials. The prior distribution is our knowledge about 𝑝 before the 

information from the trials. Using a uniform prior and a Binomial likelihood function 

in Equation (3), results in a Beta posterior distribution, where  𝛼 = 𝑟 and 

+1 and β =𝑁𝑡 − 𝑟 + 1. 

  

𝑓(𝑝\𝑟) =
Γ(𝛼 + 𝛽)

Γ(𝛼) ∙ Γ(𝛽)
∙ 𝑝𝛼−1 ∙ (1 − 𝑝)𝛽−1 (4) 

 

In other words, 𝑝 is distributed according to a Beta distribution whose two parameters 

depend on the outcome of the trials: 𝑝~𝐵𝑒𝑡𝑎(𝑟 + 1, 𝑁𝑡 − 𝑟 + 1). One very important 

feature of Bayes’ theorem is that it facilitates an updating scheme to account for 

additional information. Suppose that after the 𝑁𝑝𝑜𝑝 initial trials, we conduct 𝑁2 

additional trials and observe 𝑟2 more successes. In Bayes’ theorem, the posterior 

distribution from the 𝑁𝑝𝑜𝑝 trials can be used as the prior distribution for the 𝑁2 trials, 

thus creating a chain of analysis based on additional information.  

 

In case the best objective function value 𝑒𝑓𝑢𝑒𝑙[𝑘] in iteration 𝑘 has changed 

significantly from 𝑒𝑓𝑢𝑒𝑙[𝑘 − 1] in iteration 𝑘 − 1, the prior distribution in iteration 𝑘 

is assumed uniform. In the opposite case, the prior distribution resulting from iteration 

𝑘 − 1 is employed. The switching criterion is triggered when the lower limit of the 

confidence interval of success is greater than 50%. In that case, it is assumed that c-

FOA/g has entered the exploitation phase, and therefore we switch to the gradient-

based local search algorithm. 

 

To assess the performance of the proposed hybrid algorithm c-FOA/g+ BR-BP-50 it 

is compared to the performance of the BR-BP-x for different number x of training 

epochs. The training results for 30 independent runs are presented in Table 4. The 
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returned value of 𝑝 = 8.4 ∙ 10−5 indicates that the Kruskal-Wallis rejects the null 

hypothesis that the data samples produced using c-FOA/g + BR-BP-50 and BR-BP-

100 come from the same distribution at 1% significance level. The same holds for the 

datasets c-FOA/g + BR-BP-50 and BR-BP-250 where 𝑝 = 4.1 ∙ 10−3. 

 

Table 4. Training results obtained following 30 independent runs. 𝑒𝑓𝑢𝑒𝑙 is the 

minimum mean squared error value 𝑒𝑓𝑢𝑒𝑙 in kilometres per litre [𝑘𝑝𝑙]. The training 

algorithms studied are: BR-BP-1000 (Bayesian Regularisation Back Propagation 

terminated after 1000 epochs), BR-BP-750, BR-BP-500, BR-BP-250, BR-BP-100, 

BR-BP-50 and hybrid c-FOA/g+BR-BP-50. 

 𝑒𝑓𝑢𝑒𝑙 [𝑘𝑝𝑙]  

 𝜇 𝜎 𝐷∗̃ 𝑚𝑖𝑛 𝑡̅_𝑐𝑜𝑚𝑝 / s 

BR-BP-1000  6.7∙10−1 2.3∙10−1 5.8∙10−1 4.1∙10−1 3932 s 

BR-BP-750 5.5∙10−1 1.5∙10−1 5.3∙10−1 3.3∙10−1 3425 s 

BR-BP-500 5.6∙10−1 1.4∙10−1 5.2∙10−1 4.2∙10−1 1638 s 

BR-BP-250 5.5∙10−1 2.4∙10−1 5.0∙10−1 3.5∙10−1 753 s 

BR-BP-100 4.8∙10−1 3.7∙10−2 4.8∙10−1 4.0∙10−1 332 s 

BR-BP-50 5.9∙10−1 3.0∙10−2 5.9∙10−1 5.4∙10−1 116 s 

c-FOA/g + 

BR-BP-50 

4.3∙10−1 4.9∙10−2 4.1∙10−1 3.5∙10−1 1060 s 

𝜇: mean value, 𝜎: standard deviation, 𝐷∗̃: median value, 𝑚𝑖𝑛: minimum value, 𝑡̅_𝑐𝑜𝑚𝑝: average 

computational cost for one solution 

 

The most robust results are obtained with the combined c-FOA/g + BR-BP-50. The 

minimum value obtained was 𝑒𝑓𝑢𝑒𝑙 = 0.35 𝑘𝑝𝑙. This represents approximately 6% of 

the actual fuel consumption. The correlation between estimated and measured values 

is 0.96. Figure 4 compares graphically in the time domain the measured and estimated 

fuel consumption values for the training dataset. The fuel consumption is measured in 

kilometres per liter (𝑘𝑝𝑙). The blue line represents the actual values and the red line 

the estimated ones. As observed, the soft sensor follows very well the measured 

values. It only misses some very high peaks, which have negligible contribution to the 

total fuel consumption. The soft sensor performance is robust (can generalise in other 

datasets) as it performs well also in other datasets, not used in the training process. 

Figure 5 shows the performance in four other datasets. It is noticed that during the 



 
 

 
 

17 

field trials the number of passengers, tyre pressure and ambient temperature were not 

constant. 

 

Figure 4: Comparison between the actual vehicle fuel consumption (blue line) and the 

estimated one (red line). Fuel consumption is measured in kilometres per liter [𝑘𝑝𝑙] 

 

a 
b 
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c d 

Figure 5: Comparison between the actual vehicle fuel consumption (blue line) and the 

estimated one (red line) for several sample routes. The sample routes were not used in 

the training process of the soft sensor. Fuel consumption is measured in kilometres 

per liter [𝑘𝑝𝑙] 

 

4.3 Discussion  

In this paper, we use the smartphone GPS position and altitude, speed, triaxial 

acceleration, and the number of visible satellites as inputs to the fuel consumption soft 

sensor. In the previous literature fewer variables, for example, only the GPS position 

or GPS speed, have been used. To answer the question whether all inputs are required 

for the soft sensor, a qualitative parametric analysis was conducted. In particular, the 

shape of the Regression Error Characteristic (REC) curve under incomplete 

information was studied (Bi, 2003). The change in the curve reveals the relative 

importance of the missing information. Additionally, a quantitative comparison 

between the proposed and other methods found in the literature was performed. 

 

The Regression Error Characteristic (REC) curve plots the error tolerance on the x-

axis versus the percentage of points predicted within the tolerance on the y-axis. The 

error is the absolute difference |𝐨𝐍𝐍 − 𝐨𝐦𝐞𝐚𝐬 |between the estimated fuel consumption 

values 𝐨𝐍𝐍 and those measured 𝐨𝐦𝐞𝐚𝐬. The error is measured in 𝑘𝑝𝑙. The area over 

the curve (AOC) is an estimate of the expected error. The smaller the AOC, the lower 

the error. In Figure 6, all the REC curves used in the parametric analysis are plotted. 

 

Figure 6a illustrates the soft sensor performance when the complete set of inputs is 

available. It has the smallest AOC compared to the rest. Furthermore, its shape fits the 

shape of a robust REC. For very tight tolerances the number of misses is high, 
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however the performance improves significantly (>80%) as soon as the threshold 

increases to a reasonable value (0.5 𝑘𝑝𝑙). Figure 6b is obtained when the GPS 

longitude and latitude information is disregarded as an input. As observed, the 

performance is inferior compared to a random estimator (below the diagonal). Instead, 

when GPS speed or acceleration are ignored the sensor behaves almost like a random 

estimator, see Figures 6c and 6d respectively (REC curve is very close to the 

diagonal). The sensor acts again worse than a random estimator when the GPS 

altitude information is missing (Figure 6e). Finally, in Figure 6f shows the 

performance when the number of satellites is missing. The sensor behaviour is better 

than that of a random estimator. 

 

From the qualitative analysis it is possible to conclude that the most critical 

parameters are the GPS longitude, latitude and altitude, while the least significant 

variable is the number of visible satellites.  

 

 
a b 

c d 
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e f 

Figure 6: Regression Error Characteristics (REC) curves for the soft sensor 

regression performance: a) REC curve when the complete input set is available b) 

REC curve when GPS latitude and longitude are disregarded c) REC curve when GPS 

speed is disregarded d) REC curve when acceleration is disregarded e) REC curve 

when GPS altitude is disregarded f) REC curve when the number of satellites is 

disregarded. 

 

To validate the above qualitative results the soft sensor regression performance was 

studied when fewer input variables are used. The following three input sets were 

considered available from the original training dataset: i) GPS position, ii) GPS 

position + GPS speed, iii) GPS position + speed + altitude. In each case, 30 

independent runs were conducted to obtain statistically valid results. The combined c-

FOA/g + BR-BP-50 hybrid algorithm was employed. The soft sensor performance  

𝑒𝑓𝑢𝑒𝑙 was compared to one when the complete input set is available (GPS position + 

speed + altitude + accelerations + number of satellites), as well as with other methods 

found in the literature (Vilaca et al., 2015, Capraz et al., 2016). Table 5 lists the 

results. For the boosted tree method (Vilaca et al., 2015) we considered two cases. In 

the first case, as in Vilaca et al., 2015, the GPS position, speed and altitude were 

considered as inputs.  

In the second case, only the GPS position and speed were taken into account.  

 

For the proposed RNN soft sensor the best performance is achieved when the 

complete input set is considered. The performance is improved by approximately 

35%, and 25% compared to when only the GPS position and speed are considered 

respectively. Compared to the boosted tree and support vector regression methods the 

proposed method performs better. This is most probably because the history of the 

input values is taken into account and therefore the model is less sensitive to the 

instantaneous values of the inputs.  
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Table 5. Fuel consumption 𝑒𝑓𝑢𝑒𝑙 tuning results with c-FOA/g+BR-BP for different 

sets of inputs: GPS position, GPS position + GPS speed, and GPS position + GPS 

speed + GPS altitude. Fuel consumption is measured in 𝑘𝑝𝑙 

 

 𝑒𝑓𝑢𝑒𝑙 [𝑘𝑝𝑙] 

 𝜇 𝜎 𝐷∗̃ 𝑚𝑖𝑛 

GPS position  6.6∙10-1 3.3∙10-2 6.6∙10-1 6.0∙10-1 

GPS position + speed 5.7∙10-1 3.1∙10-2 5.7∙10-1 4.9∙10-1 

GPS position + speed + altitude 5.4∙10-1 3.3∙10-2 5.4∙10-1 4.6∙10-1 

GPS position + speed + altitude 

+ accelerations + number of 

satellites 

4.3∙10−1 4.9∙10−2 4.1∙10−1 3.5∙10−1 

Boosted tree: GPS position + 

speed + altitude (Vilaca et al, 

2015) 

8.1∙10−1 0 8.1∙10−1 8.1∙10−1 

Boosted tree: GPS position + 

speed (Vilaca et al, 2015) 

7.4∙10−1 0 7.4∙10−1 7.4∙10−1 

Support Vector Machines: GPS 

position + speed + altitude 

(Capraz et al., 2016) 

1.7 3.5∙10−1 1.7 1.4 

Support Vector Machines: GPS 

position + speed (Capraz et al., 

2016) 

2.6 4.0∙10−2 2.6 2.5 

 

5. Conclusions 

This paper presents a novel vehicle fuel consumption soft sensor based on Recurrent 

Neural Networks. Most of the contributions in the literature focus on average 

consumption models, while this paper presents a model based on instantaneous data. 

The particular challenge in the proposed method is the handling of inaccuracy in the 

inputs, comprising smartphone measurements of GPS position (latitude, longitude, 

altitude), speed, acceleration (longitudinal, lateral, vertical), and the number of visible 

satellites. 
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To this end, different types of Deep Neural Networks, architectures and tuning 

methods were systematically examined. The latter included Levenberg–Marquardt 

Back Propagation (LM-BP), Bayesian Regularisation Back Propagation (BR-BP), 

Success-History Based Adaptive Differential Evolution Algorithm (SHADE), Linear 

population size reduction Success-History Based Adaptive Differential Evolution 

Algorithm (LSHADE, LSHADE44), Enhanced Unidimensional Search (EUS), 

adaptive Enhanced Unidimensional Search algorithm (aEUS), Differential Search 

Algorithm (B-DSA), Self-adaptive Differential Evolution with Multi-trajectory 

Search (SaDE-MMTS), cloud-based Fruit Fly Optimisation, chaotic Fruit Fly 

Optimisation and contrast-based Fruit Fly Optimisation.  

 

1. A comparison between Long-Short-Term-Memory Neural Networks and 

Recurrent Neural Networks (RNN) showed that the second type is more 

appropriate for the instantaneous fuel consumption estimation of vehicles. The 

optimal RNN architecture was derived following a parametric analysis, where the 

number of hidden layers and neurons were iteratively optimised. 

 

2. The best training results were achieved when the contrast-based Fruit Fly 

Optimisation with group policy (c-FOA/g) was first applied followed by Bayesian 

Regularisation Back Propagation (BR-BP). An empirical criterion based on a 

Bayesian binomial inference technique has been proposed for automatically 

switching between global and local search. 

 

3. The soft sensor estimation error is less than 6% of the actual fuel consumption 

value and the correlation achieved is 0.96. A comparison to other methods found 

in the literature confirmed the superior performance of the proposed sensors.  A 

principal component analysis was conducted and the relevant significance of each 

input was determined. The most important inputs are the GPS longitude, latitude, 

and altitude. All inputs were found to contribute to the overall accuracy of the soft 

sensor.  

The unprecedented market penetration of smartphones is an enabler for the massive 

implementation of soft sensors. The potential impact of the presented soft sensor in 

Intelligent Transportation Applications is significant as it relies only on smartphone 
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measurements and can estimate accurately the vehicle fuel consumption. In the future, 

it is foreseen to investigate the performance of the soft sensor by combining analytical 

vehicle models and data-based approaches to make the results more interpretable.  
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Appendix A: The contrast-based Fruit Fly Optimisation Algorithm 

with group policy (c- FOA/g) 

The algorithm starts by arbitrarily defining the position (𝑋0, 𝑌0) of the first fruit fly in 

a coordinate system. Additional N–1 fruit flies are located, randomly, in the vicinity 

of (𝑋0, 𝑌0) according to Eq. (1).  

 

𝑋𝑖𝑗[𝑘] = 𝑋0𝑗[𝑘] ∙ (1 + 𝑀 ∙ (2 ∙ 𝑟𝑎𝑛𝑑𝑁𝑟𝑒𝑠
− 1), j=1,2,…,m and i=1,…,N 

𝑌𝑖𝑗[𝑘] = 𝑌0𝑗[𝑘] ∙ (1 + 𝑀 ∙ (2 ∙ 𝑟𝑎𝑛𝑑𝑁𝑟𝑒𝑠
− 1), j=1,2,…,m and i=1,…,N 

(A1.1) 

 

where 𝑘 = 1,2, … , 𝐾𝑚𝑎𝑥 is the iteration number, m is the number of optimisation 

variables, N is the size of the swarm and 𝑟𝑎𝑛𝑑𝑁𝑟𝑒𝑠
 is a random number, sampled from 

a uniform discrete distribution defined in the interval [1, Nres]. M is a scaling 

parameter that determines how coarse or fine the search strategy is.  

 

Each fruit fly is assigned values 𝐷𝐼𝑖𝑗 based on how close each fruit fly parameter 

(𝑋𝑖𝑗[𝑘], 𝑌𝑖𝑗[𝑘]) is to the origin of the coordinate system: 

 

𝐷𝑖𝑗[𝑘] = √𝑋𝑖𝑗
2 [𝑘] + 𝑌𝑖𝑗

2[𝑘] (A1.2) 

 

𝐷𝐼𝑖𝑗[𝑘] =
1

𝐷𝑖𝑗[𝑘]
 (A1.3) 

For each fruit fly at 𝐝𝐢[𝑘] an objective function value 𝐷𝑚𝑖[𝑘] is assigned, 𝐷𝑚𝑖[𝑘] =

𝑓(𝐝i[𝑘]).  

 

Then, we rank the fruit flies based on their objective function values, and the fruit fly 

𝐝∗[𝑘] that achieves the lowest objective function value 𝐷𝑚𝑖
∗[𝑘] at position 

(𝑋𝑖
∗[𝑘], 𝑌𝑖

∗[𝑘]) is identified. In case the objective function value 𝐷𝑚𝑖
∗[𝑘] is lower than 

the previous centre of attraction 𝐷0[𝑘], then 𝐷𝑚𝑖
∗[𝑘] becomes the new centre of 

attraction 𝐝0[𝑘] (𝑋0[𝑘], 𝑌0[𝑘]). 
 

𝒊𝒇 𝑫𝒎𝒊
∗ < 𝑫𝒎,𝒌𝟎 

𝑡ℎ𝑒𝑛 𝑋0[𝑘] = 𝑋𝑖
∗[𝑘] 𝑎𝑛𝑑 𝑌0[𝑘] = 𝑌𝑖

∗[𝑘]  
(A1.4) 
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The algorithm can change their search strategy only every κ iterations. This resembles 

the delay that real fruit flies present in changing search strategy. If the best objective 

function value 𝐝∗[𝑘] improves over the last κ iterations the swarm enters the 

“surging” phase, during which the fruit flies surge towards the attraction point 𝐝0[𝑘]: 
 

if (𝐷𝑚𝑖
∗[𝑘] < 𝐷𝑚𝑖

∗[𝑘 − 𝜅]) 

𝑴[𝒌 + 𝟏] = 𝒄 ∙ 𝑴[𝒌] 
(A1.5) 

 

In case the best objective function value does not change over the last κ iterations the 

swarm enters the “visual contrast” phase, during which the fruit flies are attracted by 

the point 𝐬𝑖
∴[𝑘] which achieves the largest objective function value 

max(𝑆𝑚𝑖[𝑘]) = 𝑆𝑚𝑖
∴[𝑘] : 

 

if (𝑆𝑚𝑖[𝑘] = 𝑆𝑚0[𝑘 − 𝜅] 

𝑋0[𝑘] = 𝑋𝑖
∴[𝑘] 𝑎𝑛𝑑 𝑌0[𝑘] = 𝑌𝑖

∴[𝑘] 
(A1.6) 

where k is the current iteration.  

 

When a fruit fly does not improve its performance, then it returns to its previous 

position:   

 

𝒊𝒇 𝑫𝒎𝒊[𝒌] > 𝑫𝒎𝒊[𝒌 − 𝟏] 

𝑡ℎ𝑒𝑛 𝑋𝑖[𝑘] = 𝑋𝑖[𝑘 − 1] 𝑎𝑛𝑑 𝑌𝑖[𝑘] = 𝑌𝑖[𝑘 − 1] 

 

(A1.7) 

Group policy 

To enable the coordinated movement, the maximum 𝑋𝑚𝑎𝑥, 𝑌𝑚𝑎𝑥 and minimum 

𝑋𝑚𝑖𝑛, 𝑌𝑚𝑖𝑛 coordinate values are used: 

 

𝑋𝑚𝑖𝑛 = min(𝑋𝑖𝑗[𝑘 − 1]) 

𝑋𝑚𝑎𝑥 = max(𝑋𝑖𝑗[𝑘 − 1]) 

𝑌𝑚𝑖𝑛 = min(𝑌𝑖𝑗[𝑘 − 1]) 

𝑌𝑚𝑎𝑥 = max(𝑌𝑖𝑗[𝑘 − 1]) 

(A1.8) 
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to form the increments 𝑋𝑖𝑛𝑐,𝑘, 𝑌𝑖𝑛𝑐,𝑘:  

 

𝑋𝑖𝑛𝑐,𝑘 =
𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

𝑁𝑔
 

𝑌𝑖𝑛𝑐,𝑘 =
𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛

𝑁𝑔
 

(A1.9) 

And the groups 𝑋𝑔, 𝑌𝑔 are defined: 

 

𝑋𝑔 = [𝑋𝑚𝑖𝑛 + (𝑔 − 1) ∙ 𝑋𝑖𝑛𝑐,𝑘, 𝑋𝑚𝑖𝑛 + 𝑔 ∙ 𝑋𝑖𝑛𝑐,𝑘] 

 

𝑌𝑔 = [𝑌𝑚𝑖𝑛 + (𝑔 − 1) ∙ 𝑌𝑖𝑛𝑐,𝑘, 𝑌𝑚𝑖𝑛 + 𝑔 ∙ 𝑌𝑖𝑛𝑐,𝑘] 

 

(A1.10) 

where 𝑔=1,…, 𝑁g. Parameter 𝑁g is problem-dependent. 

 

Each fruit fly is mapped to two groups 𝑋𝑔, 𝑌𝑔, based on its coordinates 𝑋𝑖𝑗[𝑘 − 1], 

𝑌𝑖𝑗[𝑘 − 1]. At each iteration, the fruit flies are positioned according to Eq. (A1.12): 

 

𝑋𝑖,𝑗[𝑘] = 𝑋𝑏𝑎𝑠[𝑘] + 𝑋0𝑗[𝑘] ∙ (1 + 𝑀 ∙ (2 ∙ 𝑟𝑎𝑛𝑑𝑁𝑟𝑒𝑠,𝑥𝑔
− 1), jg=1,2,…,m  

𝑌𝑖,𝑗[𝑘] = 𝑌𝑏𝑎𝑠[𝑘] + 𝑌0𝑗[𝑘] ∙ (1 + 𝑀 ∙ (2 ∙ 𝑟𝑎𝑛𝑑𝑁𝑟𝑒𝑠,𝑦𝑔
− 1), jg=1,2,…,m 

(A1.11) 

 

where 𝑋𝑏𝑎𝑠[𝑘] and 𝑌𝑏𝑎𝑠[𝑘] are the coordinates of one of the four best performing fruit 

flies, 𝐝𝒃𝒂𝒔[𝑘] ∈ [𝐝𝟎[k], 𝐝𝟏[k], 𝐝𝟐[k], 𝐝𝟑[k]], where f(𝐝𝟎[k]) <  f(𝐝𝟏[k]) <

 f(𝐝𝟐[k] <  f(𝐝𝟑[k]) <  f(𝐝𝐢[k]), 𝑘 = 1, 3, 5, … , 𝐾𝑚𝑎𝑥  and 𝑟𝑎𝑛𝑑𝑁𝑟𝑒𝑠,𝑥𝑔
, 𝑟𝑎𝑛𝑑𝑁𝑟𝑒𝑠,𝑦𝑔

 

are unique for each group 𝑋𝑔, 𝑌𝑔.  

For 𝑘 = 2, 4, 6, … , 𝐾𝑚𝑎𝑥 the fruit flies take positions according to Eq. (A1.1).  

 

The algorithm terminates when the maximum number 𝐾𝑚𝑎𝑥 of iterations is reached. 
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