
Numerical model for the non-linear 
dynamic analysis of multi-storey 
structures with semi-rigid joints 
with specific reference to the 
Algerian code 
Koriga, S., Ihaddoudene, A-N. T. & Saidani, M. 

Author post-print (accepted) deposited by Coventry University’s Repository 

Original citation & hyperlink:  

Koriga, S, Ihaddoudene, A-NT & Saidani, M 2019, 'Numerical model for the non-
linear dynamic analysis of multi-storey structures with semi-rigid joints with specific 
reference to the Algerian code' Structures, vol. 19, pp. 184-192. 
https://dx.doi.org/10.1016/j.istruc.2019.01.008  

DOI 10.1016/j.istruc.2019.01.008 
ESSN 2352-0124 

Publisher: Elsevier 

NOTICE: this is the author’s version of a work that was accepted for publication in 
Structures. Changes resulting from the publishing process, such as peer review, 
editing, corrections, structural formatting, and other quality control mechanisms 
may not be reflected in this document. Changes may have been made to this work 
since it was submitted for publication. A definitive version was subsequently 
published in Structures, [19], (2019) DOI: 10.1016/j.istruc.2019.01.008 

© 2017, Elsevier. Licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright 
owners. A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge. This item cannot be reproduced or quoted extensively 
from without first obtaining permission in writing from the copyright holder(s). The 
content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the copyright holders.  

This document is the author’s post-print version, incorporating any revisions agreed during 
the peer-review process. Some differences between the published version and this version 
may remain and you are advised to consult the published version if you wish to cite from 
it.  

http://creativecommons.org/licenses/by-nc-nd/4.0/


Numerical model for the non-linear dynamic analysis of multi-storey structures 

with semi-rigid joints with specific reference to the Algerian code 

S. Koriga1, A.N.T. Ihaddoudene1, M. Saidani2*

1 Built Environment Research Laboratory, Faculty of Civil Engineering, U.S.T.H.B., Algiers, 

Algeria. 

2 Faculty of Engineering, Environment and Computing, School of Energy, Construction and 

Environment, Coventry University, England, UK 

Abstract: 

The current paper aims at investigating the dynamic response of rigid and semi-rigid 

connections of steel structures built in high seismic areas. A nonlinear dynamic analysis 

model, which is an extension to the simplified and direct mechanical model used in the 

static analysis, is proposed and discussed. The novelty of the model consists in the 

introduction of a bar element with semi-rigid joint as a single element without the need 

to discretise it (i.e. without a finite element mesh) in the program where non-linearity is 

considered in the flexibility factor of the stiffness matrix. The model developed is 

validated through application to examples of steel frames with different types of 

connections under dynamic forces. The results obtained were very satisfactory. This work 

is motivated by the need for the revision of the Algerian seismic code (RPA99v2003) 

which does not yet consider provisions for the design of structures with semi-rigid joints. 

Based on the results of the study carried out on a multi-storey structure with different 

types of joints subjected to seismic loading, it can be seen that the safety justifications 

recommended by Algerian regulations RPA99 in terms of relative displacements as well 

as the dimension of the seismic joint prove to be too conservative compared to those by 

Eurocode 8. 

Keywords: Semi-rigid; Numerical model; Non-linear; Dynamic loading; RPA99; EC8. 

1. Introduction

Steel structures are commonly used in high

seismic zones due to their ductility and 

earthquake resistance, as well as their 

maneuverability in design and execution over 

other types of structures. They are generally 

composed of bar elements consisting of 

laminated or welded sections where the 

connections of various elements play a very 

important role in ensuring the transmission and 

distribution of the different stresses between the 

connected elements. To simplify their analysis, 

their behaviour is often considered as fully rigid 

or ideally pinned. In fact, as is common 

knowledge, their real behaviour falls between 

these two extreme cases since the most rigid 

joint always has a certain flexibility while the 

pinned joint transmits a certain bending moment 

[1-4]. Therefore, in structural analysis, where the 

local deformations of the joint are neglected, this 

new source of flexibility must be incorporated to 

quantify the moment transfer ratio as well as the 

corresponding rotation.  

Several studies [7-10] have been carried out 

on dynamic analyses of structural elements 



 

 

 

 

while taking both material and geometrical 

nonlinearities into account. In this context, tests 

on flexible connections followed by numerical 

analyses of Chui and Chan [5] and Nader and 

Astaneh-Asl [6], have shown the importance of 

considering the connection flexibility in 

structural model. 

Bahaari and Sherbourne [17] conducted a 

study on the behaviour of end-plate bolted 

connections. They proposed characteristics of a 

model relevant to the semi-rigid joints. The best 

modeling of the semi-rigid connection behaviour 

according to Richard-Abbott [18] is realized 

when the M-θ relation contains power terms. 

Another approach is developed by Bayo, Coll et 

al. [19,20], based on the component method, to 

model the semi-rigid connections. The global 

joint is considered composed of four joints 

representing the four solicitations separately. In 

his research work Aljabri [21] was able to 

include the effect of the increasing temperatures 

on connections flexibilities, Hadianfard and 

Razani [22] used the Monte Carlo simulation 

technique to illustrate the influence of semi-rigid 

connections on the reliability of steel structures. 

Kishi et al. [23] provided an evaluation analysis 

of the Eurocode 3 classification on the three 

types of connections in steel construction; they 

found that the type of connection might change 

in the post-elastic phase. 

 Several mechanical models are proposed by 

several researchers to predict the real behaviour 

of semi-rigid connections [1-4,23-27]. These 

models are classified into two main categories, 

linear and non-linear. The constant stiffness in 

the linear models [29] has shown an insufficient 

level of accuracy in the behaviour of semi-rigid 

joints. This lack of accuracy is reduced by 

considering their non-linear behaviour in the 

model [18,24,25]. The actual behaviour of a joint 

is generally obtained from the experimental tests 

[19,26]. 

Based on past research work [7-16,28-34], 

the effect of the nonlinear behaviour of the joint 

on the response of the structure was found to be 

more apparent under cyclic and dynamic loads. 

The theory of dynamic analysis of structures 

with flexible connections considers the moment-

rotation relationship as linear [1-4,23,24,29,30]. 

The non-linear behaviour is idealized as bi-linear. 

This idealization can affect the response of steel 

structures due to the reduction in rotational 

stiffness, especially in the elastoplastic phase [20, 

21].  

Not only the non-linearity of the moment-

rotation curve plays an important role but also 

the hysteretic effect [7]. Particularly the 

hysteresis loops of the connection behaviour that 

directly influence the energy dissipation 

capacity of the structure, and thereby affect its 

vibrational characteristics.  

A previous study of the vibratory behaviour 

of semi-rigid joints through comparing the 

Eurocode 3 approach and the numerical 

solutions by Apoulos [33] showed that the 

influence of the connections only appears in the 

higher modes.  

A comparison between rigid and semi-rigid 

connections in high-rise steel buildings was 

carried out by Razavi and Abolmaali [34]. They 

showed that the frame with semi-rigid joints 

exhibited a better behaviour than the fully rigid 

frame. 

In the current research paper, the effect of 

the nonlinear behaviour of semi-rigid joints on 

the response of the structure under dynamic 

loads is investigated. The mechanical model 

developed by Ihaddoudene et al. [1] has been 

used, due to its efficiency in modeling the semi-

rigid aspect and the simplicity in its 

implementation. This simplicity consists in 

considering the non-linearity by the flexibility 

factor that exists in the stiffness matrix. This 

factor results from the M- curves in which the 

tangent stiffness is present. The advantage of this 

flexibility factor is that the effect of additional 

rotation (semi-rigid) to the other components of 

the stiffness matrix is considered. Validation of 

the proposed numerical model are performed on 

examples of steel frame with different types of 

connections. The results obtained were very 

satisfactory. 

This work was essentially motivated by the 

need to improve the Algerian seismic code 

RPA99v2003 (Algerian Parasismic Rules) [39] 

which does not yet contain provisions for the 



 

 

 

 

design of structures with semi-rigid joints. This 

study is supported by a comparison with 

Eurocode 8. For this, a study of the effect of the 

nonlinear behaviour of several types of rigid and 

semi-rigid connections on the response of a 

multi-storey structure subjected to the seismic 

loading was carried out. The justifications 

provided by RPA99 such as the drift-ratio and 

the seismic joint are compared with those 

recommended by EC8. 

2. Mechanical Model and stiffness Matrix  

The adopted model [01] is based on the analogy 

of three springs (two translations and one 

rotation) considering the concept of a non-

deformable node element. Therefore, the relative 

displacements and rotations between the nodes 

and the elements of the structure are taken into 

consideration in the stiffness matrix.  

The objective of the mechanical model is to 

obtain, in a simple way, the stiffness matrix and 

the nodal vector of the load. For this, the bar 

element subjected to transverse loads with semi-

rigid joints is taken into consideration (Figure 2).  

 

 

 

 

 

 

 

 

 

 

Figure 1. Adopted mechanical model [1] 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Different rotations in a non-deformable node [1] 
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The establishment of the elementary stiffness 

matrix may be made by introducing the 

additional rotation θi [24,25] which reflects the 

semi-rigid connections (Figure 1). The following 

equation gives the rotational stiffness ki of the 

connection: 

 

𝑘𝑖 =
𝑀𝑖

𝜃𝑖
 (01) 

𝑀𝑖 being the moment of rotation at node i 

                                     

2.1. Equilibrium equations and rotational 

deformations 

The equilibrium equations can be written as: 

 

𝑉𝑖 + 𝑉𝑗 − 𝑅 = 0 (02) 

𝑀𝑖 +𝑀𝑗 + 𝑅𝑍 − 𝑉𝑗𝑙 = 0 (03) 

Where:  

𝑉𝑖 , 𝑀𝑖, 𝑉𝑗  𝑒𝑡 𝑀𝑗  : are the reactions at nodes i 

and j, respectively. 

𝑅: is the applied force 

In bending, the spring rotation is the essential 

component and therefore the rotational 

deformation equations can be expressed as 

follows: 

 

𝜃𝑖 =
∆𝑖
𝑙
+
𝑚𝜓

𝜔𝑙
+
𝑀𝑖

3𝜔
+ 𝑘1𝑀𝑖

𝛼 −
𝑀𝑗

6𝜔
 (04.a) 

𝜃𝑗 =
∆𝑖
𝑙
−
𝑛𝜓

𝜔𝑙
+
𝑀𝑗

3𝜔
+ 𝑘2𝑀𝑗

𝛼 −
𝑀𝑖

6𝜔
 (04.b) 

 

 

Where, 

𝜃𝑖and 𝜃𝑗  are, the rotations at the nodes i and 

j respectively. 

 

The modified stiffness matrix 𝐾̅𝑒  for this 

study is expressed as follows: 

 

𝐾̅𝑒 = [

𝑘11 𝑘12 𝑘13 𝑘14
𝑘21 𝑘22 𝑘23 𝑘24
𝑘31 𝑘32 𝑘33 𝑘34
𝑘41 𝑘42 𝑘43 𝑘44

]               (5) 

 

In which, the expression of the elements of 

the stiffness matrix is given by [1]: 

 

𝑘11 = 
36𝜔(1 + (𝑘1 + 𝑘2)𝜔)

𝑙2[4(1 + 3𝑘1𝜔)(1 + 3𝑘2𝜔) − 1]
  (06) 

𝑘12 = −
18𝜔(1 + 2𝑘2𝜔)

𝑙[4(1 + 3𝑘1𝜔)(1 + 3𝑘1𝜔) − 1]
  (07) 

𝑘13 = −
36𝜔(1 + (𝑘1 + 𝑘2)𝜔)

𝑙2[4(1 + 3𝑘1𝜔)(1 + 3𝑘2𝜔) − 1]
  (08) 

𝑘14 = −
18𝜔(1 + 2𝑘1𝜔)

𝑙[4(1 + 3𝑘1𝜔)(1 + 3𝑘1𝜔) − 1]
 (09) 

 

Where, 

 ω= EI / L: is the flexural stiffness per unit 

length,  

 𝑘1 and 𝑘2 : are, the elastic constants of the 

spring in rotation at nodes i and j, respectively. 

It is interesting to note that for frequent steel 

frames, in general, the joints in a beam member 

are identical at both ends. 

 

3. Semi-rigid connection modeling: 
 

The flexibility of the beam-to-column 

connection is characterized by a moment-

rotation relationship that is practically non-linear 

on all phases of the static or the dynamic loading. 

Figure 3 shows the different models proposed to 

fit a moment-rotation curve [01]. On the other 

hand, the axial and shear deformations are 

generally neglected compared to the rotational 

deformation.  

There are some advantages of using these 

models to describe the nonlinear M-θ 

relationship of the connections. They can always 

guarantee a positive first derivative, which is 

particularly important to prevent the occurrence 

of negative connection stiffness, which is 

undesirable for numerical computation. 

In addition, they require only a small number 

of parameters in the expression, so that the 

procedure for adjusting the curve and calculating 

the stiffness in the analysis will be simpler and 

more convenient. Finally, in general, these 

models give a good fit for the M-θ curves 

compared to the experimental data [30]. 

 



 

 

 

 

 

 

Figure 3. Idealization of the non-linear behaviour [5] 

4. Models  

4.1. Kishi and Chen [30] 

This is one of the most used models for 

semi-rigid connections because it only needs 

three parameters to model the moment-rotation 

relationship and always gives a positive stiffness. 

The plastic rotation is defined as a ratio of the 

ultimate moment capacity and the initial 

connection stiffness. It is given by the following 

relation (10):  

 

𝑀 =
𝑅𝑘𝑖|𝜃𝑟|

{1 + |
|𝜃𝑟|
|𝜃0|

|
𝑛

}

1
𝑛

 
(10) 

 

Where, 

M and θr: are the moment and the rotation of 

the connection, respectively. 

n:    is a shape parameter,  

θ0:   is the plastic rotation,  

Rki:  is the initial stiffness of the connection. 

4.2. Richard-Abbott [18] 

Richard-Abbott proposed a more accurate 

four-parameter model [18], which presents the 

moment-rotation relationship of the connection 

in the following expression: 

𝑀 =
(𝑅𝑘𝑖 + 𝑅𝑘𝑝)|𝜃𝑟|

{1 + |
(𝑅𝑘𝑖 − 𝑅𝑘𝑝)|𝜃𝑟|

𝑀0
|

𝑛

}

1
𝑛

+ 𝑅𝑘𝑝|𝜃𝑟| 
(11) 

Where: 

 𝑅𝑘𝑖 is the initial stiffness of the connection; 

 𝑅𝑘𝑝 is the strain-hardening stiffness; 

 Mo is a reference moment; 

 n is a parameter defining the sharpness of the 

curve [30]. 

5. Program elaboration 

The motion formulation of structures with 

semi-rigid joints is given by the following 

equation: 

 

[𝑀]𝐷̈ + [𝐶]𝐷̇ + [𝐾]𝐷 = 𝐹{𝑡} (12) 

Where [M], [C] and [K] are, the mass, 

damping and tangent stiffness matrices, 

respectively. 

The Newmark method was used for the 

numerical integration of the motion equation due 

to its simplicity [36]. Residual forces in each 

time step can be eliminated using the Newton-

Raphson's iterative method [37]. The 

incremental motion equation of the structure can 

be written in the following expression: 

[𝑀]{∆𝐷̈} + [𝐶]{∆𝐷̇} + [𝐾]{∆𝐷} = {∆𝐹} 

 

(13) 

 

Where {∆𝐷̈} , {∆𝐷̇} , and {∆𝐷}  are the 

incremental vectors of acceleration, velocity, 

and displacement, respectively. 

{∆F} is the external increment load vector. 

The viscous damping matrix [C] can be defined 

as the Rayleigh damping matrix [37]. The 

Newmark algorithm coupled with the Newton-

Raphson iterations are presented in Figure 4 [37]. 



 

 

 

 

A program in the Matlab language [38] has 

been developed based on the proposed 

mechanical model [01] and shown in Figure 5 

below. The proposed numerical procedure 

predicts the elastic and non-linear plastic 

response of semi-rigid steel structures under 

dynamic loads. The flowchart below gives the 

different steps of this procedure. 

NEWMARK Method (nonlinear system) 

 
 

Special cases 

 (01) Average acceleration method (𝛾 = 1
2⁄ , 𝛽 = 1 4⁄  ) 

 (02) Linear acceleration method (𝛾 = 1
2⁄ , 𝛽 = 1 6⁄  ) 

1.0 Initial calculation 

 1.1 State determination: (𝑓𝑠)0 and (𝑘𝑇)0. 

 1.2 𝐷̈0 =
𝑝0−𝑐𝐷̇0−(𝑓𝑠)0

𝑚
  

 1.3 Selection ∆𝑡  

 1.4 𝑎1 =
1

𝛽(∆𝑡)2
𝑚 +

𝛾

𝛽(∆𝑡)
𝑐; 𝑎2 =

1

𝛽∆𝑡
𝑚 + (

𝛾

𝛽
− 1) 𝑐; 𝑎3 = (

1

2𝛽
− 1)𝑚 + ∆𝑡 (

𝛾

2𝛽
− 1) 𝑐    

 

2.0 

 

Calculate for each time increment, 𝑖 = 0,1,2, . .. 

 2.1 initializes 𝑗 = 1, 𝐷𝑖+1
(𝑗)

= 𝐷𝑖 , (𝑓𝑠)𝑖+1
(𝑗)

= (𝑓𝑠)𝑖, 𝑎𝑛𝑑 (𝑘𝑇)𝑖+1
(𝑗)

= (𝑘𝑇)𝑖 

 2.2 𝑝̂𝑖+1 = 𝑝𝑖+1 + 𝑎1𝐷𝑖 + 𝑎2𝐷̇𝑖 + 𝑎3𝐷̈𝑖  
 

3.0 

 

For each iteration, 𝑗 = 1,2,3… 

 3.1 𝑅̂𝑖+1
(𝑗)

= 𝑝̂𝑖+1 − (𝑓𝑠)𝑖+1
(𝑗)

− 𝑎1𝐷𝑖+1
(𝑗)

. 

 

3.2 Verification of convergence: if the acceptance criterion is not verified, go to steps 3.3 

to 3.7; 

 if not, skip those steps and go to step 4.0 

 3.3 (𝑘̂𝑇)𝑖+1
(𝑗)

= (𝑘𝑇)𝑖+1
(𝑗)

+ 𝑎1. 

 3.4 ∆𝐷(𝑗) = 𝑅̂𝑖+1
(𝑗)

÷ (𝑘̂𝑇)𝑖+1
(𝑗)

. 

 3.5 𝐷𝑖+1
(𝑗+1)

= 𝐷𝑖+1
(𝑗)

+ ∆𝐷(𝑗). 

 3.6 State determination: (𝑓𝑠)𝑖+1
(𝑗+1)

 and (𝑘̂𝑇)𝑖+1
(𝑗+1)

 

  Replace 𝑗 by 𝑗 + 1 and repeat the steps 3.1 to 3.6; denote the final value as 𝐷𝑖+1. 

 

4.0 

 

Calculates velocity and acceleration 

 4.1 𝐷̇𝑖+1 =
𝛾

𝛽∆𝑡
(𝐷𝑖+1 − 𝐷𝑖) + (1 −

𝛾

𝛽
) 𝐷̇𝑖 + ∆𝑡 (1 −

𝛾

2𝛽
) 𝐷̈𝑖. 

 4.2 𝐷̈𝑖+1 =
1

𝛽(∆𝑡)2
(𝐷𝑖+1 − 𝐷𝑖) −

1

𝛽∆𝑡
𝐷̇𝑖 + (

1

2𝛽
− 1) 𝐷̈𝑖. 

5.0 

 

Repetition for the next time increment: replace “i” with “i + 1” and implement steps 2.0 

through 4.0 for the next time increment. 

Figure 4. Flowchart of the Newmark method 
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Figure 5. Flowchart of the numerical model. 

 

6. Validation  

In order to verify the accuracy and the 

computational efficiency of the model, the 

results of the example below obtained by using 

the proposed modeling algorithm are compared 

with those of the experiment and given in 

reference [30]. The geometry of the structure is 

shown in Figure (6.a) where all elements of the 

frame are W5x16 profile; the steel used is A36. 

The half inch angle connection in used, the 

details of connection are shown in Figure 7. The 

structure is assumed to be subjected to a strong 

pulse during one second as shown in Figure (6.b).

 

 

 

 

  

 

 

 

 

Figure 6. Two-story frame [30] 

Data of  the structure (mechanical and 
geometrical characteristics, boundary 

conditions, behaviour, etc.). 

Mechanical model and calculating the 

matrix ([𝑀] , [𝐶], [𝐾] )  

Introduction of  initial conditions and 
forces (static or dynamic). 
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behavior 

 

 

 

 

 
 

 

 

 

 

  Time step    

∆ti+1 

 

Newmark method 

End of  calculation 

Response{𝐷̈}, {𝐷̇}, {𝐷} 

Incremental displacement {∆D}. 
Verification of  convergence (Newton-

Raphson modified). 
State determination 
in the constitutive 

behavior  
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U 
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Figure 7. 1/2 inch thick angle connection [30] 

 

The non-linear behaviour (M-θ and Rk-θ) of 

Richard-Abbott model (equation (11)), in which 

the required parameters of the rotational 

stiffness-rotation curve (Figure 8a) and the 

Moment-rotation curve (Figure 8b) were used. 

 

The evaluation of the nonlinear behaviour of the 

semi-rigid connection through their cyclic 

bounding surface [30] shown in Figure 9, is used. 

The preceding equation (11) may then have the 

following expression (14):  

𝑀 = 𝑀𝑎 −
(𝑅𝑘𝑖 − 𝑅𝑘𝑝)(𝜃𝑐𝑎 − 𝜃𝑐)

{1 + |
(𝑅𝑘𝑖 − 𝑅𝑘𝑝)(𝜃𝑐𝑎 − 𝜃𝑐)

2𝑀0
|

𝑛

}

1
𝑛

 

−𝑅𝑘𝑝(𝜃𝑐𝑎 − 𝜃𝑐) 

(14) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure8. Constitutive behaviour. 
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Figure 9. The Bounding surface model [30] 

 

Considering an undamped structure, the 

dynamic analysis is conducted for three cases 

of connections: rigid, semi-rigid linear 

(k=21000 kip-in/rad) and semi-rigid nonlinear 

case   

The roof level displacements obtained 

are compared with those of the reference [30], 

presented in the Figure 10 below.  

Figure 10. Displacements in the rigid and semi-rigid case (k=21000 kip-in/rad) 

 

It may be observed that the response of the frame 

for the semi-rigid case simulated by these two 

models of linear and non-linear connections, are 

close. The error ratio varies between 0 and 8.5% 

for the linear case (Table 1) and between 0 and 

21.28% (Table 2) for the non-linear case. This 

can be explained by the fact that the results are 

obtained graphically from reference [30] and 

therefore subjected to errors
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Table 1. Comparison of displacements for the linear semi-rigid case (k=21000 kip-in/rad) 

Time (s) 0.46 0.86 1.32 1.73 2.17 2.55-10 

Reference [30] 

displacement (inch)  
1.99 -3.92 3.53 -3.62 3.52 ≈ 3.52 

Present study 

displacement (inch)  
1.99 -3.91 3.27 -3.31 3.31 ≈ 3.30 

Error (%) 0.00 0.26 7.37 8.56 5.97 ≈ 6.25 

 

 

Table 2. Comparison of displacements for the non-linear semi-rigid case 

Time (s) 0.46 1.02 1.89 3.17 4.80 5.21 5.67 7.74 9.43 9.77 

Reference [30] 

displacement 

(inch)  

2.39 -4.81 -3.27 -0.48 -0.64 -2.51 -0.74 -2.37  -2.30 -0.92 

Present study 

displacement 

(inch)  

2.48 -5.03 -3.01 -0.40 -0.64 -2.59 -0.94 -2.37 -2.37 -1.16 

Error (%) 3.63 4.37 7.95 16.67 0.00 3.09 21.28 0.00 2.95 20.69 

 

 

Table 3. Parameters for different types of connections 

Analysis case Rigid Linear semi-rigid  Non-linear semi-rigid  

Peak number 31 24 23 

 

 

In figure 10 concerning the steel frame with 

semi-rigid connections, the amplitude is larger 

compared to the rigid connection as shown in 

Table 3. In addition, the steel frame with the non-

linear behaviour dampens and has an irreversible 

deviation because of the presence of continuous 

and permanent rotations at the joints. 

7. Practical case of study                                   

In the Algerian Seismic Regulations 

(RPA99V2003) [39] semi-rigid connections are 

not mentioned in a clear way compared to the 

strict requirements, regulations and codes of 

safety checks. Some safety objectives of the 

structure are assumed to be satisfied if the 

criteria for seismic joints and deformations are 

simultaneously satisfied (or not). A comparison 

with Eurocode 8 (EC8) [40] using the same 

criteria is conducted. 

7.1. Terms of use 

7.1.1. Verification of the seismic joint [39] 

The maximum displacements 1 and 2 of 

two blocks calculated at the top of the lowest 

block include the components due to the torsion 

and possibly the rotation of the foundations. 

Seismic joints separating them from minimum 

width dmin must satisfy the following condition: 

 

𝑑𝑚𝑖𝑛

=

{
 

 
15 + (𝛿1 + 𝛿2) 40 mm     for  RPA

                     

(√𝛿1
2 + 𝛿2

2) ∗ 0.7              for  EC8
 

(15) 

 

7.1.2. Verification of deformations 

 



 

 

 

 

The relative lateral displacements ∆k of one 

level in relation to adjacent floors shall not 

exceed 1.0% of the floor height for RPA [39] and 

2.0% for EC8 [40] could be calculated as: 

 

∆𝑘/h𝑘     {
1%         for   RPA

𝐴
0.01/𝜐   for  EC8

 (16) 

 

Where 

hk: height of the floor « k » 

υ: reduction factor (υ=0.5) 

 

It is proposed through the example of reference 

[9] to show the influence of the flexibility of the 

connections on the static and dynamic behaviour 

of steel structures. The results will be compared 

with those of the RPA [39] and EC8 [40] codes 

to show in which situations do the codes agree 

or not with the calculation results. 

7.2. Example  

The steel frame [9], which has the geometric 

and material properties shown in Figure 11, is 

ten levels of 40 m height and 8 m width. Young's 

modulus is E= 210 GPa, and the structure 

contains lumped masses in each joint, for the 

upper level the lumped mass is equal to 6.0 

kNs2/m and for the other, the lumped mass is 

equal to 8.0 kNs2/m.

 

Figure 11. Multistory frame [9]. 

 

The structure is assumed to be subjected to 

the Boumerdes seismic excitation [41] (PGA = 

0.550 g) as shown in Figure 12. The different 

parameters defining the types of connections are 

shown in Figure 13 and given in Table 4 [35].
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Figure 12. Boumerdès earthquake (DarBeida station PGA=0.550g) [41] 

 

 

Table 4. Parameters of different types of connections [35] 

Connections types RKi(kN.m/rad) RKp(kN.m/rad) Mp(kN.m) 

T-stub (T-S) 445220 9781 260.90 

End plate (EP) 62150 2509 209.05 

Top and seat angle 

(TSA) 
41019 3390 83.62 

Welded top plate 

(WTP) 
36160 2712 83.62 

 

 

 

 
Figure 13. M-θ curves for different types of connections 

 

 The results of the non-linear temporal 

analysis of the structure generated by the 

developed calculation program are presented in 

the tables (5-7) and the figures (14-16) in which 

the Periods and the Max displacement are shown 

(Figure 15) together with the drift ratio in the x 

direction (Figure 16). 

The Periods for the first three calculated 

vibration modes are presented in Table 5. Noting 

that the magnitude of the periods has a 
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proportional relationsipt with the connections’ 

flexibilities: the WTP connection gives the 

highest period (T1 = 1.209s) for the first mode 

of vibration. 

 

Table 5. Eigenvalues obtained according to the connection type 

Connections types 

Periods 

1 2 3 

Sap2000 
Present 

study 
Sap2000 

Present 

study 
Sap2000 

Present 

study 

Rigid 1.006 0.993 0.364 0.359 0.205 0.202 

T-stub (T-S) 1.025 1.013 0.370 0.365 0.208 0.205 

End plate (EP) 1.136 1.125 0.403 0.399 0.227 0.224 

Top and seat angle (TSA) 1.196 1.186 0.421 0.417 0.236 0.234 

Welded top plate (WTP) 1.219 1.209 0.428 0.424 0.240 0.238 

The nonlinear dynamic analysis of the 

structure in the different cases of connections 

using the Boumerdes accelerogram [41] giving 

the results in the form of displacement at the Top 

of structure are presented respectively in 

Figures 14 and 15 and Table 6. 

The structure with nonlinear connections 

has larger amplitudes and periods than that in 

the rigid case. Compared to the parameters in 

Table 5, these displacements are larger in the 

case of E-P connection compared to T-S 

connection. On the other hand, the amplitude of 

the TSA connection is larger than that of the 

WTP connection, although the initial stiffness of 

the WTP connection is lower than that of TSA 

connection. This can be explained by the fact 

that the plastic moment of the WTP connection 

is equal to that in the TSA connections case and 

could then influence the global response of the 

structure. 

 

 

 
Figure 14. Displacements at the roof level. 
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Figure 15. Maximum displacement by level.

However, both the RPA and the EC8 

specifications are particularly relevant to the 

seismic joints and drift ratio. For the two types 

of connections (TS, EP), it is noticed (Figure 15) 

that the displacements are close and on the safe 

side compared to the other types of connections 

where it increases significantly: for the rigid case 

the seismic joint can reach the value of 398.16 

mm calculated using the recommendation given 

by the RPA [39] and 189.65mm calculated using 

EC8 [40]. For the other types of connections, the 

seismic joint increases progressively according 

to the connection flexibility, as shown in Table 6. 

In all cases of connections, the seismic joint 

calculated by RPA [39] is almost as twice as that 

calculated by EC8 [40]. 

The evaluation of the drift ratio of the studied 

structure is presented in Figure 16. The 

regulation checks of the codes RPA [39] and 

EC8 [40] are given in table 7. The profiles of the 

drift ratio of all the cases of connections studied 

are compared with the required limit (1% of the 

floor height for the RPA) and (2% of the floor 

height for the EC8) identified by the vertical 

lines in Figure 16.  

It is noted that for the rigid and TS 

connections, the deformation conditions are 

satisfied for the two codes which are considered. 

On the other hand, for the EP connection, the 

deformation condition of the RPA regulation is 

not verified (NotVer) for the levels 8 and 9 where 

the 1% of the height is exceeded, but it is verified 

(Ver) for EC8. For the TSA and WTP 

connections, the conditions of the two codes is 

not verified (NotVer) because most levels exceed 

the 1% for RPA except level 10 and the 2% for 

EC8 except for levels 1.9 and 10 as shown in 

Table 7.

Table 6. Comparisons of seismic joints 

Connection type RPA EC8 

Full Rigid 398.16 mm 189.65mm 

T-S 342.41 163.10 

EP 641.03 309.12 

TSA 2321.27 1141.69 

WTP 2339.58 1149.27 

0

1

2

3

4

5

6

7

8

9

10

-1.00 1.00 3.00 5.00 7.00

St
o

re
y 

le
ve

ls

Displacement

Rigid

T-S

EP

TSA

WTP



 

 

 

 

 

Figure 16. Investigation of the design inter-story drift-ratio 

 

Table 7. Verification of deformations 

 

 

 

 

 

 

 

 

 

 
 

8. Conclusion 

The results presented in the current research 

work focused on the effect of semi-rigid 

connections coupled with the effect of inertia on 

steel structures under dynamic loading. A 

mechanical model considering the non-linear 

behaviour and rigidity of the joints is proposed. 

The validation of the model is undertaken 

through the application of the model to an 

example taken from the literature. Three types of 

connections are considered, rigid linear, semi-

rigid linear and semi-rigid non-linear. The frame 

is submitted to dynamic loading. The results 

obtained in terms of displacements showed a 

convergence. 

This model is used for the verification of the 

safety recommendations of the Algerian seismic 

rules (RPA 99 v2003) in terms of deformations 

and seismic joint. The results obtained show that 

the semi-rigid connections generate relative 

displacements that exceed the limits allowed by 

the RPA. Compared with EC8, these connections 

are satisfactory. In addition, the dimensions of 

the seismic joint recommended by RPA gives 

values higher than those recommended by the 

EC8 relative to the different types of connections. 
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