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Using direct numerical simulations of turbulent thermal convection for Rayleigh number (Ra) between 106

and 108 and unit Prandtl number, we derive scaling relations for viscous dissipation in the bulk and in the
boundary layers. We show that contrary to the general belief, the total viscous dissipation in the bulk is
larger, albeit marginally, than that in the boundary layers. The bulk dissipation rate is similar to that
in hydrodynamic turbulence with log-normal distribution, but it differs from (U3/d) by a factor of Ra−0.18.
Viscous dissipation in the boundary layers are rarer but more intense with a stretched-exponential distribution.

Physics of hydrodynamic turbulence is quite complex,
involving strong nonlinearity and boundary effects. To
simplify, researchers have considered hydrodynamic tur-
bulence in box away from the walls. The turbulence
in such a geometry is statistically homogeneous and
isotropic. The physics of such idealised flows too remain
primarily unsolved, yet their energetics is reasonably well
understood. Here, the energy supplied at large length
scales cascades to intermediate scales, and then to dis-
sipative scales1,2. Thus, under steady state, the energy
supplied by the external force equals the energy cascade
rate, Πu, and the viscous dissipation rate, εu. From di-
mensional analysis it has been deduced that εu ≈ U3/L,
where U is the large-scale velocity, L is the large length
scale, and the prefactor is approximately unity3,4.

Thermal convection is a very important problem of
science and engineering. Here too researchers have con-
sidered an idealised system called Rayleigh–Bénard con-
vection (RBC) in which a fluid is confined between two
horizontal thermal plates separated by a vertical distance
of d; the bottom plate is hotter than the top one5–7. The
kinematic viscosity (ν) and thermal diffusivity (κ) are
treated as constants. Additionally, the density of the
fluid is considered to be a constant except for the buoy-
ancy term of the fluid equation. The governing equations
of RBC are as follows:

∂tu + (u · ∇)u = −∇σ/ρ0 + αgθẑ + ν∇2u, (1)

∂tθ + (u · ∇)θ = (∆/d)uz + κ∇2θ, (2)

∇ · u = 0, (3)

where u and σ are the velocity and pressure fields respec-
tively, θ is temperature fluctuation over the conduction
state, ρ0 and α are respectively the mean density and
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thermal expansion coefficient of the fluid, g is acceler-
ation due to gravity, and ∆ is the temperature differ-
ence between the hot and cold plates. RBC is speci-
fied by two nondimensional parameters—Rayleigh num-
ber Ra = (αg∆d3)/(νκ), which is a measure of buoyancy,
and the Prandtl number Pr = ν/κ (see supplementary
material).

For thermal convection, walls and their associated
boundary layers play an important role, hence turbu-
lence in thermal convection is more complex than hy-
drodynamic turbulence. In this Letter, we focus on the
properties of the viscous dissipation in RBC. Verzicco
and Camussi 8 and Zhang, Zhou, and Sun 9 computed the
viscous dissipation rates in the bulk and in the boundary
layers in RBC, and found them to be of the same or-
der. Here, we perform a detailed analysis of these quanti-
ties and their probability distributions, both numerically
and phenomenologically. We will show that the walls
of thermally-driven turbulence introduce interesting and
generic features in the viscous dissipation.

Shraiman and Siggia 10 derived an interesting exact re-
lation that relates the viscous dissipation rate, εu, to the
heat flux:

εu = 〈εu(r)〉 =

〈
ν

2

(
∂ui
∂xj

+
∂uj
∂xi

)2
〉

=
ν3

d4
(Nu− 1)Ra

Pr2
=
U3

d

(Nu− 1)Ra

Re3Pr2
, (4)

where 〈 〉 denotes the volume average over the entire do-
main, and ui with i = (x, y, z) is the ith the compo-
nent of the velocity field. The Nusselt number, Nu, is
the ratio of the total heat flux and the conductive heat
flux, and Re = UL/ν is the Reynolds number. When
the boundary layer is either absent (as in periodic box)
or weak (as in the ultimate regime proposed by Kraich-
nan11), Nu ∼ (RaPr)1/2 and Re ∼ (Ra/Pr)1/2 (See
Refs.7,12–14). Substitution of these relations in Eq. (4)
yields εu ∼ U3/d, similar to hydrodynamic turbulence.
In this Letter we focus on Pr ∼ 1, hence we ignore the
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Prandtl number dependence.
The scaling however is different for realistic RBC for

which boundary layers near the plates play an important
role. Scaling arguments12,15–17, experiments5,16,18–21 and

numerical simulations8,22–26 reveal that Re ∼ Ra1/2 and
Nu ∼ Ra0.3, substitution of which in Eq. (4) yields εu 6=
U3/d, rather

εu ∼
U3

d
Ra−0.2 ∼ ν3

d4
Ra1.3, (5)

because U ∼ Re ∼ Ra1/2. This is due to the rela-
tive suppression of the nonlinear interactions in RBC, as
Verma, Kumar, and Pandey 7 , Pandey et al. 25 , Pandey
and Verma 26 showed that in RBC, the ratio of the non-
linear term and viscous term scales as (UL/ν)Ra−0.15.
The aforementioned suppression of nonlinear interactions
leads to weaker energy cascade Π(k), and hence lower vis-
cous dissipation than the corresponding hydrodynamic
turbulence.

In RBC, the viscous dissipation rates in the bulk and in
the boundary layers are very different. In the following
discussion, using scaling arguments and the exact rela-
tion given by Eq. (4), we will quantify the total viscous

dissipation rates in the bulk and boundary layers, D̃u,bulk

and D̃u,BL, as well as the corresponding average viscous
dissipation rates, εu,bulk and εu,BL, which are obtained
by dividing the total dissipation rates by their respective
volumes.

Grossmann and Lohse’s model12,13 assumes that
εu,bulk ∼ U3/d ∼ Ra3/2. We find that the average vis-
cous dissipation in the bulk scales similar to the viscous
dissipation rate in the entire volume, i.e.,

εu,bulk ∼
U3

d
Ra−0.18. (6)

Since the fluid flow in the boundary layers is laminar,
we expect εu,BL ∼ νU2/δ2u, where δu is the thickness of
the viscous boundary layer. Hence, the ratio of the two
dissipation rates is

εu,BL

εu,bulk
∼ Ra0.18

(
νU2

δ2u

)
/

(
U3

d

)
∼ 1

Re

(
d

δu

)2

Ra0.18 ∼
(
d

δu

)2

Ra−0.32. (7)

Note however that the volume of the boundary layers
is much less than that of the bulk. For simplicity, we
assume that the fluid is contained in a cube of dimension
d, then the ratio of the volumes of the boundary layer
and bulk is

VBL

Vbulk
∼ δud

2

(d− δu)3
∼ δu

d
, (8)

because δu � d for Pr ∼ 1. Using the above relations,
we can deduce the scaling of the ratio of the total viscous

dissipation rates in the boundary layer and in the bulk
as

D̃u,BL

D̃u,bulk

∼ εu,BL

εu,bulk
× VBL

Vbulk
∼ d

δu
Ra−0.32. (9)

According to Prandtl–Blassius theory27,

δu
d
∼ Re−1/2 ∼ Ra−1/4, (10)

which yields D̃u,BL/D̃u,bulk ∼ Ra−0.07. Thus, in RBC,
the total viscous dissipation in the boundary layer and
bulk are comparable to each other. For very large Ra, the
bulk dissipation outweighs the dissipation in the bound-
ary layer. This is contrary to the general belief that the
viscous dissipation occurs primarily in the plumes of the
boundary layers.

In this Letter, using numerical simulations we show
that δu/d differs slightly from Eq. (10), and

δu
d
∼ Re−0.44 ∼ (Ra1/2)−0.44 ∼ Ra−0.22, (11)

using which we find

D̃u,BL

D̃u,bulk

∼ Ra−0.10. (12)

Thus,

εu,BL ∼
νU2

δ2u
∼ ν3

d4
Ra1.44, (13)

D̃u,BL ∼ εu,BL δud
2 ∼ ν3

d
Ra1.22, (14)

D̃u,bulk ∼ εu,bulk d3 ∼
ν3

d
Ra1.32. (15)

Interestingly, D̃u,BL ∼ d2νU2/δu ∼ (ν3/d)Ra5/4, as as-
sumed in Grossmann and Lohse’s model12,13.

We perform direct numerical simulation of RBC and
verify the aforementioned scaling. The simulations were
performed using a finite volume code OpenFOAM28

for Pr = 1 and Ra between 106 and 108 in a three-
dimensional cube of unit dimension. We impose no-slip
boundary condition at all the walls, isothermal condition
at the top and bottom walls, and adiabatic condition
at the sidewalls (see supplementary material). Second-
order Crank-Nicolson scheme is used for time-stepping.
The values of ν and κ used in the simulations are shown
in Table I, while keeping the temperature difference be-
tween the horizontal plates ∆ = 1 for all the runs.

We employ 2563 non-uniform grid points and solve the
governing equations of RBC. The grid is finer near the
walls so as to adequately resolve the boundary layer. We
ensure that minimum 4 grid points are in the boundary
layer, thereby satisfying the criterion set by Grötzbach 29 .
The ratio of the Kolmogorov length scale η to the aver-
age mesh width ∆xavg remains greater than unity for
each simulation run implying that the smallest length
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TABLE I. Details of our direct numerical simulations performed in a unit box for Pr = 1: the Rayleigh Number (Ra), the
kinematic viscosity (ν), the Reynolds Number (Re), the ratio of the Kolmogorov length scale (η) to the average mesh width
∆xavg, the Nusselt Number (Nu), the Nusselt number deduced from εu using Eq. (4) (NuS), number of mesh points in the

viscous boundary layer (NBL), volume fraction of the boundary layer region (VBL/V ), and the ratio D̃u,BL/D̃u,bulk.

Ra ν(= κ) Re η/∆xavg Nu NuS NBL VBL/V D̃u,BL/D̃u,bulk

1 × 106 0.001 150 4.92 8.40 8.34 10 0.14 0.81
2 × 106 0.0007071 212 3.89 10.1 10.3 8 0.12 0.67
5 × 106 0.0004472 342 2.87 13.3 13.5 7 0.099 0.65
1 × 107 0.00032 460 2.32 16.0 15.9 6 0.086 0.63
2 × 107 0.0002236 654 1.84 20.0 20.0 5 0.074 0.61
5 × 107 0.0001414 1080 1.36 25.5 26.0 4 0.062 0.57
1 × 108 0.0001 1540 1.09 32.8 32.0 4 0.054 0.56

scales are being adequately resolved in our simulations.
We observe that the Nusselt numbers computed numer-
ically using 〈uzθ〉 match quite closely with those com-
puted using εu and Eq. (4). See Table I for the com-
parison of these two Nusselt numbers. Also, to validate
our code, we compute Nu for Pr = 6.8 fluid and verify
that it matches quite well with the experimental value
of Nu30. We further remark that our simulations cap-
ture the large-scale quantities—volume-averaged viscous
dissipation and Nusselt number—quite well; such quanti-
ties are not affected significantly by discretization errors
at very small scales. Note that spectral method is more
accurate but more complex than a finite volume method;
yet a sufficiently-resolved finite volume code is quite ap-
propriate for studying large-scale quantities.

First we compute the thickness of the boundary layer,
δu, for all our runs. For the same, we compute the root
mean square horizontal velocity in each horizontal plane
and estimate δu as the vertical height of the intersection
of the tangent to the profile at its local maximum with
the slope of the profile at the plates23,31,32. Similar com-
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FIG. 1. Plot of normalized boundary layer thickness δu/d vs.
Ra for horizontal and vertical plates. Best fits are depicted
as dashed and dotted lines. Inset shows the comparison of
horizontal velocity profiles near the bottom plate with the
Prandtl–Blasius profile (solid black line).
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FIG. 2. (a) Plots of the viscous dissipation rates D̃u—total,
bulk, and in the boundary layer—vs. Ra. (b) Plot of the

dissipation rate ratio, D̃u,BL/D̃u,bulk, vs. Ra that varies as
Ra−0.11.

putations are performed for the side walls. In Fig. 1 we
plot δu for the horizontal and side walls. The best fit
curves of the data yield

At thermal plates: δu/d = 0.35Ra−0.20, (16)

At sidewalls: δu/d = 0.62Ra−0.23, (17)

Average: δu/d = 0.52Ra−0.22, (18)

with the errors in the exponents and prefactors be-
ing ≈ 0.002 and 0.01 respectively. In Fig. 1, we plot
the horizontal and sidewall boundary layer thicknesses
against Ra. These results, a key ingredient of our scal-
ing arguments [see Eq. (11)], are consistent with earlier
works8,23,33. As shown in the inset of Fig. 1, near the
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FIG. 3. For Ra = 108: Spatial distribution of normalized
viscous dissipation rate εu(r)/(ν3d−4) in planes (a) in the
bottom boundary layer at z = 2δu/3, (b) in the bulk at z =
0.5d, and (c) in one of the sidewall boundary layers at x =
2δu/3.

wall, the velocity profiles differ slightly from the Prandtl–
Blasius profile, a result consistent with those of Scheel,
Kim, and White 23 and Shi, Emran, and Schumacher 32 ;
such deviations are attributed to the perpetual emission
of plumes from the thermal boundary layers.

We compute the ratio VBL/V , where V is the total
volume, using δu and Eq. (8). In Table I, we list this ratio
for various Ra’s. Clearly, the boundary layer occupies
much less volume than the bulk, and the ratio decreases
with Ra as δu/d ∝ Ra−0.22 [see Eq. (11)].

After this, from the numerical data we compute the to-
tal dissipation rates in the bulk and in the boundary layer
by computing

∫
dτεu(r) over the respective volumes. In

Fig. 2(a), we plot these values for various Ra’s. Best fit
curves for these data sets yield

D̃u,bulk ≈ 0.05
ν3

d
Ra1.33, (19)

D̃u,BL ≈ 0.2
ν3

d
Ra1.22, (20)

which are consistent with the scaling arguments pre-
sented in Eqs. (14, 15). The ratio of the above quantities,
plotted in Fig. 2(b) and listed in Table I, is

D̃u,BL

D̃u,bulk

≈ 4Ra−0.11, (21)

which is consistent with the scaling of Eq. (12). Note
that the above ratio, listed in Table I, decreases from
0.81 to 0.56 as Ra is increased from 106 to 108. Thus,

10-3 100 103
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30 500 1000
εu (r)/εu
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D
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130

α=0.30

α=0.20

FIG. 4. For Ra = 108 and Pr = 1: (a) Probability distribution
functions (PDF) of normalized local dissipation rate εu in the
bulk (green), in the boundary layer (red), and in the entire
volume (blue). The bulk εu has a log-normal distribution
(solid black line) with σ = 1.2 and µ = 0.4. (b) Semilog plot
of the PDF of εu indicates strong tail for εu,BL that fits well
with a stretched exponential curve with α = 0.30 (dashed red
line) in the shaded region, and with α = 0.20 (solid orange
line) outside the region. The shaded region is also shown in
(a) for comparison.

bulk dissipation dominates the dissipation in the bound-
ary layer, which is contrary to the belief that viscous
dissipation primarily takes place in the boundary layer.
It is however important to keep in mind that the scaling
arguments take inputs from numerical simulations, such
as Eq. (18) and Nusselt number scaling.

Thus, both scaling arguments and numerical simula-
tions show that the bulk dissipation is weaker than that
in hydrodynamic turbulence, for which D̃u,bulk ∼ U3/d ∼
Ra3/2. We also compute the total dissipation rate in vol-
ume Vi = (1/4)3V located deep inside the bulk, and ob-
serve similar weak scaling with Ra (see supplementary
material). Further, the viscous dissipation in the bulk
dominates that in the boundary layer, albeit marginally.
The boundary layer however occupies much smaller vol-
ume than the bulk. Hence, εu(r) in the boundary layer is
much more intense than in the bulk, which is illustrated
in Fig. 3. Here we show density plots of normalized vis-
cous dissipation rate εu(r)/(ν3d−4) for three planes—in
the bottom and a side boundary layer, and in the bulk.

To quantify the asymmetry of the dissipation rate in
the bulk and in the boundary layer, for Ra = 108, we
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compute the probability distribution function (PDF) of
local viscous dissipation, εu(r), over the full volume,
the bulk, and the boundary layer. These PDFs, plot-
ted in Fig. 4, reveal many important features. Note
that εu(r) = dD̃u/dτ with dτ as the local volume. For
εu(r)/εu < 20, we observe that εu,bulk(r) � εu,BL(r),
thus average dissipation rate in the bulk is relatively
weak. But for εu(r)/εu > 20, the viscous dissipation
in the boundary layer dominates the bulk dissipation.

In addition, the PDF of εu,bulk is log-normal, similar
to Obukhov’s predictions34 for the hydrodynamic tur-
bulence. See Fig. 4(a) for an illustration. This is consis-
tent with the results of Kumar, Chatterjee, and Verma 35

and Verma, Kumar, and Pandey 7 , who showed similar-
ities between turbulence in RBC and in hydrodynam-
ics. The PDF of εu,BL however is given by a stretched
exponential—P (εu) ∼ β exp(−mε∗αu )/

√
ε∗u with α ≈ 0.20

for εu(r)/εu > 130 and α ≈ 0.30 for 30 < εu(r)/εu < 130
[see Fig. 4(b)]. Here ε∗u correspond to those values of εu,
which are larger than the abscissa of the most probable
value. This result indicates that the extreme dissipation
takes place inside the boundary layer. We also carry out
the PDF analysis of εu,BL for Ra = 106 and 107 and ob-
serve similar findings (see supplementary material). Our
detailed work is consistent with earlier results8,9. Emran
and Schumacher 36 reported similar PDF for the thermal
dissipation rate.

We remark that by conducting a similar analysis for Pr
= 6.8 and moderate Rayleigh numbers, we observe nearly
identical scaling behaviour and distribution of viscous
dissipation rate (see supplementary material). Thus, it
can be inferred that our findings are robust.

A combination of scaling and PDF results reveals that
the local viscous dissipation in the bulk, εu,bulk(r) is
weak, but they add up to a significant sum due to a
larger volume. On the contrary, boundary layer exhibits
extreme dissipation in a smaller volume. Interestingly,
the total dissipation rate in the bulk and in the boundary
layers are comparable, with bulk dominating the bound-
ary layer marginally.

Our findings clearly contrast the homogeneous-
isotropic hydrodynamic turbulence and thermally-driven
turbulence. The dissipation in thermal convection has
two components—εu,bulk similar to hydrodynamic turbu-

lence, but distinctly weaker by a factor of Ra−0.18; and
εu,BL, which is unique to the flows with walls. We believe
that a similar approach could be employed to analyse the
thermal dissipation rate and heat transport.

See supplementary material for a similar analysis of
viscous dissipation for a larger Prandtl number Pr = 6.8
and the Rayleigh number dependence of the probability
distribution function.

We thank S. Fauve, R. Lakkaraju, M. Anas, and R.
Samuel for useful discussions. Our numerical simula-
tions were performed on Shaheen II at Kaust super-
computing laboratory, Saudi Arabia, under the project
k1052. This work was supported by the research grants

PLANEX/PHY/2015239 from Indian Space Research
Organisation, India, and by the Department of Science
and Technology, India (INT/RUS/RSF/P-03) and Rus-
sian Science Foundation Russia (RSF-16-41-02012) for
the Indo-Russian project.

1A. N. Kolmogorov, “The local structure of turbulence in incom-
pressible viscous fluid for very large Reynolds numbers,” Dokl
Acad Nauk SSSR 30, 301–305 (1941).

2A. N. Kolmogorov, “Dissipation of Energy in Locally Isotropic
Turbulence,” Dokl Acad Nauk SSSR 32, 16–18 (1941).

3W. D. McComb, The physics of fluid turbulence, Oxford engi-
neering science series (Clarendon Press, Oxford, 1990).

4M. Lesieur, Turbulence in Fluids (Springer-Verlag, Dordrecht,
2008).

5G. Ahlers, S. Grossmann, and D. Lohse, “Heat transfer and large
scale dynamics in turbulent Rayleigh-Bénard convection,” Rev.
Mod. Phys. 81, 503–537 (2009).

6D. Lohse and K. Q. Xia, “Small-scale properties of turbulent
Rayleigh–Bénard convection,” Annu. Rev. Fluid Mech. 42, 335–
364 (2010).

7M. K. Verma, A. Kumar, and A. Pandey, “Phenomenology of
buoyancy-driven turbulence: recent results,” New J. Phys. 19,
025012 (2017).

8R. Verzicco and R. Camussi, “Numerical experiments on strongly
turbulent thermal convection in a slender cylindrical cell,” J.
Fluid Mech. 477, 19–49 (2003).

9Y. Zhang, Q. Zhou, and C. Sun, “Statistics of kinetic and
thermal energy dissipation rates in two-dimensional turbulent
Rayleigh–Bénard convection,” J. Fluid Mech. 814, 165–184
(2017).

10B. I. Shraiman and E. D. Siggia, “Heat transport in high-
Rayleigh-number convection,” Phys. Rev. A 42, 3650–3653
(1990).

11R. H. Kraichnan, “Turbulent thermal convection at arbitrary
prandtl number,” Phys. Fluids 5, 1374–1389 (1962).

12S. Grossmann and D. Lohse, “Scaling in thermal convection: a
unifying theory,” J. Fluid Mech. 407, 27–56 (2000).

13S. Grossmann and D. Lohse, “Thermal convection for large
Prandtl numbers,” Phys. Rev. Lett. 86, 3316–3319 (2001).

14M. K. Verma, P. K. Mishra, A. Pandey, and S. Paul, “Scalings
of field correlations and heat transport in turbulent convection,”
Phys. Rev. E 85, 016310 (2012).

15W. V. R. Malkus, “The Heat Transport and Spectrum of Thermal
Turbulence,” Proceedings of the Royal Society of London. Series
A 225, 196–212 (1954).

16B. Castaing, G. Gunaratne, L. P. Kadanoff, A. Libchaber, and
F. Heslot, “Scaling of hard thermal turbulence in Rayleigh-
Bénard convection,” J. Fluid Mech. 204, 1–30 (1989).

17S. Grossmann and D. Lohse, “Prandtl and Rayleigh number de-
pendence of the Reynolds number in turbulent thermal convec-
tion,” Phys. Rev. E 66, 016305 (2002).

18X. Qiu and P. Tong, “Temperature oscillations in turbulent
Rayleigh-Bénard convection,” Phys. Rev. E 66, 026308 (2002).

19E. Brown, D. Funfschilling, and G. Ahlers, “Anomalous
Reynolds-number scaling in turbulent Rayleigh–Bénard convec-
tion,” J. Stat. Mech. Theor. Exp. 2007, P10005 (2007).

20D. Funfschilling, E. Brown, A. Nikolaenko, and G. Ahlers, “Heat
transport by turbulent Rayleigh–Bénard convection in cylindrical
samples with aspect ratio one and larger,” J. Fluid Mech. 536,
145–154 (2005).

21A. Nikolaenko, E. Brown, D. Funfschilling, and G. Ahlers, “Heat
transport by turbulent Rayleigh-Bénard convection in cylindrical
cells with aspect ratio one and less,” J. Fluid Mech. 523, 251–260
(2005).

22G. Stringano and R. Verzicco, “Mean flow structure in thermal
convection in a cylindrical cell of aspect ratio one half,” J. Fluid
Mech. 548, 1–16 (2006).

23J. D. Scheel, E. Kim, and K. R. White, “Thermal and viscous



6

boundary layers in turbulent Rayleigh–Bénard convection,” J.
Fluid Mech. 711, 281–305 (2012).

24J. D. Scheel and J. Schumacher, “Local boundary layer scales
in turbulent Rayleigh–Bénard convection,” J. Fluid Mech. 758,
344–373 (2014).

25A. Pandey, A. Kumar, A. G. Chatterjee, and M. K. Verma, “Dy-
namics of large-scale quantities in Rayleigh-Bénard convection,”
Phys. Rev. E 94, 053106 (2016).

26A. Pandey and M. K. Verma, “Scaling of large-scale quantities in
Rayleigh-Bénard convection,” Phys. Fluids 28, 095105 (2016).

27H. Schlichting and K. Gersten, Boundary-Layer Theory, 8th ed.
(Springer-Verlag, Berlin Heidelberg, 2000).

28H. Jasak, A. Jemcov, Z. Tukovic, et al., “Openfoam: A c++
library for complex physics simulations,” in International work-
shop on coupled methods in numerical dynamics, Vol. 1000 (IUC
Dubrovnik, Croatia, 2007) pp. 1–20.
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