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Abstract 

Effects of laser beam radiance (brightness) of the fibre and the Nd3+:YAG laser were 

investigated during surface engineering of the ZrO2 and Si3N4 advanced ceramics with 

respect to dimensional size and microstructure of both of the advanced ceramics. Using 

identical process parameters, the effects of radiance of both the Nd3+:YAG laser and a fibre 

laser were compared thereon the two selected advanced ceramics. Both the lasers showed 

differences on each of the ceramics employed in relation to the microstructure and grain 

size as well as the dimensional size of the laser engineered tracks - notwithstanding the use 

of identical process parameters namely: spot size; laser power; traverse speed; Gaussian 

beam modes; gas flow rate and gas composition as well the wavelengths. From this it was 

evident that the difference in the laser beam radiance between the two lasers would have 

had much to do with this effect. The high radiance fibre laser produced larger power per 

unit area in steradian when compared to the lower radiance of the Nd3+:YAG laser. This 

characteristically produced larger surface tracks through higher interaction temperature at 

the laser-ceramic interface. This in turn generated bigger melt-zones and different cooling 

rates which then led to the change in the microstructure of both the Si3N4 and ZrO2 advance 

ceramics. Owing to this, it was indicative that lasers with high radiance would result to 

much cheaper and cost effective laser assisted surface engineering processes, since lower 

laser power, faster traverse speeds, larger spot sizes could be used in comparison to lasers 

with lower radiance which require much slower traverse speed, higher power levels and 

finer spot sizes to induce the same effect thereon materials such as the advanced ceramics.   

 
 
 
 
 
 
Keywords: Lasers; Radiance; Ceramics 
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1. Introduction 

1.1 Background of Laser Beam Radiance 

Brightness of a light source could be quantified as radiance or luminescence [1, 2]. However, 

when dealing with lasers it is important to define which quantity is more related, since 

luminescence is the measure of a light source in relation to the sensitivity of a human eye, 

whereas radiance is related to the measure of that quantity of light at a practical level in 

relation to the energy exhibited per unit area, generally measured in wattage. [3-4]. Having 

said that, laser beam brightness could be defined as radiance (power per unit area in a solid 

angle of divergence measured in steradian) for practicality and for the comparison of two 

light sources (which is the case in this paper) and for simplification [5, 6]. Radiance is often 

confused with irradiance which is the power per unit area (radiative flux) acting on a 

surface. The units for radiance are (W. mm2. Sr-1), whereas the units of irradiance are W/m3. 

In simplest terms, radiance is the power from the source per area into a certain solid angle 

as diverted, whereas irradiance is the power onto a surface per area. 

    

Due to monochromatic, coherent and unidirectional properties of the laser beam, its focus in 

a small surface area enables the laser light to produce highly radiant beams in comparison 

to other light sources [7, 8]. The radiance is generally not affected by any changes to the 

parameters by the end use [9, 10 11]. Laser beam parameters, namely; solid angle of 

divergence, wavelength, beam quality factor (M2), spot size and laser power are major 

contributors to the laser beam radiance and are used to calculate [12 - 17], or to measure 

[18 – 20], the radiance value for laser beams. However, practical measurement of the laser 

beam radiance is much complicated and involves timely set-ups, hence, theoretical approach 

is more desirable and an accurate means for prediction.   

 

This paper emphasizes that by taking laser beam radiance into consideration during design 

of process parameters would allow one to characterize the laser beam since it is a measure 

of many parameters combined. It is also a means to characterize the laser beam. The reason 

for the emphasis of this paper is due to the simple understanding of laser beam radiance 

being a parameter that involves the laser power, spot size (power density) beam mode, M2, 

and the wavelength. The laser beam radiance as whole is then classified as the input power 

per unit area per solid angle [19 - 20] as stated before. On account of this, it is proposed that 

laser beam radiance is an important parameter in laser-material processing and should be 
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used when designing parameters since, laser material processing by using high radiance 

laser such as of a fibre laser, characteristically, gives fine spot sizes and generates longer 

focusing distance. This in turn enhances the flexibility of laser processing since large areas 

can be covered.  

 

1.2 Previous Research in the field of High Radiance Lasers and Material 

Processing   

Lasers emmiting high radiance have been used in the recent years by several workers [19, 

20]. But it is the term brightness which is comonly used rather than radiance in previous 

literature. Lower operating costs were reported with the use of bright and highly radiant 

laser sources by Wallace [9]. Increase in reliability and efficiency was reported by Wenzel et. 

al. [10]. Cutting and drilling of aerospace alloys was reported by Brown and Frye [11] with 

the use of a Nd3+:YAG laser. This achieved good cut quality and shallow hole angles. A high 

radiant laser of 940nm wavelength was used by Li et al. [15], to investigated the reliability 

and efficiency. The results demosntrated that maximum power conversion efficiency of 60% 

was acheived with a good beam quality factor and 72W laser power. A semiducnudctor laser 

was modified by Treusch et al. [21] using collimated lenses which increased the radiance by 

two folds to affect material processing. Leibreich and Treusch [22] conducted an 

investigation to enhance the brightness of a semiconductor diode laser. The investigation 

involved the use of laser beams of different wavelengths. By doing so enhanced the output 

power as well as the visual brightness of the laser beam. In addition, alteration in the 

transverse mode was made to enhance the laser beam radiance as showed by Hanna [23, 

24]. Val et al. [25] followed an investigation which reported the effects of radiance during 

laser cladding of stainless steel and co-based super-alloy powder as a coating material by 

employing a Nd3+:YAG laser and a Yb:YAG laser. Enlarged clad tracks and deeper 

penetration was also reported on metals and alloys. This effect would have taken place due 

to the better beam quality and high radiance of the fibre laser [25]. 

 

1.3 Research Rationale 

Various investigations have shown methods to improve the laser beam  radiance [9, 10, 19, 

20]. Some studies have also shown the effect of a high brightness or radiant laser to effect 

metals and alloys [11, 15, 21, 25]. However, to date, no work has been conducted hitherto by 

employing the fibre and Nd3+:YAG laser to surface treat advanced ceramics in ralation to the 

laser beam  radiance, except the work of the authors herein. The work in this paper follows 
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the finding obtained by previous studies [16, 17] to compare the effects of laser beam  

radiance, thereon, two like-by-like laser sources, with indentical process parameters, 

employed on the Si3N4 and ZrO2 advanced ceramics to demostrate the importance of 

radiance during laser-material processing. Moreover, a comparison is made to the effect of 

laser beam  radiance from the materials aspect.   

 

2. Materials and Methods 

2.1 Details of the Advanced Ceramics  

The first ceramic used for the experiments was a Si3N4 cold isostatically pressed (CIPed) 

with 90% Si3N4, 4% Yttria, 4% Al2O3 and 2% other content. The second advanced ceramic 

used was a cold isostatic pressed (CIP) ZrO2 with 95 wt% ZrO2 and 5 wt% yttria. Both 

ceramic were purchased from Tensky International Company, Ltd.. Each test piece was 

obtained in a bulk of 10 x 10 x 50 mm3 with a surface roughness of 1.58 μm for the ZrO2  and 

1.56 µm for Si3N4, as-received from the manufacture. All experiments were conducted in 

atmosheric condition in room temperature  of 25◦C.  

 

2.2 Laser Processing Method 

A Nd3+:YAG laser (HK, SL902; Hahn & Kolb Ltd.) with 65W capacity (CW mode) operating at 

1.064 µm wavelength was first employed. The second laser for the compartive study was a 

200W fibre laser (SPI-200c-002; SPI, Ltd.) emitting a CW mode beam with a 1.075µm 

wavelength. Both lasers were set to obtain a 2.2mm spot size at a known laser power of 65 

W. The processing gases used for both laser surface engineering on the advanced ceramics 

was N2 flowing at 25 l/min. CAD software was used to programme a 50mm beam path to 

engineer the surfaces. A traverse speed ranging from 4 and 100 mm/sec was used. From 

these trials it was found that 10 mm/sec at 65W were the ideal laser parameter to use in 

terms of achieving a sufficient foot-print on the material to conduct further analysis.  

 

2.2 Laser Beam Related Analysis and the Determination of Radiance 

For the experiments to be valid, it was important to ensure a like-by-like investigation was 

undertaken. Accordingly, identical laser power and spot size (power density), similar 

wavelength and traverse speeds were used as mentioned in the laser processing section. 

Nevertheless, the beam characteristics were not like-by-like as this aspect is internal of the 

laser system and cannot be changed or modified by the operator. So, laser beam parameters 

namely; laser power, spot size, wavelength, laser beam quality factor (M2) were all 



 6 

employed to calculate the laser beam  radiance using Equation 1 [12 - 17], where B is the 

brightness (radiance), P is the input laser power, M2 is the beam quality factor (taking in 

account of the solid angle of divergence being inversely proportional to the beam quality 

factor), and λ2 being the wavelength.   

 

                             (1)  

When the values of the previously mentioned beam parameters were placed into Equation 

1, would then allow the determination of the laser beam radiance for a particular laser. 

Using Equation 1, the determined values for radiances of the fibre and the Nd+3:YAG lasers 

are shown in Table 1. The calculation was conducted using the new version of Microsoft 

Excel 2013.  

 

Experiments were conducted using identical input parameters as previously mentioned. 

However, the beam quality factor – M2, was different for both the lasers which have affected 

the end value of radiance as one can see from the difference in radiance in Table 1. But this 

will deferentiate a like-by-like experimental condition. Thus, it will certainly affect the 

comparative study, since one laser is radiant or simply brighter than the other. Having said 

this, the parameter which has caused the change in the radiance was M2. This is not a readily 

changeable parameter when using single mode laser processing systems which was the case 

for this study. Therefore, the focus of this work was to maintain identical parameters (which 

are changeable by the operator) and employ them into Equation 1, along with the individual 

laser beam characteristics (M2 value, solid angle of beam divergence and Gaussian beam 

mode) to determine the laser beam radiance.  

 
Table 1 Calculated values of laser beam  radiance for both the Nd3+:YAG and fibre 
laser. 

 

 

 

 

 

Lasers Power 
(W) 

Spot 
Size 

(mm) 

D2 
(mm) 

Pout (W/mm2) M2 

 

M4 λ 
(µm) 

λ2 (µm ) M4x λ2 Radiance 
(W/mm2/Sr-1) 

Fibre  65 2.2 4.84 3357.43 6.7 44.89 1.064 1.13 50.81 6.60 
Nd3+:YAG   65 2.2 4.84 3357.43 1.2 1.44 1.075 1.15 1.66 201.75 
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2.3. Microstructural and Optical Analysis  

The as-received and the laser engineered samples were mounted in epoxy resin (Epofix, 

Struers Ltd.) and were finely polished by using a semi-automatic polishing machine 

(TegraPol-25, Struers Ltd.), aided by a successively finer diamond polishing discs. The final 

polishing of the adavanced ceramics were conducted by using a 0.04µm colloidal silica 

suspension (OP-S; Struers Ltd.). The samples were then removed from the epoxy resin. 

Thereafter, the samples were etched by using a thermal etching technique in order to 

expose the grains, to determine the grain size and to investigate the microstructure. 

Temperature of 1300°C was applied in a furnace to samples of the as-received, fibre and 

Nd3+:YAG laser engineered Si3N4 and ZrO2 advanced ceramics. The samples were held at 

1300°C for 5min with a heating/cooling rate of 10°C /min.  

 
Optical microspcy was used to observe the Vickers indentations prior to and after the laser 

surface engineering. In addition, the as-received, fibre laser and the Nd3+:YAG laser treated 

zones were all observed by employing the optical microscopy (Optishot; Nikon Ltd.). 

Moreover, the microstructure of the advanced ceramics was then observed by FEGSEM 

(Ultra-high-resolution, 1530VP; Leo Ltd.).  

 

3. Results 

3.1 Effect of Laser beam radiance on the Dimensional Size 

3.1.1 ZrO2 Advanced Ceramics 

From the optical images of both the Nd3+:YAG and fibre laser iduced foot-prints, it can be 

reported that around 32% difference was seen between the width of the surface tracks 

created by the two lasers. Table 2 shows the dimentions as result of the surface engineering 

undertaken by the two lasers for the ZrO2 advanced ceramic. The average width of the 

Nd3+:YAG laser engineered track in comparison to the track width of the fibre laser was 

much smaller and proved to have a 24% difference in size. The average dimention of the 

heat affected zone (HAZ) being stretched out for the Nd3+:YAG laser engineered surface of 

the ZrO2 was 91µm, whereas the fibre laser in comparison was somewhat smaller (85µm). 

The reason for the HAZ being smaller for the fibre laser despite having a bigger track was 

due to the beam quality and sharpness resulting to a clean track possibly penetrating deep 

into the surface compared to the beam quality of the Nd3+:YAG laser which was considerably 

low. This in turn resulted to a larger HAZ and smaller track width.  
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(a)                                                                  (b) 

Figure 1 Optical images of (a) the width of the Nd3+:YAG laser engineered track and 

(b) the width of the fibre laser engineered track of the ZrO2 advanced ceramic. 

 

3.1.2 Si3N4 Advanced Ceramic 

The optical images presented in Figure 2 showed the fibre laser engineered track of the 

Si3N4 which was over 9% higher than that of the Nd3+:YAG laser. The dimentions of the fibre 

laser created surface track was 419µm, whereas the Nd3+:YAG laser was 383µm. The size of 

the HAZ was 155 µm for the fibre laser engineered area, whereas the Nd3+:YAG laser 

engineered area was 220µm. This goes to show that the same effect previously seen with the 

ZrO2 advanced ceramics was also seen with the Si3N4. This was due to a better beam quality 

factor being exhibited by the fibre laser as previously explained.   

 

Having applied identical laser parameters to surface treat both the advanced ceramics, the 

fibre laser surface treated zone was much bigger. This indicated that higher radiance 

produced by the fibre laser resulted to high power per unit area in a tight angle of 

divergence. This characteristically produced a larger interaction zone in comparison to the 

one produced by the Nd3+:YAG laser. Although, the higher radiance laser resulted to a bigger 

interaction zone of the ceramic surfaces, but at the same time the HAZ for the fibre laser 

engineered surfaces were considerably smaller. This also implied that the difference in the 

laser beam quality factor M2 between the two lasers would have much contribution. The 

beam quality factor M2 was better for the fibre laser (M2 = 1.1) than the one for the 

Nd3+:YAG (M2 = 6.7), which is a remarkebly large difference in the beam quality. In any case, 

the better beam quality for the fibre laser attributed a sharper beam profile in comparison 
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to the Nd3+:YAG laser, indicating that a highly radiant beam resulted to larger power per 

unit area per steradian but the beam quality is much better with a clean sharp beam that 

penetrated deeper and generated sharper tracks on the surface which were cleaner and 

with minimal spread of energy. This consequently attributed to the HAZ’s of the ceramic 

being smaller for the fibre laser engineering surfaces.    

 

(a)                                                                                           (b) 

Figure 2 optical images of (a) the fibre laser engineered surface and (b) the Nd3+:YAG 

laser engineered surface of the Si3N4 advanced ceramic. 

 

Table 2 average track width of the fibre and the Nd3+:YAG laser engineered surfaces. 

 Fibre Laser Nd3+:YAG 

Laser Engineered 

Track 
HAZ Laser Engineered 

Track 
HAZ 

ZrO2 837 µm 85 µm 632 µm 91 µm 

Si3N4 419 µm 155 µm 383 µm 220 µm 

 

 

 

 

 

 

 

3.2 Effect of Laser beam Radiance on the Microstructure 
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3.2.1 Si3N4 Advanced Ceramics  

The micrograph in Figure 3 illustrate the fibre laser engineered surface of the Si3N4 

advanced ceramic. On account of observing the micrograph shown in Figure 3, it could be 

confirmed that the measurements presented in Figure 2 (a) and (b) of the track created by 

the fibre laser was somewhat larger than that of the Nd3+:YAG laser engineered sample. The 

SEM image in Figure 3 showed that there is certainly an evidence of larger activity and 

bigger interaction zone in comparison to the image in Figure 6(b) of the Nd3+:YAG laser. This 

indicated that the depth of penetration of the fibre laser engineered surface would also be 

higher. Having said that, a cross-sectional investigation to confrm this effect could be 

undertaken for further understanding.  

 

Owing to the higher radiance exhibited by the fibre laser, Figure 6(a) shows an evidence of 

melting, oxidation, and entrapment of gas bubbles, which in comparison to the Nd3+:YAG 

laser treated surface (exhibiting a low radiance) generated low temperature. Hence, a 

smaller interaction zone, surface melting and oxidation was created. The Si3N4 advanced 

ceramic generally decomposes at 1900 ◦C [27]. Therefore, it can also be ascribed that the 

higher radiance of the fibre laser caused the Si3N4 to partially melt and decompose 

somewhat above the decomposition temperature to about 2400 ◦C [27]. In comparison, for 

the Nd3+:YAG laser engineered surface, the induced heat would be much below the 

decomposition temperature of the Si3N4. On this more, it is also suggested that an 

experimental investigation comparing the radiance temperature is carried-out to 

demonstrate the differences of heat generated between each laser source during laser-

material interaction.  
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Figure 3 A micrographic image of the fibre laser engineered surface of the Si3N4 

advanced ceramic. 

 
 

Figure 4 A micrographic image of the Nd3+:YAG laser engineered surface of the 

Si3N4 advanced ceramic. 
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From observing the micrograph of the untreated surface of the Si3N4 in Figure 5 (a); it can 

be observed that sharp rods like features are present but are not equaly shaped along with 

the presence of square shaped blocks. During the laser-Si3N4 interaction it is possible that 

upon re-melting of the near surface layer affected the dimensional sizes of the elongated 

sharp rods to reduce in size. Having said this, the effect is more evident with the sample 

surface engineered by the fibre laser (see Figure 5(b)) as the rods are much finer and 

became smaller in size compared to the Nd3+:YAG laser engineered surfaces presented in 

Figure 5 (c). The change in the microstructure produced by the two lasers would have 

occurred due to the higher melting and vaporization as well as a possible tranformation of 

phases as comfirmed by previous investigation on the fibre laser irradiation of Si3N4 

engineering ceramics [27, 28], where an alpha (α) to beta (β) transformation occurred 

whilst the surface was strengthened.  

 

 
(a) 
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(b) 
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(c) 

 
Figure 5 Micrographs of the as-received surface in (a) the fibre laser engineered 

surface in (b), and (c) the Nd3+:YAG laser engineered surface of the Si3N4 advanced 

ceramic.  

3.2.2 ZrO2 Advanced Ceramics 

The grain boundaries of the fibre laser engineered surface of the ZrO2 advanced ceramic 

shown in Figure 6(a) have enlarged and elongated in comparison to the ground and 

polished untreated surface in Figure 6(b). Nevertheless, an increase in surface flaws and 

porosity has occurred after the fibre laser surface engineering have taken place when 

compared to the as-received ground and polished surface. This is believed to have resulted 

from escaped gas during the fibre laser-ZrO2 interaction. In addition, the grain sizes tend to 

vary from 3µm to 10µm from the near-surface layer and through the sub-surface, and the 

bulk of the ZrO2. This was due to the laser-ZrO2 processing temperature at the near surface 

layer being somewhat higher than the sub-surface and the bulk of the ceramic. This could 

also be confirmed from a previous investigations [26, 27]. As shown in Figure 6(c) of the 

cross-section of the microstructure, the grain size increases from the bulk of the ZrO2 to the 

sub-surface and the top surface layer of the fibre laser engineered zone. The microstructure 
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at the near surface layer is somewhat different as significant grain growth has occurred due 

to the high temperature gradient existing at the laser-ZrO2 interaction.  

 

(a) 

 

(b) 
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(c) 

Figure 6 Micrograph of the cross-section of the sub-surface layer of the the as-

received ground and polished surface in (a), and (b) the fibre laser surface and its 

cross-section in (c) of the ZrO2 advanced ceramic. 

 

The microstructure of the Nd3+:YAG laser engineered surface in comparison to the as-

received surface was reasonably modified (see Figure 7 (a) and (b)). The grain sizes herein 

range from about 3.5µm to 7µm and an average grain size was of about 5µm. This in 

comparison to the untreated surface was considerably large. When the results of the 

Nd3+:YAG laser were compared to the fibre laser engineered surfaces, the grain boundaries 

were somewhat smaller as evident in Figure 7(b) and (c)). Similar effects also occurred with 

the ZrO2 samples engineered by both the lasers, though the results of the Nd3+:YAG laser 

were less significant. The image seen in Figure 7(a) within the cross-section comprised of 

larger grains at the near surface layer of the ZrO2. This further reduced as it was observed at 

the sub-surface and the bulk of the ZrO2 advanced ceramic (see Figure 7(a)).  Nonetheless, 

the particular grian growth seen in Figure 7(a) appears to be somewhat abnormal as grain 

elongation only in random sections of the laser treated zone has appeared. Figure 7(b) 

shows the very near surface layer of the ZrO2 advanced ceramic surface engineered by the 

Nd3+:YAG laser. The microstructure in this image was reasonably modified in comparison to 

the microstructure where the laser-ZrO2 interaction did not occur.  
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(a) 

 

 

 

(b) 



 18 

Figure 7 Micrograph of the Nd3+:YAG laser engineered sample in (a) showing an 

abnormal grain growth in various regions of the sub-surface and (b) the elongation of 

grains when moving closer to the surface region of the ZrO2 advanced ceramic within 

the sub-surface region. 

 

Figure 8 shows a melted glassy amorphous zone produced by the Nd3+:YAG laser - was a 

mixture of ZrCO2. This could be postulated from a previous investigation using the fibre 

laser to surface engineered ZrO2 that demonstrated similar findings [29]. Evidance of 

surface melting can be seen with the Nd3+:YAG laser engineered surface, although, it was not 

as remarkable as the fibre laser treated surface of the ZrO2 since large proportion of the 

cross-section was found to be of the amorphous glass layer. This in turn confirmed that the 

formation of the considerable melt-zones found at the fibre laser surface interaface would 

have occurred from a higher laser-material interaction temperature, whereas the Nd3+:YAG 

laser surface temparatures would have been somewhat lower to have only comprised of the 

pratial melting. This difference occurred despite using identical laser processing parameters 

between the two lasers used. Moreover, the fibre laser with a higher radiance value had 

created much higher temperature which characteristically melted the surface and generated 

a larger melt-pool. On the other hand, the Nd3+:YAG laser-material interaction temperature 

was lower due to the low radiance value. This would generate low power per unit area in 

steradian. In addition, to complement this statement – considerable amount of surface 

cracking was also found with the fibre laser engineered sample in comparison to the 

Nd3+:YAG laser which suggested that the temperature gradient as well as the cooling rate by 

each laser would have varried leading to the observed differences.  
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Figure 8 Micrograph of the cross-section of the Nd3+:YAG laser engineered surface of 

the ZrO2 advanced ceramic showing the surface layer with partial melt zones. 

 

4. Discussion 

4.1 Contribution of Laser Beam Paramaters to Effect Radiance 

Due to the theory behind the calculation of laser beam  radiance [12 - 17], it is indicative 

that several laser beam  ralated parameters effect the calculation and contribute in 

someway or another. These aforementioned parameters are namely:  

-  the output laser power; 

- spot size; 

-  power density; 

- the beam quality factor - M2; 

-  transverse mode; 

-  beam divergence. 

However, the amount of contribution each parameters has thereon the end radiance value is 

yet unclear and further analysis is currently being undertaken by the leading author of this 

study to show the contribution of each parameter to effect the laser beam  radiance. Thus, it 

can be attributed that a high quality laser beam leads to higher radiance value which 

instrinsically generates high power per unit area and causes considerable difference as seen 

from the study herein. On this more, the difference in the beam divergence and the quality 
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factor M2 between the two lasers led to a change in brightness as the fibre laser divergence 

was much smaller than the Nd3+:YAG laser which emitted a brighter beam.   

 

Furthermore, a highly radiant laser beam generally penetrates deeper into the surface as  

high brightness beams produce deeper penetration [27], longer depth of focus, larger 

impact or the track width, and microstructural changes, despite using identical parameters 

to a laser beam of lower radiance as seen from the study herein. This allows the high 

radiance laser to operate at lower power levels to produce the same surafce treatment to 

that of a low radiance laser. This characteristically reduces with a reduction in cost. Further 

work is also being undertaken by the leading author of this study to determine the cost 

difference between high and low radiance lasers.   

 

4.2 Comparison of the Effects of Laser Beam  Radiance theron the Advanced Ceramics 

 
Up on comparing the results found with the effects of the laser beam  radiance on both the 

Si3N4 and ZrO2 advanced ceramics it can be observed that the effects of high laser beam  

radiance exists with both the nitride and oxide ceramics as larger surface tracks were seen 

and microstructural changes were also much significant using the high radiance laser. Thus, 

it is important to mention at this point the difference in the temperature exhibited between 

the two lasers at the laser material interaction zone. The fibre laser comprising of a much 

radiant and brighter beam and emitted higher peak temperature in comparison to the 

Nd+3:YAG laser [27]. This leads to difference in heating rate and then the cooing of the two 

ceramics. The fibre laser would generally heat up the material faster and allow a slower 

cooling rate to take place. This consequently would allow not only a change in the 

microstructure as seen in the results herein, but would also enable the heat to spread in a 

larger surface area and would attribute to creating larger track widths.  

 

Moreover, it can be reported that thicker track width was seen using both lasers for the ZrO2 

(oxide ceramic) when compared to the Si3N4 (nitride ceramic) when employing the high 

radiance fibre laser. This indicated that comparison of the effects of laser beam  radiance 

would be more predominent and obvious if two ceramics were compared from the same 

branch of the ceramics family tree. Examples are namely: comparison of Si3N4 to boron 

nitride (BN) or ZrO2 to alumina oxide (Al2O3) and likewise, SiC to boron carbide (BC). This 

will enable one to understand the specific difference the radiance of a laser has up on the 

particular branch of materials in future investigations.   
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Previous result have shown that high brightness lasers exhibit high processing 

temperatures during laser-ceramic interaction [27]. This is particularly so for the fibre laser 

and significant difference in the solidification rate would occur, which thereby, re-creates a 

different microstructure as can be seen with the results obtained herein for the fibre laser 

engineered Si3N4 and the ZrO2 advanced ceramics in comparison to that of the Nd+3:YAG 

laser. The high processing temperature by the fibre laser has yielded refined grain structure 

with the Si3N4 and evidence of significant melting and possibly what appears to be a glassy 

layer with the ZrO2. The modified microstructure in turn results to difference in the surface 

properties of the ceramics such as a change in the hardness, fracture toughness parameter 

K1c, and depending on the peak processing temperature; there could be a probable phase 

change for the two ceramics, whereby the Si3N4 could have transformed from alpha-phase 

to beta-phase and the ZrO2 from a monoclinic phase to tetragonal, or from a tetragonal to a 

cubic phase. In any case, further investigation would be required to confirm such 

modifications using the same experimental conditions and the two ceramics used in this 

study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Conclusions 

 
A comparative study regards to the effects of laser beam radiance, commonly known as 

brightness was investigated during surface treatment of a Si3N4 and ZrO2 advanced ceramics 
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by employing a fibre laser and a Nd3+:YAG laser. Like-by-like laser parameters were used to 

investigate the change in the microstructure and the laser induced foot-prints. The results 

showed that the effects of the fibre laser surface engineering on both the advanced ceramics 

differed from the effects of the Nd3+:YAG laser as larger track width (foot-print), porosity, 

oxidation, surface melting and decomposition took place. Moreover, considerable changes in 

the microstructure were evident and sharp rods-like features were much reduced in size 

due to high laser beam radiance of the fibre laser, creating high temperature during laser-

ceramic interaction for the Si3N4 advanced ceramic. This consequently caused higher 

melting of the ceramic. For the ZrO2 advanced ceramic the microstructural changes also 

showed that the fibre laser engineered surface was producing large grains in comparison to 

the Nd3+:YAG laser engineering surface by over 20% difference in size which also attributes 

to the higher temperature characteristically generating a high melt zone to occur.  

 

The dimentional and the microstructural effects on the two advanced ceramics differed for 

the two lasers treatments despite using like-bylike parameters. Owing to this, the laser 

beam radiance is taken into account since higher power per unit area in a solid angle in 

steradian would have generated high interaction temperatures, causing larger thermal 

gradient to produced a bigger melt zone. As result, the difference in the dimentional size of 

the laser induced foot-prints and the differnce in the microstructure were found for the two 

ceramics.  

 

On account of the findings herein, it is concluded that laser beam radiance during laser 

surface engineering and other processes should be considered as its not only a sum of the 

laser power density but it also takes in account of other important parameters of the laser 

beam. High radiance lasers have the potential to also generate effective and possibly 

efficient surface engineering process which could enable the use of lower wattage for the 

same treatment. This inherently leads to cost reduction for the process. Further 

investigation into the effects of radiance on other material types; comparison of cost 

between high and low radiance lasers; temperature difference between various lasers with 

different randiances and the contribution of each laser beam parameter to the end value of 

radiance is currently being investigated by the authors of this study.  
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respect to dimensional size and microstructure of both of the advanced ceramics. Using 

identical process parameters, the effects of radiance of both the Nd3+:YAG laser and a fibre 

laser were compared thereon the two selected advanced ceramics. Both the lasers showed 

differences on each of the ceramics employed in relation to the microstructure and grain 

size as well as the dimensional size of the laser engineered tracks - notwithstanding the use 

of identical process parameters namely: spot size; laser power; traverse speed; Gaussian 

beam modes; gas flow rate and gas composition as well the wavelengths. From this it was 

evident that the difference in the laser beam radiance between the two lasers would have 

had much to do with this effect. The high radiance fibre laser produced larger power per 

unit area in steradian when compared to the lower radiance of the Nd3+:YAG laser. This 

characteristically produced larger surface tracks through higher interaction temperature at 

the laser-ceramic interface. This in turn generated bigger melt-zones and different cooling 

rates which then led to the change in the microstructure of both the Si3N4 and ZrO2 advance 

ceramics. Owing to this, it was indicative that lasers with high radiance would result to 

much cheaper and cost effective laser assisted surface engineering processes, since lower 

laser power, faster traverse speeds, larger spot sizes could be used in comparison to lasers 

with lower radiance which require much slower traverse speed, higher power levels and 

finer spot sizes to induce the same effect thereon materials such as the advanced ceramics.   

 
 
 
Keywords: Lasers; Radiance; Ceramics 
 
 
 

4. Introduction 

1.1 Background of Laser Beam Radiance 

Brightness of a light source could be quantified as radiance or luminescence [1, 2]. However, 

when dealing with lasers it is important to define which quantity is more related, since 

luminescence is the measure of a light source in relation to the sensitivity of a human eye, 
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whereas radiance is related to the measure of that quantity of light at a practical level in 

relation to the energy exhibited per unit area, generally measured in wattage. [3-4]. Having 

said that, laser beam brightness could be defined as radiance (power per unit area in a solid 

angle of divergence measured in steradian) for practicality and for the comparison of two 

light sources (which is the case in this paper) and for simplification [5, 6]. Radiance is often 

confused with irradiance which is the power per unit area (radiative flux) acting on a 

surface. The units for radiance are (W. mm2. Sr-1), whereas the units of irradiance are W/m3. 

In simplest terms, radiance is the power from the source per area into a certain solid angle 

as diverted, whereas irradiance is the power onto a surface per area. 

    

Due to monochromatic, coherent and unidirectional properties of the laser beam, its focus in 

a small surface area enables the laser light to produce highly radiant beams in comparison 

to other light sources [7, 8]. The radiance is generally not affected by any changes to the 

parameters by the end use [9, 10 11]. Laser beam parameters, namely; solid angle of 

divergence, wavelength, beam quality factor (M2), spot size and laser power are major 

contributors to the laser beam radiance and are used to calculate [12 - 17], or to measure 

[18 – 20], the radiance value for laser beams. However, practical measurement of the laser 

beam radiance is much complicated and involves timely set-ups, hence, theoretical approach 

is more desirable and an accurate means for prediction.   

 

This paper emphasizes that by taking laser beam radiance into consideration during design 

of process parameters would allow one to characterize the laser beam since it is a measure 

of many parameters combined. It is also a means to characterize the laser beam. The reason 

for the emphasis of this paper is due to the simple understanding of laser beam radiance 

being a parameter that involves the laser power, spot size (power density) beam mode, M2, 

and the wavelength. The laser beam radiance as whole is then classified as the input power 

per unit area per solid angle [19 - 20] as stated before. On account of this, it is proposed that 

laser beam radiance is an important parameter in laser-material processing and should be 

used when designing parameters since, laser material processing by using high radiance 

laser such as of a fibre laser, characteristically, gives fine spot sizes and generates longer 

focusing distance. This in turn enhances the flexibility of laser processing since large areas 

can be covered.  
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1.2 Previous Research in the field of High Radiance Lasers and Material 

Processing   

Lasers emmiting high radiance have been used in the recent years by several workers [19, 

20]. But it is the term brightness which is comonly used rather than radiance in previous 

literature. Lower operating costs were reported with the use of bright and highly radiant 

laser sources by Wallace [9]. Increase in reliability and efficiency was reported by Wenzel et. 

al. [10]. Cutting and drilling of aerospace alloys was reported by Brown and Frye [11] with 

the use of a Nd3+:YAG laser. This achieved good cut quality and shallow hole angles. A high 

radiant laser of 940nm wavelength was used by Li et al. [15], to investigated the reliability 

and efficiency. The results demosntrated that maximum power conversion efficiency of 60% 

was acheived with a good beam quality factor and 72W laser power. A semiducnudctor laser 

was modified by Treusch et al. [21] using collimated lenses which increased the radiance by 

two folds to affect material processing. Leibreich and Treusch [22] conducted an 

investigation to enhance the brightness of a semiconductor diode laser. The investigation 

involved the use of laser beams of different wavelengths. By doing so enhanced the output 

power as well as the visual brightness of the laser beam. In addition, alteration in the 

transverse mode was made to enhance the laser beam radiance as showed by Hanna [23, 

24]. Val et al. [25] followed an investigation which reported the effects of radiance during 

laser cladding of stainless steel and co-based super-alloy powder as a coating material by 

employing a Nd3+:YAG laser and a Yb:YAG laser. Enlarged clad tracks and deeper 

penetration was also reported on metals and alloys. This effect would have taken place due 

to the better beam quality and high radiance of the fibre laser [25]. 

 

1.3 Research Rationale 

Various investigations have shown methods to improve the laser beam  radiance [9, 10, 19, 

20]. Some studies have also shown the effect of a high brightness or radiant laser to effect 

metals and alloys [11, 15, 21, 25]. However, to date, no work has been conducted hitherto by 

employing the fibre and Nd3+:YAG laser to surface treat advanced ceramics in ralation to the 

laser beam  radiance, except the work of the authors herein. The work in this paper follows 

the finding obtained by previous studies [16, 17] to compare the effects of laser beam  

radiance, thereon, two like-by-like laser sources, with indentical process parameters, 

employed on the Si3N4 and ZrO2 advanced ceramics to demostrate the importance of 

radiance during laser-material processing. Moreover, a comparison is made to the effect of 

laser beam  radiance from the materials aspect.   
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5. Materials and Methods 

2.1 Details of the Advanced Ceramics  

The first ceramic used for the experiments was a Si3N4 cold isostatically pressed (CIPed) 

with 90% Si3N4, 4% Yttria, 4% Al2O3 and 2% other content. The second advanced ceramic 

used was a cold isostatic pressed (CIP) ZrO2 with 95 wt% ZrO2 and 5 wt% yttria. Both 

ceramic were purchased from Tensky International Company, Ltd.. Each test piece was 

obtained in a bulk of 10 x 10 x 50 mm3 with a surface roughness of 1.58 μm for the ZrO2  and 

1.56 µm for Si3N4, as-received from the manufacture. All experiments were conducted in 

atmosheric condition in room temperature  of 25◦C.  

 

2.2 Laser Processing Method 

A Nd3+:YAG laser (HK, SL902; Hahn & Kolb Ltd.) with 65W capacity (CW mode) operating at 

1.064 µm wavelength was first employed. The second laser for the compartive study was a 

200W fibre laser (SPI-200c-002; SPI, Ltd.) emitting a CW mode beam with a 1.075µm 

wavelength. Both lasers were set to obtain a 2.2mm spot size at a known laser power of 65 

W. The processing gases used for both laser surface engineering on the advanced ceramics 

was N2 flowing at 25 l/min. CAD software was used to programme a 50mm beam path to 

engineer the surfaces. A traverse speed ranging from 4 and 100 mm/sec was used. From 

these trials it was found that 10 mm/sec at 65W were the ideal laser parameter to use in 

terms of achieving a sufficient foot-print on the material to conduct further analysis.  

 

2.2 Laser Beam Related Analysis and the Determination of Radiance 

For the experiments to be valid, it was important to ensure a like-by-like investigation was 

undertaken. Accordingly, identical laser power and spot size (power density), similar 

wavelength and traverse speeds were used as mentioned in the laser processing section. 

Nevertheless, the beam characteristics were not like-by-like as this aspect is internal of the 

laser system and cannot be changed or modified by the operator. So, laser beam parameters 

namely; laser power, spot size, wavelength, laser beam quality factor (M2) were all 

employed to calculate the laser beam  radiance using Equation 1 [12 - 17], where B is the 

brightness (radiance), P is the input laser power, M2 is the beam quality factor (taking in 

account of the solid angle of divergence being inversely proportional to the beam quality 

factor), and λ2 being the wavelength.   
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                             (1)  

When the values of the previously mentioned beam parameters were placed into Equation 

1, would then allow the determination of the laser beam radiance for a particular laser. 

Using Equation 1, the determined values for radiances of the fibre and the Nd+3:YAG lasers 

are shown in Table 1. The calculation was conducted using the new version of Microsoft 

Excel 2013.  

 

Experiments were conducted using identical input parameters as previously mentioned. 

However, the beam quality factor – M2, was different for both the lasers which have affected 

the end value of radiance as one can see from the difference in radiance in Table 1. But this 

will deferentiate a like-by-like experimental condition. Thus, it will certainly affect the 

comparative study, since one laser is radiant or simply brighter than the other. Having said 

this, the parameter which has caused the change in the radiance was M2. This is not a readily 

changeable parameter when using single mode laser processing systems which was the case 

for this study. Therefore, the focus of this work was to maintain identical parameters (which 

are changeable by the operator) and employ them into Equation 1, along with the individual 

laser beam characteristics (M2 value, solid angle of beam divergence and Gaussian beam 

mode) to determine the laser beam radiance.  

 
Table 1 Calculated values of laser beam  radiance for both the Nd3+:YAG and fibre 
laser. 

 

 

 

 

 

2.3. Microstructural and Optical Analysis  

The as-received and the laser engineered samples were mounted in epoxy resin (Epofix, 

Struers Ltd.) and were finely polished by using a semi-automatic polishing machine 

(TegraPol-25, Struers Ltd.), aided by a successively finer diamond polishing discs. The final 

polishing of the adavanced ceramics were conducted by using a 0.04µm colloidal silica 

Lasers Power 
(W) 

Spot 
Size 

(mm) 

D2 
(mm) 

Pout (W/mm2) M2 

 

M4 λ 
(µm) 

λ2 (µm ) M4x λ2 Radiance 
(W/mm2/Sr-1) 

Fibre  65 2.2 4.84 3357.43 6.7 44.89 1.064 1.13 50.81 6.60 
Nd3+:YAG   65 2.2 4.84 3357.43 1.2 1.44 1.075 1.15 1.66 201.75 
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suspension (OP-S; Struers Ltd.). The samples were then removed from the epoxy resin. 

Thereafter, the samples were etched by using a thermal etching technique in order to 

expose the grains, to determine the grain size and to investigate the microstructure. 

Temperature of 1300°C was applied in a furnace to samples of the as-received, fibre and 

Nd3+:YAG laser engineered Si3N4 and ZrO2 advanced ceramics. The samples were held at 

1300°C for 5min with a heating/cooling rate of 10°C /min.  

 
Optical microspcy was used to observe the Vickers indentations prior to and after the laser 

surface engineering. In addition, the as-received, fibre laser and the Nd3+:YAG laser treated 

zones were all observed by employing the optical microscopy (Optishot; Nikon Ltd.). 

Moreover, the microstructure of the advanced ceramics was then observed by FEGSEM 

(Ultra-high-resolution, 1530VP; Leo Ltd.).  

 

3. Results 

3.1 Effect of Laser beam radiance on the Dimensional Size 

3.1.1 ZrO2 Advanced Ceramics 

From the optical images of both the Nd3+:YAG and fibre laser iduced foot-prints, it can be 

reported that around 32% difference was seen between the width of the surface tracks 

created by the two lasers. Table 2 shows the dimentions as result of the surface engineering 

undertaken by the two lasers for the ZrO2 advanced ceramic. The average width of the 

Nd3+:YAG laser engineered track in comparison to the track width of the fibre laser was 

much smaller and proved to have a 24% difference in size. The average dimention of the 

heat affected zone (HAZ) being stretched out for the Nd3+:YAG laser engineered surface of 

the ZrO2 was 91µm, whereas the fibre laser in comparison was somewhat smaller (85µm). 

The reason for the HAZ being smaller for the fibre laser despite having a bigger track was 

due to the beam quality and sharpness resulting to a clean track possibly penetrating deep 

into the surface compared to the beam quality of the Nd3+:YAG laser which was considerably 

low. This in turn resulted to a larger HAZ and smaller track width.  
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(a)                                                                  (b) 

Figure 1 Optical images of (a) the width of the Nd3+:YAG laser engineered track and 

(b) the width of the fibre laser engineered track of the ZrO2 advanced ceramic. 

 

3.1.2 Si3N4 Advanced Ceramic 

The optical images presented in Figure 2 showed the fibre laser engineered track of the 

Si3N4 which was over 9% higher than that of the Nd3+:YAG laser. The dimentions of the fibre 

laser created surface track was 419µm, whereas the Nd3+:YAG laser was 383µm. The size of 

the HAZ was 155 µm for the fibre laser engineered area, whereas the Nd3+:YAG laser 

engineered area was 220µm. This goes to show that the same effect previously seen with the 

ZrO2 advanced ceramics was also seen with the Si3N4. This was due to a better beam quality 

factor being exhibited by the fibre laser as previously explained.   

 

Having applied identical laser parameters to surface treat both the advanced ceramics, the 

fibre laser surface treated zone was much bigger. This indicated that higher radiance 

produced by the fibre laser resulted to high power per unit area in a tight angle of 

divergence. This characteristically produced a larger interaction zone in comparison to the 

one produced by the Nd3+:YAG laser. Although, the higher radiance laser resulted to a bigger 

interaction zone of the ceramic surfaces, but at the same time the HAZ for the fibre laser 

engineered surfaces were considerably smaller. This also implied that the difference in the 

laser beam quality factor M2 between the two lasers would have much contribution. The 

beam quality factor M2 was better for the fibre laser (M2 = 1.1) than the one for the 

Nd3+:YAG (M2 = 6.7), which is a remarkebly large difference in the beam quality. In any case, 

the better beam quality for the fibre laser attributed a sharper beam profile in comparison 
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to the Nd3+:YAG laser, indicating that a highly radiant beam resulted to larger power per 

unit area per steradian but the beam quality is much better with a clean sharp beam that 

penetrated deeper and generated sharper tracks on the surface which were cleaner and 

with minimal spread of energy. This consequently attributed to the HAZ’s of the ceramic 

being smaller for the fibre laser engineering surfaces.    

 

(a)                                                                                           (b) 

Figure 2 optical images of (a) the fibre laser engineered surface and (b) the Nd3+:YAG 

laser engineered surface of the Si3N4 advanced ceramic. 

 

Table 2 average track width of the fibre and the Nd3+:YAG laser engineered surfaces. 

 Fibre Laser Nd3+:YAG 

Laser Engineered 

Track 
HAZ Laser Engineered 

Track 
HAZ 

ZrO2 837 µm 85 µm 632 µm 91 µm 

Si3N4 419 µm 155 µm 383 µm 220 µm 
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3.2 Effect of Laser beam Radiance on the Microstructure 

3.2.1 Si3N4 Advanced Ceramics  

The micrograph in Figure 3 illustrate the fibre laser engineered surface of the Si3N4 

advanced ceramic. On account of observing the micrograph shown in Figure 3, it could be 

confirmed that the measurements presented in Figure 2 (a) and (b) of the track created by 

the fibre laser was somewhat larger than that of the Nd3+:YAG laser engineered sample. The 

SEM image in Figure 3 showed that there is certainly an evidence of larger activity and 

bigger interaction zone in comparison to the image in Figure 6(b) of the Nd3+:YAG laser. This 

indicated that the depth of penetration of the fibre laser engineered surface would also be 

higher. Having said that, a cross-sectional investigation to confrm this effect could be 

undertaken for further understanding.  

 

Owing to the higher radiance exhibited by the fibre laser, Figure 6(a) shows an evidence of 

melting, oxidation, and entrapment of gas bubbles, which in comparison to the Nd3+:YAG 

laser treated surface (exhibiting a low radiance) generated low temperature. Hence, a 

smaller interaction zone, surface melting and oxidation was created. The Si3N4 advanced 

ceramic generally decomposes at 1900 ◦C [27]. Therefore, it can also be ascribed that the 

higher radiance of the fibre laser caused the Si3N4 to partially melt and decompose 

somewhat above the decomposition temperature to about 2400 ◦C [27]. In comparison, for 

the Nd3+:YAG laser engineered surface, the induced heat would be much below the 

decomposition temperature of the Si3N4. On this more, it is also suggested that an 

experimental investigation comparing the radiance temperature is carried-out to 

demonstrate the differences of heat generated between each laser source during laser-

material interaction.  
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Figure 3 A micrographic image of the fibre laser engineered surface of the Si3N4 

advanced ceramic. 

 
 

Figure 4 A micrographic image of the Nd3+:YAG laser engineered surface of the 

Si3N4 advanced ceramic. 
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From observing the micrograph of the untreated surface of the Si3N4 in Figure 5 (a); it can 

be observed that sharp rods like features are present but are not equaly shaped along with 

the presence of square shaped blocks. During the laser-Si3N4 interaction it is possible that 

upon re-melting of the near surface layer affected the dimensional sizes of the elongated 

sharp rods to reduce in size. Having said this, the effect is more evident with the sample 

surface engineered by the fibre laser (see Figure 5(b)) as the rods are much finer and 

became smaller in size compared to the Nd3+:YAG laser engineered surfaces presented in 

Figure 5 (c). The change in the microstructure produced by the two lasers would have 

occurred due to the higher melting and vaporization as well as a possible tranformation of 

phases as comfirmed by previous investigation on the fibre laser irradiation of Si3N4 

engineering ceramics [27, 28], where an alpha (α) to beta (β) transformation occurred 

whilst the surface was strengthened.  

 

 
(a) 
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(b) 
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(c) 

 
Figure 5 Micrographs of the as-received surface in (a) the fibre laser engineered 

surface in (b), and (c) the Nd3+:YAG laser engineered surface of the Si3N4 advanced 

ceramic.  

3.2.2 ZrO2 Advanced Ceramics 

The grain boundaries of the fibre laser engineered surface of the ZrO2 advanced ceramic 

shown in Figure 6(a) have enlarged and elongated in comparison to the ground and 

polished untreated surface in Figure 6(b). Nevertheless, an increase in surface flaws and 

porosity has occurred after the fibre laser surface engineering have taken place when 

compared to the as-received ground and polished surface. This is believed to have resulted 

from escaped gas during the fibre laser-ZrO2 interaction. In addition, the grain sizes tend to 

vary from 3µm to 10µm from the near-surface layer and through the sub-surface, and the 

bulk of the ZrO2. This was due to the laser-ZrO2 processing temperature at the near surface 

layer being somewhat higher than the sub-surface and the bulk of the ceramic. This could 

also be confirmed from a previous investigations [26, 27]. As shown in Figure 6(c) of the 

cross-section of the microstructure, the grain size increases from the bulk of the ZrO2 to the 

sub-surface and the top surface layer of the fibre laser engineered zone. The microstructure 
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at the near surface layer is somewhat different as significant grain growth has occurred due 

to the high temperature gradient existing at the laser-ZrO2 interaction.  

 

(a) 

 

(b) 
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(c) 

Figure 6 Micrograph of the cross-section of the sub-surface layer of the the as-

received ground and polished surface in (a), and (b) the fibre laser surface and its 

cross-section in (c) of the ZrO2 advanced ceramic. 

 

The microstructure of the Nd3+:YAG laser engineered surface in comparison to the as-

received surface was reasonably modified (see Figure 7 (a) and (b)). The grain sizes herein 

range from about 3.5µm to 7µm and an average grain size was of about 5µm. This in 

comparison to the untreated surface was considerably large. When the results of the 

Nd3+:YAG laser were compared to the fibre laser engineered surfaces, the grain boundaries 

were somewhat smaller as evident in Figure 7(b) and (c)). Similar effects also occurred with 

the ZrO2 samples engineered by both the lasers, though the results of the Nd3+:YAG laser 

were less significant. The image seen in Figure 7(a) within the cross-section comprised of 

larger grains at the near surface layer of the ZrO2. This further reduced as it was observed at 

the sub-surface and the bulk of the ZrO2 advanced ceramic (see Figure 7(a)).  Nonetheless, 

the particular grian growth seen in Figure 7(a) appears to be somewhat abnormal as grain 

elongation only in random sections of the laser treated zone has appeared. Figure 7(b) 

shows the very near surface layer of the ZrO2 advanced ceramic surface engineered by the 

Nd3+:YAG laser. The microstructure in this image was reasonably modified in comparison to 

the microstructure where the laser-ZrO2 interaction did not occur.  
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(b) 
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Figure 7 Micrograph of the Nd3+:YAG laser engineered sample in (a) showing an 

abnormal grain growth in various regions of the sub-surface and (b) the elongation of 

grains when moving closer to the surface region of the ZrO2 advanced ceramic within 

the sub-surface region. 

 

Figure 8 shows a melted glassy amorphous zone produced by the Nd3+:YAG laser - was a 

mixture of ZrCO2. This could be postulated from a previous investigation using the fibre 

laser to surface engineered ZrO2 that demonstrated similar findings [29]. Evidance of 

surface melting can be seen with the Nd3+:YAG laser engineered surface, although, it was not 

as remarkable as the fibre laser treated surface of the ZrO2 since large proportion of the 

cross-section was found to be of the amorphous glass layer. This in turn confirmed that the 

formation of the considerable melt-zones found at the fibre laser surface interaface would 

have occurred from a higher laser-material interaction temperature, whereas the Nd3+:YAG 

laser surface temparatures would have been somewhat lower to have only comprised of the 

pratial melting. This difference occurred despite using identical laser processing parameters 

between the two lasers used. Moreover, the fibre laser with a higher radiance value had 

created much higher temperature which characteristically melted the surface and generated 

a larger melt-pool. On the other hand, the Nd3+:YAG laser-material interaction temperature 

was lower due to the low radiance value. This would generate low power per unit area in 

steradian. In addition, to complement this statement – considerable amount of surface 

cracking was also found with the fibre laser engineered sample in comparison to the 

Nd3+:YAG laser which suggested that the temperature gradient as well as the cooling rate by 

each laser would have varried leading to the observed differences.  
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Figure 8 Micrograph of the cross-section of the Nd3+:YAG laser engineered surface of 

the ZrO2 advanced ceramic showing the surface layer with partial melt zones. 

 

4. Discussion 

4.1 Contribution of Laser Beam Paramaters to Effect Radiance 

Due to the theory behind the calculation of laser beam  radiance [12 - 17], it is indicative 

that several laser beam  ralated parameters effect the calculation and contribute in 

someway or another. These aforementioned parameters are namely:  

-  the output laser power; 

- spot size; 

-  power density; 

- the beam quality factor - M2; 

-  transverse mode; 

-  beam divergence. 

However, the amount of contribution each parameters has thereon the end radiance value is 

yet unclear and further analysis is currently being undertaken by the leading author of this 

study to show the contribution of each parameter to effect the laser beam  radiance. Thus, it 

can be attributed that a high quality laser beam leads to higher radiance value which 

instrinsically generates high power per unit area and causes considerable difference as seen 

from the study herein. On this more, the difference in the beam divergence and the quality 
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factor M2 between the two lasers led to a change in brightness as the fibre laser divergence 

was much smaller than the Nd3+:YAG laser which emitted a brighter beam.   

 

Furthermore, a highly radiant laser beam generally penetrates deeper into the surface as  

high brightness beams produce deeper penetration [27], longer depth of focus, larger 

impact or the track width, and microstructural changes, despite using identical parameters 

to a laser beam of lower radiance as seen from the study herein. This allows the high 

radiance laser to operate at lower power levels to produce the same surafce treatment to 

that of a low radiance laser. This characteristically reduces with a reduction in cost. Further 

work is also being undertaken by the leading author of this study to determine the cost 

difference between high and low radiance lasers.   

 

4.2 Comparison of the Effects of Laser Beam  Radiance theron the Advanced Ceramics 

 
Up on comparing the results found with the effects of the laser beam  radiance on both the 

Si3N4 and ZrO2 advanced ceramics it can be observed that the effects of high laser beam  

radiance exists with both the nitride and oxide ceramics as larger surface tracks were seen 

and microstructural changes were also much significant using the high radiance laser. Thus, 

it is important to mention at this point the difference in the temperature exhibited between 

the two lasers at the laser material interaction zone. The fibre laser comprising of a much 

radiant and brighter beam and emitted higher peak temperature in comparison to the 

Nd+3:YAG laser [27]. This leads to difference in heating rate and then the cooing of the two 

ceramics. The fibre laser would generally heat up the material faster and allow a slower 

cooling rate to take place. This consequently would allow not only a change in the 

microstructure as seen in the results herein, but would also enable the heat to spread in a 

larger surface area and would attribute to creating larger track widths.  

 

Moreover, it can be reported that thicker track width was seen using both lasers for the ZrO2 

(oxide ceramic) when compared to the Si3N4 (nitride ceramic) when employing the high 

radiance fibre laser. This indicated that comparison of the effects of laser beam  radiance 

would be more predominent and obvious if two ceramics were compared from the same 

branch of the ceramics family tree. Examples are namely: comparison of Si3N4 to boron 

nitride (BN) or ZrO2 to alumina oxide (Al2O3) and likewise, SiC to boron carbide (BC). This 

will enable one to understand the specific difference the radiance of a laser has up on the 

particular branch of materials in future investigations.   
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Previous result have shown that high brightness lasers exhibit high processing 

temperatures during laser-ceramic interaction [27]. This is particularly so for the fibre laser 

and significant difference in the solidification rate would occur, which thereby, re-creates a 

different microstructure as can be seen with the results obtained herein for the fibre laser 

engineered Si3N4 and the ZrO2 advanced ceramics in comparison to that of the Nd+3:YAG 

laser. The high processing temperature by the fibre laser has yielded refined grain structure 

with the Si3N4 and evidence of significant melting and possibly what appears to be a glassy 

layer with the ZrO2. The modified microstructure in turn results to difference in the surface 

properties of the ceramics such as a change in the hardness, fracture toughness parameter 

K1c, and depending on the peak processing temperature; there could be a probable phase 

change for the two ceramics, whereby the Si3N4 could have transformed from alpha-phase 

to beta-phase and the ZrO2 from a monoclinic phase to tetragonal, or from a tetragonal to a 

cubic phase. In any case, further investigation would be required to confirm such 

modifications using the same experimental conditions and the two ceramics used in this 

study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusions 

 
A comparative study regards to the effects of laser beam radiance, commonly known as 

brightness was investigated during surface treatment of a Si3N4 and ZrO2 advanced ceramics 

by employing a fibre laser and a Nd3+:YAG laser. Like-by-like laser parameters were used to 
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investigate the change in the microstructure and the laser induced foot-prints. The results 

showed that the effects of the fibre laser surface engineering on both the advanced ceramics 

differed from the effects of the Nd3+:YAG laser as larger track width (foot-print), porosity, 

oxidation, surface melting and decomposition took place. Moreover, considerable changes in 

the microstructure were evident and sharp rods-like features were much reduced in size 

due to high laser beam radiance of the fibre laser, creating high temperature during laser-

ceramic interaction for the Si3N4 advanced ceramic. This consequently caused higher 

melting of the ceramic. For the ZrO2 advanced ceramic the microstructural changes also 

showed that the fibre laser engineered surface was producing large grains in comparison to 

the Nd3+:YAG laser engineering surface by over 20% difference in size which also attributes 

to the higher temperature characteristically generating a high melt zone to occur.  

 

The dimentional and the microstructural effects on the two advanced ceramics differed for 

the two lasers treatments despite using like-bylike parameters. Owing to this, the laser 

beam radiance is taken into account since higher power per unit area in a solid angle in 

steradian would have generated high interaction temperatures, causing larger thermal 

gradient to produced a bigger melt zone. As result, the difference in the dimentional size of 

the laser induced foot-prints and the differnce in the microstructure were found for the two 

ceramics.  

 

On account of the findings herein, it is concluded that laser beam radiance during laser 

surface engineering and other processes should be considered as its not only a sum of the 

laser power density but it also takes in account of other important parameters of the laser 

beam. High radiance lasers have the potential to also generate effective and possibly 

efficient surface engineering process which could enable the use of lower wattage for the 

same treatment. This inherently leads to cost reduction for the process. Further 

investigation into the effects of radiance on other material types; comparison of cost 

between high and low radiance lasers; temperature difference between various lasers with 

different randiances and the contribution of each laser beam parameter to the end value of 

radiance is currently being investigated by the authors of this study.  
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