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Abstract

In this paper we present scaling results of a FFT library, FFTK, and
a pseudospectral code, Tarang, on grid resolutions up to 81923 grid using
65536 cores of Blue Gene/P and 196608 cores of Cray XC40 supercom-
puters. We observe that communication dominates computation, more so
on the Cray XC40. The computation time scales as Tcomp ∼ p−1, and the
communication time as Tcomm ∼ n−γ2 with γ2 ranging from 0.7 to 0.9 for
Blue Gene/P, and from 0.43 to 0.73 for Cray XC40. FFTK, and the fluid
and convection solvers of Tarang exhibit weak as well as strong scaling
nearly up to 196608 cores of Cray XC40. We perform a comparative study
of the performance on the Blue Gene/P and Cray XC40 clusters.

1 Introduction
The Fast Fourier Transform (FFT), first discovered by Cooley and Tukey [7],
is an important tool for image and signal processing, and radio astronomy. It
is also used to solve partial differential equations, fluid flows, density functional
theory, many-body theory, etc. For a three-dimensional N3 grid, FFT has large
time complexity O(N3 logN3) for large N (e.g. 4096 or 8192). Hence, parallel
algorithms have been devised to compute FFT of large grids.

*Email: abhishek.kir@gmail.com
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One of the most popular opensource FFT libraries is FFTW (Fastest Fourier
Transform in the West) [15, 14] in which a three-dimensional (3D) array is
divided into slabs (hence called slab decomposition) as shown in Fig. 1(a). Hence,
we can employ a maximum of N cores in FFTW operations on an array of size
N3. This is a severe limitation since present-day supercomputers offer several
hundreds of thousands of cores for use. To overcome this issue, Pekurovsky [25]
employed a pencil decomposition in which the data is divided into pencils, as
shown in Fig. 1(b). This method allows usage of a maximum of N2 cores, equal
to the maximum number of pencils.

(a) (b)

XY
Z

Figure 1: (a) Slab decomposition of an array. (b) Pencil decomposition of an
array

In this paper we implement a pencil-based FFT using the algorithm of
P3DFFT, and then construct a pseudo-spectral fluid solver. As described ear-
lier, the most well-known pencil-based FFT library is P3DFFT, written by
Pekurovsky [25] who reported that the total time T for a FFT operation is
a sum of computation time a/p and communication time b/p2/3, where p is
the number of cores. This scaling was deduced based on runs using a grid of
81923 points on a Cray XT5 with a 3D torus interconnect, and 65536 cores.
In these tests, the communication time dominates the computation time due
to the MPI_Alltoall data transfer. Chan et al. [6] studied scaling of P3DFFT
on a 16384 nodes of Blue Gene/L system; they reported that a combination of
the network topology and the communication pattern of P3DFFT can affect
performance.

Pippig and Potts [27] devised a similar FFT named PFFT, and ran it
on a large number of cores; they observed that PFFT has a similar scaling
as P3DFFT. Richards et al. [29] performed scalability analysis for their two-
dimensional pencil FFT library on Blue Gene/P. Czechowski et al. [8] analysed
the memory hierarchy traffic and network communication in GPU-based FFT,
DiGPUFFT. Mininni et al. [20] employed hybrid scheme (MPI + OPENMP) to
use large number of cores optimally; their FFT implementations scales well on
15363 and 30723 grids for approximately 20000 cores with 6 and 12 threads on
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each socket.
We have devised another pencil-based FFT called FFTK (FFT Kanpur)

and tested it on 65536 cores of Blue Gene/P (Shaheen I) and 196608 cores of
Cray XC40 (Shaheen II) of KAUST. We computed separately the time required
for the computation and communications during the FFT process; we showed
that the computation time scales linearly, while the communication component
approaches the ideal bisection bandwidth scaling for large arrays. In this paper
we compare the performance of FFTK on Blue Gene/P and Cray XC40, and
show that the relative speed of cores and switch matters for the efficiency. We
show later that the per-core efficiency of Cray XC40 is lower than that of Blue
Gene/P because the speed of the interconnect of Cray XC40 has not increased
in commensurate with the speed of the processor. FFTK library is available for
download at http://www.turbulencehub.org/codes/fftk.

FFT is used extensively in a pseudo-spectral method, which is one of the
most accurate methods for solving differential equations due to the exponential
convergence of derivative computations in this method [3, 5]. In addition, a
major advantage of the spectral method is that it allows for a convenient scale-
by-scale analysis of the relevant quantities. Consequently, we can compute
interactions and energy transfers among structures at different scales using the
spectral method. Such scale-by-scale analysis is generally quite cumbersome
in finite-difference and finite-volume solvers. Note that the convolution stem-
ming from nonlinear terms in a partial differential equation is computed using
the FFT. Though spectral method can be used to solve various types of partial
differential equations (PDEs), in this paper we focus on the PDEs for fluid flows.

Turbulence remains one of the unsolved problems of classical physics, and
no analytical solution of fluid equations in the turbulent limit is available at
present. Hence numerical simulation is very handy for the analysis of turbulent
flows. Unfortunately, the grid resolution and computational time required for
turbulence simulations is very large. Hence such simulations are performed on
large high performance computing clusters (HPC).

Many researchers [43, 17, 12, 42, 31, 13, 11, 10, 40, 41, 30, 9] have per-
formed high resolution turbulence simulations. Yokokawa et al. [43] performed
first turbulence simulation on 40963 grid using the Earth Simulator. Donzis et
al. [12] performed turbulence simulation on 40963 grid using P3DFFT library;
they employed 32768 cores of Blue Gene/L and Cray XT4, and reported that
the effective performance of the FFT is approximately 5% of the peak perfor-
mance due to the extensive communication and cache misses. Yeung et al. [42]
performed pseudo spectral simulations of fluid turbulence on one of the highest
resolution grids (81923) to study extreme events. Rosenberg et al. [31] simulated
rotating stratified turbulence on a 40963 grid and studied its energy spectrum.

We have implemented a pseudospectral code named Tarang based on the
FFTK library. Tarang is a parallel and C++ code written as a general PDE
(partial-differential equation) solver. Using Tarang, we can compute incom-
pressible flows involving pure fluid, magnetohydrodynamic flows [19], liquid
metal flows [28], Rayleigh-Bénard convection [39, 23, 18], rotating convection [26],
and rotating flows [32], etc. Simulation of convective flows involves rigid walls
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for which periodic boundary condition is not applicable. For such simulations,
no-slip or free-slip boundary conditions are employed. Another major feature
of Tarang is its rich library for computing the energy transfers in turbulence,
e.g., energy flux, shell-to-shell and ring-to-ring energy transfers, etc. [18, 35, 21].
Tarang also enables us to probe any point in the Fourier space or in the real
space [28]. In the present paper we empirically demonstrate that the flow solvers
of Tarang scale well on HPC supercomputers.

The outline of the paper as follows: In Sections 2 and 3, we describe the
numerical scheme and parallelization strategy. Section 4 contains a brief dis-
cussion about the HPC systems used for scaling analysis. We describe our
scaling results for FFTK, the fluid solver, and the Rayleigh-Bénard solver in
Sections 5, 6, and 7, respectively. We run FFTK on Blue Gene/P and bench-
mark this against the performance of P3DFFT on the same platform. We do
not undertake a detailed comparison between the two FFT packages due to
lack of space and comparison resources. We also deduce the Kolmogorov-like
spectrum for Rayleigh-Bénard convection using analysis of data from a 40963

grid simulation. We conclude in Section 8.

2 Numerical Scheme
In a pseudospectral code, approximately 70% to 80% of the total time is spent
on the forward and inverse Fourier transforms. In this section we briefly explain
the numerical schemes for FFT and the spectral solver Tarang.

2.1 Fast Fourier Transform
The inverse Fourier transform is defined as

f(x, y, z) =
∑

kx,ky,kz

f̂(kx, ky, kz)ϕkx
(x)ϕky

(y)ϕkz
(z), (1)

where f̂(kx, ky, kz) is the Fourier transform of f(x, y, z). Here we compute
f(x, y, z) from f̂(kx, ky, kz). The functions ϕk(s) are the basis functions that
appear in the following forms:

Fourier : ϕk(s) = exp(iks), (2a)
Sine : ϕk(s) = 2 sin(ks), (2b)

Cosine : ϕk(s) = 2 cos(ks), (2c)

where k could be kx, ky, or kz, and s could be x, y, or z. We use Fourier basis
function for the periodic boundary condition, and employ the sine and cosine
basis functions for the free-slip boundary condition. The FFTK library can
perform the above transformations in different combinations. For example, for
the periodic boundary condition along the three directions, we employ Fourier
basis function

exp(ikxx+ ikyy + ikzz). (3)
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But for the free-slip boundary condition at all the three walls, uz, the z-
component of the velocity is expanded using the basis function

8 cos(kxx) cos(kyy) sin(kzz). (4)

Similar schemes are used for ux and uy. We term the above two basis func-
tions as FFF and SSS respectively. In a similar fashion, we define other basis
functions—SFF for one free-slip wall direction and two periodic directions, SSF
for two free-slip wall directions and one periodic direction, and ChFF for one
no-slip wall direction and two periodic directions. Note that the inverse of sine
(or cosine) basis function is sine (or cosine) itself, but exp(ikx) and exp(−ikx)
are mutual inverses of each other.

In Sec. 3 we will describe the FFT implementation in our library.

2.2 Spectral Solver
As described in the introduction, the pseudospectral scheme is one of the most
accurate methods to solve partial differential equations. In the following, we
describe its implementation for computing fluid flows. The incompressible fluid
equation is described using the celebrated Navier Stokes equation, which is

∂u
∂t

+ (u · ∇)u = −1

ρ
∇p+ ν∇2u, (5)

∇ · u = 0, (6)

where u is the velocity field, p is the pressure field, and ν is the kinematic
viscosity. For simplicity we take the density of the fluid, ρ, to be unity. We
rewrite the above equations in Fourier space:

(∂t + νk2)ûj(k, t) = −iklûluj(k, t)− ikj p̂(k, t), (7)
kj ûj(k) = 0, (8)

where i =
√
−1. The above equations are time advanced using standard meth-

ods, e.g., Runge Kutta scheme. The ûluj term of Eq. (7) becomes a convolution
in spectral space that is very expensive to compute. Orszag [22] devised an
efficient scheme in which û(k, t) is transformed to real space, components of
which are multiplied with each other, and the product is then transformed back
to Fourier space. Due to the multiplication of arrays in real space, this method
is called pseudospectral method. This multiplication however generates aliasing
errors, which are mitigated by filling up only 2/3 of the array in each direction.
See Boyd [3] and Canuto [5] for details.

A spectral transform is general, and it can involve basis functions from
Fourier series, sines and cosines, Chebyshev polynomials, spherical harmonics,
or a combination of these functions. The FFTK library uses Fourier, sines,
and cosine functions only. We plan to incorporate Chebyshev polynomials and
spherical harmonics in the future. In this paper, we solve Eqs. (7,8) in a periodic
box (FFF basis) using Tarang. Therefore we illustrate the implementation and
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usage of FFF basis, and then describe scaling analysis of FFT, and the fluid and
convection solvers.

We have computed fluid and magnetohydrodynamic flows, liquid metal flows,
Rayleigh-Bénard convection (RBC), rotating convection, and rotating flows us-
ing Tarang. In the following we will illustrate one of the above modules, the
RBC solver, whose governing equations are

∂u
∂t

+ (u · ∇)u = −∇σ + αgθẑ + ν∇2u, (9)

∂θ

∂t
+ (u · ∇)θ =

∆

d
uz + κ∇2θ, (10)

∇ · u = 0, (11)

where θ is the temperature fluctuation from the steady conduction state,

T (x, y, z) = Tc(z) + θ(x, y, z), (12)

with Tc as the conduction temperature profile), σ is the pressure fluctuation,
ẑ is the buoyancy direction, ∆ is the temperature difference between the two
plates that are separated by a distance d, ν is the kinematic viscosity, and κ is
the thermal diffusivity.

We solve a nondimensionalized version of the RBC equations, which are
obtained using d as the length scale, (αg∆d)1/2 as the velocity scale, and ∆ as
the temperature scale:

∂u
∂t

+ (u · ∇)u = −∇σ + θẑ +

√
Pr
Ra∇

2u, (13)

∂θ

∂t
+ (u · ∇)θ = uz +

1√
RaPr

∇2θ. (14)

Here the two important nondimensional parameters are the Rayleigh number
Ra = αg∆d3/νκ, and the Prandtl number Pr = ν/κ. We perform our simula-
tions in a cubic fluid domain of unit size in each direction.

For the scaling analysis, we solve the RBC equations (Eqs. (13, 14)) with
FFF and SFF basis functions. We also perform a production run for computing
the energy spectrum and energy flux during the statistical steady state. Note
that the SFF basis function corresponds to the free-slip boundary condition for
which the velocity field at the top and bottom plates (z = 0, 1):

uz = ∂zux = ∂zuy = 0, (15)

and periodic boundary conditions imposed on the vertical side walls. For the
temperature field, we employ isothermal boundary condition (θ = 0) at the top
and bottom plates, and periodic boundary conditions at the side walls.

Many fluid flow simulations, especially Rayleigh-Bénard convection, em-
ploy no-slip boundary condition that requires Chebyshev basis functions (ChFF),
which are somewhat complex to implement. Note however that the ChFF basis
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Figure 2: Pencil decomposition: (a) real space data, (b) intermediate configu-
ration, (c) data in Fourier space. (d, e, f) Division of cores into prow and pcol
such that p = prow × pcol as seen in XY , XZ, and Y Z projections respectively.
Here Nx = Ny = Nz = 12. In the subfigures (a,d), prow = 3, pcol = 4, thus each
core contains Nx/pcol ×Ny/prow ×Nz = 3× 4× 12 data points.
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has its own limitations. For example, the energy spectrum and flux computa-
tions performed in the Fourier space requires a uniform grid. The collocation
points in ChFF are nonuniform, and hence we need to interpolate the data to a
uniform mesh that induces errors. Therefore, the free-slip basis functions that
involves uniform mesh are convenient for studying the energy spectrum and
flux. We remark the no-slip boundary condition captures the boundary layers
near the walls. The flow near the walls contributes to the energy spectrum at
small scales or large wavenumbers, therefore the boundary layers at the top and
bottom walls do not significantly impact the inertial-range energy spectrum and
flux (see Sec. 7). For such studies, the free-slip basis suffices.

The above example illustrates that we can easily perform simulations with
different boundary conditions using Tarang solvers just by changing the basis
function in the input file. We report our results for the RBC solvers in Sec. 7.

3 Parallelization Strategy
In the following discussion we illustrate our implementation for the FFF basis.
We divide the data equally among all the cores for load balancing. For the
pencil decomposition, we divide the data into rows and columns, and p cores
into a core grid prow × pcol = p as shown in Fig. 2. The cores are divided into
two MPI communicators: MPI_COM_ROW and MPI_COM_COL (see Fig. 2). In real
space [Fig. 2(a)] each core has Nx/pcol ×Ny/prow× Nz data points.

The forward FFT transform (from real to complex) follows the following set
of steps:

1. We perform forward FFT, r2c real-to-complex, along the Z-axis for each
data column.

2. We perform MPI_Alltoall operation among the cores in MPI_COM_COL to
transform the data from the real configuration [Fig. 2(a)] to the interme-
diate configuration [Fig. 2(b)].

3. After interprocess communication, we perform forward c2c (complex-to-
complex) transform along the Y-axis for each pencil of the array.

4. We perform MPI_Alltoall operation among the cores in MPI_COM_ROW to
transform the data from the intermediate configuration [Fig. 2(b)] to the
Fourier configuration [Fig. 2(c)].

5. Now we perform forward c2c transform along the X-axis for each pencil
[see Fig. 2(c)].

For one-dimensional FFT operations, we use the FFTW transforms. During
steps 2,4 of the above, we employ transpose-free data transfer among the com-
municators, as described in A. This scheme avoids local transpose during these
processes. However, after the MPI_Alltoall, the data along a column are not
contagious. Hence, we need to employ strided FFT, which is efficient, and is
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provided in the FFTW library [14]. Note, however, this is prone to cache misses
since the columnar/row data are not contagious. See A for details. We also re-
mark that FFTK and Tarang use a meta-template C++ library, Blitz++ [2, 34]
for array manipulation; this library provides efficient operations for arrays.

This completes the forward transform. The inverse transform is reverse of
the above operation. Note that the above strategy is general, and it works for
all the basis functions. Our library also works for two-dimensional (2D) data,
for which we set Ny = 1. The intermediate state is avoided for 2D Fourier
transforms. Also note that the slab FFT can be performed by setting prow = 1,
and again, the configuration (b) of Fig. 2 is avoided.

The other functions of a spectral solver that require parallelization are mul-
tiplication of arrays elements and input/output (I/O). A multiplication of array
elements is trivial to parallelize. Since the data-size involved in high-resolution
turbulence simulation is very large, of the order of several terabytes, it is more
efficient to use parallel I/O. In our spectral code, we use the HDF5 library to
perform parallel I/O.

Our code has important sets of functions to compute energy flux, shell-
to-shell energy transfers, and ring-to-ring energy transfers. These quantities
are computed using FFT [35, 21]. For brevity, we omit discussion on these
implementations in the present paper. In Sec. 7, we will briefly describe the
computation of the energy flux for RBC. We have exploited this feature to
implement FFF, SFF, SSF, SSS basis functions in two and three dimensions in a
single code. We also make use of efficient libraries such as Blitz++ and HDF5.
These are some of the unique features of FFTK and Tarang.

4 About the HPC systems
We performed scaling tests of our FFT library and pseudospectral code on
Shaheen I, a Blue Gene/P supercomputer, and Shaheen II, a Cray XC40 super-
computer, of King Abdullah University of Science and Technology (KAUST).
First we provide some details of these systems.

4.1 Blue Gene/P
The Blue Gene/P supercomputer consists of 16 racks with each rack containing
1024 quad-core, 32-bit, 850 MHz PowerPC compute nodes. Hence the total
number of cores in the system is 65536. It also has 65536 GB of RAM. The
Blue Gene/P nodes are interconnected by a three-dimensional point-to-point
torus network. The theoretical peak speed of the Blue Gene/P supercomputer
is 222 Tera FLOP/s (Floating point operations per second).

4.2 Cray XC40
The Cray XC40 supercomputer has 6174 dual-socket compute nodes each con-
taining two Intel Haswell processors with 16 cores, with each core running at a
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clock speed of 2.3 GHz. In aggregate, the system has a total of 197568 cores and
790 TB of memory. The compute nodes, contained in 36 water-cooled XC40
cabinets, are connected via the Aries High Speed Network. Cray XC40 adopts a
dragonfly topology that yields 57% of the maximum global bandwidth between
the 18 groups of two cabinets [16]. Shaheen II delivers a theoretical peak per-
formance of 7.2 Peta FLOP/s and a sustained LINPACK performance of 5.53
Peta FLOP/s.

A parallel program involves computation time Tcomp and communication
time across nodes Tcomm [33, 4]. Thus the total time T for a parallel program is

T = Tcomp + Tcomm. (16)
We report Tcomp and Tcomm for the execution of the FFTK library on the Blue
Gene/P and Cray XC40 supercomputers. Since the data is divided equally
among all the cores, we expect Tcomp ∼ p−1, where p is the number of cores; we
observe the above scaling in all our tests. Note that FFT, which is a dominant
operation in a pseudospectral solver, involves MPI_Alltoall communications.
Hence communication time is the most dominant component of the total time.

For the fluid and RBC solvers, it is difficult to disentangle the computation
and communication times since they involve many functions, hence we report
only the total time for these solvers. These results are presented in the following
sections.

5 Scaling results of FFTK
We perform FFTK forward and inverse transforms several times (100 to 1000)
for large N3 grids, and then present an average time taken for a pair of forward
and inverse transforms. We compute Tcomp and Tcomm for various combinations
of grid sizes and number of cores, and observe that

Tcomp =
1

c1
p−γ1 , (17a)

Tcomm =
1

c1
n−γ2 , (17b)

T−1 =
1

C
pγ , (17c)

where c1, c2, C, γ1, γ2, and γ are constants, p is the number of cores, and n is
the number of nodes. Hence the total time per FFT operation is

T = c1D

(
1

pγ1

)
+ c2D

(
1

nγ2

)
= C

(
1

pγ

)
, (18)

where D = N3 is the data size. We measure Tcomp and Tcomm by computing the
time taken by the respective code-segments using the MPI function MPI_Wtime.
We record the time when the process enters and leaves the code segment, and
then take their difference that yields Tcomp and Tcomm.

After the above general discussion, we now describe our results specific to
the Blue Gene/P supercomputer.
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5.1 Scaling on Blue Gene/P
In Fig. 3 we plot Tcomp and Tcomm. Our results indicate that the computation
time scales as Tcomp ∝ p−1. However, the communication among the nodes takes
maximum time in an FFT operation. In the following discussion, we sketch the
scaling arguments for Tcomm that was first provided by Pekurovsky [25].

A Blue Gene/P supercomputer has a torus interconnect for which we esti-
mate the bisection bandwidth B, which is defined as the available bandwidth
when the network is bisected into two partitions. For 3D torus, bisection band-
width is proportional to the area in the network topology, hence B ∝ (n′)2/3,
where n′ is the number of nodes used in communication.

102 103 104 105

p

10-2

10-1

100

101

T
−

1
co

m
p

(a)

102 103 104 105

n

10-2

10-1

100

101

T
−

1
co

m
m

(b)

Figure 3: Scalings of the FFTK library on Blue Gene/P: (a) Plot of inverse
computation time T−1

comp vs. p (number of cores) for 1ppn (red circle), 2ppn (green
triangle), 4ppn (blue square). Here ppn represents number of MPI processes per
node. The data for grids 20483, 40963, and 81923 are represented by the same
symbols but with increasing sizes. The plots show that FFTK exhibits strong
scaling in Blue Gene/P. (b) Plot of inverse communication time T−1

comm vs. n
(number of nodes) with the above notation. T−1

comm for p = 256 and 512 exhibits
a better scaling due to the slab decomposition employed.
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Figure 4: Scalings of FFTK on Blue Gene/P: (a) Plot of inverse of total time
T−1 vs. p exhibits strong scaling. (b) Plot of T−1 vs. p/N3 exhibits weak
scaling with the exponent γ = 0.91 ± 0.04. We follow the same colour and
symbol convention as Fig. 3.

FFT involves MPI_Alltoall communication, hence, in the slab division,
n′ = n, the total number of nodes, and the data to be communicated in the
network is D = N3. Therefore, the inverse of the communication time for each
FFT is

T−1
comm,slab ∼ B

D
∼ n2/3. (19)

We also remark that the communication time depends on number of interacting
nodes, not cores. The inter-core or intra-node communication (among the cores
within a node) is typically much faster than the inter-node communication across
an interconnect.

In the pencil division, the nodes are divided into row nodes (nrow) and
column nodes (ncol). We estimate nrow ≈ ncol ≈ n1/2. Hence each communi-
cation within a row (or a column) involves n′ ≈ n1/2 number of nodes during
MPI_COM_ROW or MPI_COM_COL communications. Hence, the effective bisection
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Table 1: FFTK scaling on Blue Gene/P: The exponents γ1 for the computation
time (Tcomp), γ2 for the communication time (Tcomm), and γ for the total time
(T ) [refer to Eq. (17) for definition]. The maximum nodes used is 16384 with
1ppn, 2ppn, and 4ppn.

γ ppn 20483 40963

γ1 1 1.00± 0.01 0.97± 0.01
2 1.00± 0.02 0.96± 0.01
4 1.00± 0.03 0.95± 0.03

γ2 1 0.7± 0.1 0.9± 0.1
2 0.7± 0.1 0.8± 0.2
4 0.7± 0.1 0.8± 0.2

γ 1 0.87± 0.05 0.94± 0.05
2 0.81± 0.05 0.96± 0.09
4 0.76± 0.07 0.9± 0.1

bandwidth, Be, is
Be ∼ (n′)2/3 = (n1/2)2/3 = n1/3. (20)

In this decomposition, the data per node is N3/n. During a communication,
either row nodes or column nodes are involved. Hence, the data to be commu-
nicated during a MPI_Alltoall operation is

D = (N3/n)× n1/2 = N3/n1/2. (21)

Therefore, the inverse of communication time for each FFT is

T−1
comm ∼ Be

D
∼ n5/6 ≈ n0.83. (22)

We performed our scaling tests on arrays of size 20483, 40963, and 81923

using cores ranging from 256 to 65536. Each node of Blue Gene/P has 4 cores,
hence we performed our simulations on 1, 2, and 4 cores per node, denoted as
1ppn, 2ppn, and 4ppn respectively. We present all our results in Fig. 3, with
the subfigures (a,b) exhibiting the inverse of computation and communication
timings respectively. We represent 1ppn, 2ppn, and 4ppn results using circles,
triangles, and squares respectively, and the grid sizes 20483, 40963, and 81923

using increasing sizes of the same symbols. Fig. 3 shows that T−1
comm for p = 256

and 512 shows better scaling than those for larger number of processors. This is
attributed to the slab decomposition. Note however that the slab decomposition
is possible only when number of processors is smaller than the number of planes
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Table 2: Comparison of FFTK and P3DFFT on Blue Gene/P for 8192 nodes
with 1ppn and 4ppn. Here p = nodes × ppn.

Grid p time/step (s) time/step (s)
FFTK P3DFFT

40963 8192× 1 8.18 8.06

40963 8192× 4 4.14 4.06

81923 8192× 1 71.2 70.0

81923 8192× 4 45.7 46.2

of the data (N for N3 grid). In Fig. 4(a,b), we exhibit T−1 vs. p and T−1

vs. p/N3 to test strong and weak scaling, respectively.
We compute the exponents γ1, γ2, and γ of Eq. (17) using linear regression

on the data of Fig. 3 and Fig. 4(a). In Table 1, we list the exponents for 1ppn,
2ppn, and 4ppn and grids sizes of 20483 and 40963. As expected, the exponent
γ1 ≈ 1 since the data is equally distributed among all the cores. The exponent
γ2 is approximately 0.7 for 20483 for all three cases, but it ranges from 0.8 to
0.9 for 40963. The increase in γ2 with the grid size is probably due to the larger
packets communicated for 40963 grids. The exponent γ2 is quite close to the
theoretical estimate of 5/6 ≈ 0.83 for 40963 grid [see Eq. (22)]. Our computation
also shows the best match for γ2 with the theoretical estimate is for 1ppn, and
it decreases slightly for for larger ppn. The variation with ppn is due to cache
misses.

We revisit Fig. 4(a) that shows a power law scaling, T−1 ∝ pγ , close to the
ideal exponent γ = 5/6 [see Eq. (22)]. This feature is called strong scaling.
Naturally the larger grids take longer time than the smaller grids. However,
when we increase p and N3 proportionally, all our results collapse into a single
curve, as exhibited in T−1 vs. p/N3 plot of Fig. 4(b). Thus FFTK exhibits
both strong and weak scaling.

Interestingly Tcomp and Tcomm are comparable on the Blue Gene/P, which
is due to the fact that the compute processors are slow, but the interconnect is
relatively fast. Hence the total time T is impacted by both Tcomp and Tcomm. As
a result, the γ is reasonably close to unity, thus yielding an approximate linear
scaling, at least for the 40963 grid. We also remark that we have performed
FFT for 81923 grid with 8192 and 16384 nodes; it was not possible with lower
number of nodes due to memory limitations. We do not have a reliable scaling
exponent for 81923 grid due to lack of data points.

We compare the timings of FFTK with the popular library P3DFFT for
40963 and 81923 grids using 8192 nodes with 1ppn and 4ppn. The comparison
listed in Table 2 indicates that both the libraries are equally efficient. For
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Table 3: FFTK on Blue Gene/P: Effective FLOP rating in Giga FLOP/s of
Blue Gene/P cores for various grid sizes and ppn. The efficiency E is the ratio
of the effective per-core FLOP rating and the peak FLOP rating of each core
(approximately 3.4 Giga FLOP/s).

Grid ppn Giga FLOP/s E

20483 1 0.38 0.11
2 0.28 0.082
4 0.17 0.050

40963 1 0.36 0.11
2 0.25 0.073
4 0.14 0.041

81923 1 0.36 0.11
2 0.26 0.076
4 0.15 0.044

comparison we also compute the efficiency of our computation using effective
FLOP rating. A pair of forward and inverse FFT involves 2 × 5N3 log2 N3

floating point operations [15]. Using this formula we estimate the effective
FLOP rating of the supercomputer for various grid sizes and ppn. The results
are listed in Table 3. A comparison of the above performance with the average
theoretical rating of each core (approximate 3.4 Giga FLOP/s) suggests that the
efficiency of the system for a FFT ranges from approximately 5% (for 4ppn) to
10% (for 1ppn) of the peak performance. The loss of performance is due to large
communication time and cache issues during a FFT operation (see Appendix
A). Typically, efficiency of a HPC system is measured using Tp/(pT1) where
Tp is the time taken to perform operation using p processors. The data for
large grids, e.g. 10243, cannot fit in the memory of a single processor, hence
we cannot compute T1 and hence Tp/(pT1). Therefore we use a more stringent
measure. We measure the efficiency as the ratio of the per-core FLOP rating
and the peak rating. We list this efficiency in Table 3.

In the next subsection we will discuss the scaling of FFTK on Cray XC40.

5.2 Scaling on Cray XC40
Each node of Cray XC40 has 32 compute cores, with each core having an ap-
proximate rating of 36.8 Giga FLOP/s. Thus each core of Cray XC40 is ap-
proximately 10 times faster than that of Blue Gene/P. Hence, for given grid size
and p, Tcomp for Cray XC40 is much smaller than that for Blue Gene/P.
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The Cray XC40 employs dragonfly topology which consists of hierarchy of
structures that yields bandwidth proportional to the number of interacting
nodes. Hence the bandwidth is

Be ∼ n′, (23)

where n′ is the number of interacting nodes. For the pencil decomposition, the
total number of nodes n is divided as n = nrow × ncol. Hence n′ = n/nrow for
MPI_COMM_COL communicator and n′ = n/ncol for MPI_COMM_ROW communica-
tor. Note that the data to be communicated during MPI_Alltoall operation is
(N3/n)n′. Hence, the inverse of the communication time is

T−1
comm ∼ Be

D
≈ n′

(N3/n)n′ ∼ n, (24)

implying a linear scaling.
Comparison of Tcomm for Blue Gene/P and Cray XC40 reveal that the band-

width is larger for Cray XC40 than Blue Gene/P. Hence, for a given set of N,n,
and D (the data to be communicated), the time for communication is smaller
for Cray XC40 than Blue Gene/P (see Eqs. (22, 24)). Thus, the data commu-
nication in XC40 is more efficient than that in Blue Gene/P. However, we will
show later that the gain in the speed of the interconnect is in commensurate
with the increase in the computational power of the processor. Hence, for the
FFT computation, the overall efficiency of Cray XC40 is lower than that for
Blue Gene/P. We also remark that Hadri et al. [16] showed that the maximum
global bandwidth between the 18 groups of two cabinets is approximately 57%
of the peak performance, hence we expect suboptimal performance for commu-
nications for FFT due to MPI_Alltoall data exchange.

We performed FFTK scaling on grids of sizes 7683 to 61443 using cores
ranging from 1536 to 196608 (3 × 216). Each node contains 32 cores, which
implies a somewhat large number of ppn combinations. Hence we choose to use
all the cores in a given node for maximum utilization. Both the grid sizes and
number of cores are of the form 3 × 2n since the maximum number of cores in
Cray XC40, 3× 216, is divisible by 3.

We perform scaling analyses for the FFF and SFF basis. However we present
our results on Tcomp, Tcomm, and T in Figs. 5 and 6 for the FFF basis only since
SFF basis has similar behavior. We observe that the total computation time for
the process is an order of magnitude smaller than the total communication time.
Hence the efficiency of FFT is dominated by the MPI_Alltoall communication
of the FFT. The figures show that T−1

comp ∼ pγ1 , T−1
comm ∼ nγ2 , and T−1 ∼ pγ ,

with minor deviations from the power law arising for 7683 grid with large p’s
(p ≥ 98000). Thus the data exhibits a strong scaling nearly up to 196608 cores.
We also observe that all the data nearly collapse to a single curve when we plot
T−1 vs. p/N3, hence FFTK exhibits both weak and strong scaling nearly up to
196608 cores.

The exponents for various grids for the FFF and SFF basis are listed in Ta-
ble 4. We observe that γ1 ≈ 1, except for 7683, thus yielding a linear scaling
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Figure 5: Scalings of FFTK on Cray XC40 for the FFF basis: (a) Plots of T−1
comp

vs. p (number of cores) for 7683, 15363, and 30723 grids. (b) Plots of T−1
comm

vs. n (number of nodes) using the above convention.
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Figure 6: Scalings of FFTK on Cray XC40 for the FFF basis: (a) plots of T−1

vs. p for 7683, 15363, and 30723 grids. (b) plots of T−1 vs. p/N3 exhibits weak
scaling with an exponent of γ = 0.72± 0.03.
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Table 4: FFTK scaling on Cray XC40 for the FFF and SFF basis: The exponents
γ1 for the computation time (Tcomp), γ2 for the communication time (Tcomm),
and γ for the total time (T ) [refer to Eq. (17) for definition]. Maximum cores
used: 196608.

FFF

Grid γ1 γ2 γ

7683 0.79± 0.14 0.43± 0.09 0.43± 0.09

15363 0.93± 0.08 0.52± 0.04 0.55± 0.04

30723 1.08± 0.03 0.60± 0.02 0.64± 0.02

SFF

Grid γ1 γ2 γ

7683 0.82± 0.13 0.44± 0.03 0.46± 0.04

15363 0.97± 0.07 0.63± 0.02 0.66± 0.01

30723 0.99± 0.04 0.70± 0.05 0.73± 0.05

Table 5: FFTK on Cray XC40: Effective FLOP rating in Giga FLOP/s of
Cray XC40 cores for various grid sizes and ppn. The efficiency E is the ratio
of the effective per-core FLOP rating and the peak FLOP rating of each core
(approximately 36 Giga FLOP/s).

Grid Size 7683 15363 30723

GFlop/s 0.45 0.53 0.64
E 0.013 0.015 0.018
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for the computation time. The exponent γ2 of the communication time ranges
from 0.43 to 0.70 as we increase the grid size from 7683 to 30723, which may
be due to increased efficiency of the network for larger data size. As described
above, the total time is dominated by the communication time, hence γ ≈ γ2.
Also, the SFF basis appears to be slightly more efficient than the FFF basis.

We compute the effective FLOP rating of the supercomputer by dividing the
total number of floating operations for a pair of FFT (2 × 5N3 log2 N3) with
the total time taken. This operation yields the average rating of each core of
Cray XC40 as 0.45 to 0.64 Giga FLOP/s that translates to 1.3% to 1.8% of the
peak performance (36 Giga FLOP/s) (see Table 5).

It is important to contrast the efficiencies of the two HPC supercomputers
discussed in this paper. The efficiency of Blue Gene/P at approximately 4%
(for 4ppn) is higher than that of Cray XC40 (∼ 1.5%). A node of Cray XC40
comprises of 32 cores, each with a peak rating of 36 Giga FLOP/s rating. Hence
maximum compute power per node is 1177.6 Giga FLOP/s. On the other hand,
a Blue Gene/P node contains 4 cores with a peak rating of 4× 3.4 = 13.6 Giga
FLOP/s. Thus, each node of Cray XC40 has approximately 100 times more
computational power. However, the interconnect of Cray XC40 is not faster
than that of Blue Gene/P in the same ratio.

Note that the dragonfly topology of Cray XC40 appears to be more efficient
than the torus topology of Blue Gene/P (see Eqs. (22), (24)), yet the ratio
of the speedup is much less than 100. Therefore, for data communication the
processors of Cray have to idle longer than those of Blue Gene/P. For the Blue
Gene/P, the relatively slower processors do not have to idle as long. This is
especially critical for FFT which is communication intensive. Thus, the faster
processor and relatively slower interconnect of Cray XC40 result in an overall
lower efficiency compared to Blue Gene/P. This is essentially the reason for the
lower efficiency of Cray XC40 at 1.5% compared with 4% of the Blue Gene/P.
In this sense, the efficiency of hardware depends on the application; for FFT
computation, a faster switch is more important than a faster processor.

5.3 Comparison between FFTK and P3DFFT libraries
In this section we describe key features and performance of FFTK library. An-
other library P3DFFT has similar features. Therefore, it is important to com-
pare the features and performances of the two FFT libraries, which are briefly
described below:

1. P3DFFT library has functions to perform Fourier transforms along the
three directions. It also has functions to perform Sine transform, Cosine
transform or Chebyshev transform only along one direction, and Fourier
transforms along the rest two directions [24]. Thus P3DFFT can be used
for mixed basis functions like SFF and ChFF (see Sec. 2 for definitions). In
contrast, FFTK can perform, Fourier, Sine, or Cosine transforms along
any of the three directions. Thus it can be used for solving problems
in FFF, SFF, SSF, and SSS basis. Hence, FFTK has more features than
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P3DFFT. SSS is very import basis function for physical application, like,
reversal studies of Rayleigh–Bénard convection [36]. The FFTK library
does not yet support ChFF basis function, but it is under developement.

2. In the present paper, we report scaling of FFTK on Cray XC40 for num-
ber of processors up to 196608. The P3DFFT library has been scaled up
to 65536 cores [25] on Cray XT5 machine. To best of our knowledge, no
other group has performed detailed scaling studies on FFT on processors
more than that for FFTK. Many researchers have performed spectral sim-
ulations of fluid flows on a large number of cores, for example, Yeung et
al. [42] used 262144 cores for their 81923 simulation, but they did not re-
port scaling results of FFT. Note that, scaling study of FFT is important
for the optimised performance of spectral codes.

3. As we show in this paper, the performance of FFT depends critically on
the features of processors as well as that of interconnect. Here we perform
comparative study of FFTK on BlueGene/P and Cray XC40. One of our
findings is that for FFT computations, the efficiency of Cray XC40 is lower
than BlueGene/P even though Cray XC40 is more modern HPC system
than Blue Gene/P. This is because the efficiency of interconnects has not
grown in commensurate with that of processors. We are not aware of
similar extensive comparisons and analysis of scaling results for FFT.

4. As shown in Table 2, on BlueGene/P, FFTK and P3DFFT are equally
efficient.

After extensive discussion on FFTs, in the next section, we will present the
scaling results of the fluid spectral solver.

6 Scaling of Fluid spectral solver
We perform high-resolution fluid simulation using spectral method on Blue
Gene/P and Cray XC40, i.e., we solve Eq. (5,6) on these systems. We as-
sume the flow to be incompressible, and use periodic boundary condition for
which FFF basis function is appropriate.

The fluid simulation requires 15 arrays each of size N3 to store three com-
ponents of the velocity field in real and Fourier spaces, the force field, the
nonlinear term u · ∇u, and three temporary arrays [37]. We employ the fourth-
order Runge Kutta scheme for time stepping, and dealias the nonlinear terms
using the 2/3-rd rule. Each time step requires 36 FFT operations. We refer the
reader to Boyd [3], Canuto et al. [5], and Verma et al. [37] for further details
and validation tests of the fluid solver. We run our simulations for 10 to 100
time steps depending on the grid size. The time reported in the present section
is an average over these many time steps.

The most expensive part of a pseudospectral simulation is the FFT that
consumes approximately 70% to 80% of the total time. In addition, a flow
solver has many functions including I/O, hence it is tedious to find patterns for
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Table 6: Scaling exponent of the total time for the fluid solver on Blue Gene/P
and Cray XC40 for various grids (definition: T ∼ p−γ).

Blue Gene/P Cray XC40

Grid size γ Grid size γ

20483 0.95± 0.05 7683 0.28± 0.15

40963 0.8± 0.1 15363 0.44± 0.06

- - 30723 0.68± 0.02

the computation and communication components separately. Therefore, in the
following discussion we report the scaling of the total time for the flow solvers.

6.1 Blue Gene/P
We performed the fluid simulation on 20483 and 40963 grids using cores ranging
from 1024 to 65536. In Fig. 7(a) we plot the inverse of the total time per
iteration vs. p. We observe that T−1 ∼ pγ . The exponents γ listed in Table 6
shows that γ = 0.95± 0.05 and γ = 0.8± 0.1 for grid sizes of 20483 and 40963

respectively. This demonstrates the fluid solver exhibits a strong scaling.
The above data nearly collapses into a single curve in the plot of T−1 vs.

p/N3, as shown in Fig. 7(b). Hence we conclude that our fluid solver also
exhibits weak scaling. The exponent of the weak scaling is γ = 0.97± 0.06.

6.2 Cray XC40
We performed fluid simulations on grid sizes of 7683, 15363 and 30723 grids using
cores ranging from 1536 to 196608. We employ periodic boundary conditions
along all the walls. As done for Blue Gene/P supercomputer, we compute the
total time taken for each iteration of the solver.

Fig. 8(a) shows that the plots of T−1 ∝ pγ , except for 7683 grid with large
p’s (p ≥ 98000). Thus fluid solver exhibits a strong scaling, except for 7683 grid
that scales up to p ⪅ 98000. We observe that γ for the 7683, 15363 and 30723

grids are approximately 0.28, 0.44 and 0.68 respectively. The three curves for
the three different grids collapse into a single curve when the X-axis is chosen
as p/N3 (except for p ≥ 98000). This result shows a common scaling when the
number of cores and data sizes are increased by an equal factor. Thus our fluid
solver exhibits both weak and strong scaling nearly up to 196608 cores of the
Cray XC40.

We performed a fluid simulation for a longer time on a 5123 grid in a periodic
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Figure 7: Scaling of the fluid spectral solver on Blue Gene/P: (a) Plot of T−1

vs. p for 20483 (red triangle) and 40963 (green square) grids exhibits strong
scaling. (b) Plot of T−1 vs. p/N3 exhibits weak scaling with an exponent of
γ = 0.97± 0.06.
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Figure 8: Scaling of the fluid spectral solver on Cray XC40: (a) Plot of T−1

vs. p for 7683, 15363, and 30723 grids exhibits strong scaling. (b) Plot of T−1

vs. p/N3 exhibits weak scaling with an exponent γ = 0.62± 0.07.
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box of size (2π)3. The Reynolds number of the flow at the steady state is
approximately 1100. Fig. 9 exhibits an isosurface of the contours of constant
magnitudes of the vorticity under steady state. In the figure we observe intense
localised vorticity, as reported in literature.

7 Scaling of RBC spectral solver
We performed high-resolution simulations of Rayleigh-Bénard convection (RBC)
by solving Eqs. (13, 14). The fluid is assumed to be contained in a box of unit
dimension. Presently, we report the scaling results for FFF (periodic boundary
condition) and SFF (free-slip boundary condition) basis functions. Note that in
SFF basis, uz = ∂zux = ∂zuy = 0 at the top and bottom plates, and periodic
along the side walls. The temperatures at the top and bottom plates are assumed
to be constant (conducting walls), while at the side walls, the temperature is
assumed to be periodic. For the energy spectrum and flux computations, we
employ a free-slip boundary condition.

A RBC simulation requires 18 arrays of size N3. We time step the solver
using the fourth-order Runge Kutta scheme that requires 52 FFT per time step.
For further details and validation tests of the RBC solver, we refer the reader
to Verma et al. [37]. For scaling tests we run our simulations for 10 to 100
time steps. The time reported in this section is an average over the relevant
time steps. The results of our simulations on the Blue Gene/P and Cray XC40
supercomputers are as follows:

X
Y

Z

Figure 9: Isosurface of the contours of constant vorticity |∇ × u| (30% of the
maximum value). The figure indicates regions of strong vorticity in the flow.
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7.1 Blue Gene/P
We performed RBC simulations on 20483 and 40963 grids using cores ranging
from 8192 to 65536. In Fig. 10(a,b) we plot T−1 vs. p and T−1 vs. p/N3

respectively. Here T is the time taken per step, and p is the number of cores.
We observe that T−1 ∼ pγ with the exponent γ = 0.71 and 0.68 for the 20483

and 40963 grids respectively (see Table 7). Thus the RBC solver indicating a
strong scaling. As exhibited in Fig. 10(b), the data nearly collapses into a single
curve when we plot T−1 vs. p/N3, hence exhibiting a weak scaling as well.

Table 7: Scaling exponents of the total time for the RBC solver on Blue Gene/P
and Cray XC40 for various grids for the FFF and SFF basis functions (definition:
T ∼ p−γ).

Blue Gene/P Cray XC40

FFF

Grid Size γ Grid Size γ

20483 0.71± 0.04 7683 0.49± 0.14

40963 0.68± 0.08 15363 0.64± 0.04

- - 30723 0.74± 0.03

SFF

Grid Size γ Grid Size γ

- - 7683 0.62± 0.06

- - 15363 0.74± 0.09

- - 30723 0.80± 0.05

7.2 Cray XC40
We simulated RBC on 7683, 15363 and 30723 using cores ranging from 1536 to
168608 for FFF and SFF basis. For 3300 iterations of RBC simulation on 20483

grid, the total simulation is 1.7×105 seconds, thus the time per iteration of RBC
on 20483 grid is approximately 51.5 seconds. For the FFF basis, the inverse of
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the total time plotted in Fig. 11(a) scales as T−1 ∼ pγ with γ = 0.49, 0.64
and 0.74 for 7683 (except for p = 196608), 15363 and 30723 grids respectively
(also see Table 7). The plot indicates a strong scaling for the RBC solver. In
Fig. 11(b) we plot T−1 vs. p/N3; here the data collapses into a single curve
(see Fig. 11) thus indicating a weak scaling. In Fig. 12 we plot T−1 vs. p and
T−1 vs. p/N3 for the SFF basis. The exponents listed in Table 7 show that the
FFF and SFF scale in a similar manner, with the SFF basis scaling slightly better
than the FFF basis. The plots and the scaling exponents demonstrate that our
RBC solver exhibits both strong and weak scaling up to nearly 196608 cores.
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Figure 10: Scaling of the RBC solver on Blue Gene/P for the FFF basis: (a)
Plot of T−1 vs. p for 20483 (red triangle) and 40963 (green square) grids exhibits
strong scaling. (b) Plot of T−1 vs. p/N3 exhibits weak scaling with an exponent
of γ = 0.68± 0.08.

We use Tarang to study energy spectrum and energy flux of RBC and to
resolve the long-standing question on the spectral indices. Kumar et al. [18]
studied these quantities for 5123 grid and showed that the turbulent RBC ex-
hibits Kolmogorov’s spectrum similar to hydrodynamic turbulence. Here we
present a more conclusive spectrum by performing RBC simulations on a 40963

grid simulations using 65536 cores with Rayleigh number Ra = 1.1 × 1011 and
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Figure 11: Scaling of the RBC spectral solver for the FFF basis on Cray XC40:
(a) Plot of T−1 vs. p for 7683, 15363, and 30723 grids exhibits strong scaling. (b)
Plot of T−1 vs. p/N3 exhibits weak scaling with an exponent of γ = 0.72±0.06.
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Figure 12: Scaling of the RBC spectral solver for the SFF basis on Cray XC40:
(a) Plot of T−1 vs. p for 7683, 15363, and 30723 grids exhibits strong scaling. (b)
Plot of T−1 vs. p/N3 exhibits weak scaling with an exponent of γ = 0.83±0.03.
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Figure 13: Isosurface of the contours of constant temperature. The structures
with red and blue colours indicate respectively the hot and cold plumes of the
flow.
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Figure 14: For RBC simulation on 40963 grid with Pr = 1 and Ra = 1.1 ×
1011: (a) Plots of the normalised kinetic energy spectra E(k)k5/3 (Kolmogorov-
Obukhov, red curve) and E(k)k11/5 (Bolgiano-Obukhov, green curve). Flatness
of E(k)k5/3 indicates Kolmogorov-like phenomenology for RBC. (b) Plot of
kinetic energy flux Πu(k) and entropy flux Πθ(k), both exhibit a constant flux
in the inertial range. From Verma et al. [38]. Reprinted under a CC BY licence
(http://creativecommons.org/licenses/by/3.0/).
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the Prandtl number Pr = 1. The energy spectrum and flux were computed
using the steady-state data, which is achieved after around 1000 time steps.
Fig. 13 exhibits isocontours of constant temperatures exhibiting hot and cold
structures.

In Fig. 14(a) we exhibit the compensated energy spectra E(k)k5/3 and
E(k)k11/5, which correspond to the compensated Kolmogorov spectrum and the
Bolgiano-Obukhov spectrum respectively. The constancy of E(k)k5/3 in the in-
ertial range indicates that turbulent convection exhibits Kolmogorov spectrum,
similar to hydrodynamic turbulence. The energy flux, exhibited in Fig. 14(b),
is also constant in the inertial range, again confirming Kolmogorov-like phe-
nomenology for RBC. Thus our DNS helps resolve one of the outstanding ques-
tions in turbulent convection.

8 Conclusions
In this paper we perform scaling studies of a FFT library, FFTK, and a pseu-
dospectral code Tarang on two different HPC supercomputers—Blue Gene/P
(Shaheen I) and Cray XC40 (Shaheen II) of KAUST. We vary grids from 7683

to 81923 on cores ranging from 1024 to 196608. The number of cores used for
FFTK and Tarang are one of the largest in this area of research. We also remark
that on Blue Gene/P, the efficiency of FFTK is similar to that of P3DFFT. The
main results presented in this paper are as follows:

1. We analyse the computation and communication times for FFTK. We
observe that the computation time Tcomp ∼ p−1 where p is the number of
cores, while the communication time Tcomm ∼ n−γ2 where n is the number
of nodes.

2. Regarding FFTK, for Blue Gene/P, the communication time is comparable
to the computation time due the slower core and faster switch. In Cray
XC40 however the communication dominates computation due to faster
cores. For FFTK, the total time scales as T ∼ p−γ with γ ranging from
0.76 to 0.96 for Blue Gene/P. For Cray XC40, γ lies between 0.43 to
0.73. In Sec. 5.2 we argue that the dragonfly topology of Cray XC40 is
more efficient than torus topology of Blue Gene/P. Yet, the speedup of
interconnect for Cray XC40 is not much higher than that for Blue Gene/P.

3. Cray XC40 exhibits lower efficiency (∼ 1.5%) than Blue Gene/P (∼ 4%).
This is in-spite of the fact that ratio of the per-node compute power of
Cray XC40 and Blue Gene/P is approximately 100. The relative loss of
efficiency for XC40 is because the efficiency of its interconnect has not
scaled in commensurate with that of its processor. For communication
intensive application like FFT, the speed of interconnect is more important
than that of the compute cores.
The above observation indicates that the performance of a HPC system
depends on the application. We need to be cautious about this, and factor
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into account the speed of the processor, interconnect, memory, and input-
output. In future, we plan to do an extensive study of these factors for
FFT.

4. The fluid solver of Tarang exhibits weak and strong scaling on both the
supercomputers. The exponent γ for Blue Gene/P varies from 0.8 to 0.95,
but it ranges from 0.28 to 0.68 for Cray XC40.

5. The solver for Rayleigh-Bénard convection also shows weak and strong
scaling on both the supercomputers. The corresponding γ for Blue Gene/P
ranges from 0.68 to 0.71, but it lies between 0.49 to 0.80 for Cray XC40.

6. The scaling of FFTK, and fluid and RBC solvers scale quite well up to
196608 cores of Cray XC40. We however observe saturation at 98000
cores for 7683 grid, possibly due to smaller data size. To best of our
knowledge, there is no such detailed scaling study on FFT up to these
many processors.

7. The scaling of different basis functions (e.g., FFF and SFF) are similar.
However the performance in the SFF basis is slightly better than that in
the FFF basis.

Thus, FFTK and Tarang scale nearly up to 196608 cores. Thus these codes
are capable of simulating turbulence at very high-resolution. FFTK would also
be useful for other applications, e.g., image processing, density functional theory,
etc.
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A Transpose-free Fast Fourier Transform
In this appendix we describe how we avoid local transpose in FFTK to save
communication time. For simplicity we illustrate this procedure using slab de-
composition with complex data of size n0 ×n1 × (n2/2+1). The corresponding
real space data is of the size n0 × n1 × n2.

The usual FFT implementation involving transpose is illustrated below. The
complex data is divided along n0. If there are p processors, then each processor
has (n0/p) × n1 × (n2/2 + 1) complex data. See Fig. 15(a) for an illustration.
A typical inverse transform involves three steps:
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(a) (b)

Figure 15: Data division for FFT with transpose: (a) Complex data of size
n0 × n1 × (n2/2+ 1) in Fourier space. (b) Real data of size n1 × n0 × n2 in real
space. Note that the axes n0 and n1 are exchanged during the transpose.

1. Perform two-dimensional inverse transforms (complex-to-real c2r) on n0/p
planes each having data of size n1 × (n2/2 + 1).

2. Perform transpose on the array along n0-n1 axis. This operation involves
local transpose and MPI_Alltoall operations (to be described below).

3. After the data transfer, the data along the n0 axis resides in the respective
processors. Now in each processor, we perform one-dimensional real-to-
real (r2r) inverse transforms on (n1/p)× n2 column each having data of
size n0.

In Fig. 16, we illustrate this transpose operation using a simple example in-
volving 16 data points and 2 processors. In the first step, the local data
is transposed, as illustrated in Fig. 16(a,b). In the example, in process P0,
the data [[1,2,3,4],[5,6,7,9]] gets transformed to [[1,5],[2,6],[3,7],[4,8]]. After the
local transpose, chunks of data are transferred among the processors using
MPI_Alltoall function (Fig. 16(b) to Fig. 16(c)). In this process, the blocks
[[3,7],[4,8]] and [[9,13],[10,14]] are exchanged between P0 and P1. After this
data transfer, there is another local transpose that transforms the data from
Fig. 16(c) to Fig. 16(d).

This complete operation is called “transpose” because it is similar to matrix
transpose. After transpose, we are ready for FFT operations along the n0 axis.
Note that the data along the rows of Fig. 16(d) are consecutive, that makes it
convenient for the FFT operation. We remark that the popular FFTW library
employs the above procedure involving transpose.

An advantage of the above scheme is that the FFT is performed on consec-
utive data sets that minimises cache misses. However, the aforementioned FFT
involves two local transposes, which are quite expensive. To avoid this, we have
devised a FFT which is based on transpose-free data transfer. This process is
described below.
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Figure 16: The standard transpose procedure in during a FFT. It involves two
local transposes and a MPI_Alltoall.

In the transpose-free procedure, we replace the transpose operations (item
2 in the above list) with transpose-free inter-processor communication. We
employ MPI_Type_vector and MPI_Type_create_resized to select strided data
to be exchanged among the processors. We illustrate the communication process
in Fig. 17. Here, the data block [[3, 4], [7, 8]] is transferred from P0 to P1,
and the data block [[9, 10], [13, 14]] is transferred from P1 to P0 using MPI
functions MPI_Isend/MPI_Recv or MPI_All_to_all. Note that the data to
be transferred are not consecutive, hence we need the MPI functions such as
MPI_Type_vector and MPI_Type_create_resized to create strided-data set.
The data structure before and after the interprocess communication are shown

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Inter-process

communication

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(a) (b)

Figure 17: Transpose using strided MPI_Isend/MPI_Recv that does not require
a local transpose. This is employed in the transpose-free FFT.
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in Fig. 18(a,b) respectively. Here the data axes are not exchanged, however the
columnar data along the n0 axis are not contiguous. For example, the data of
column [1,5,9,13] of Fig. 17(b) are staggered by 1. As a result, FFT along the
n1 axis involves consecutive data, but not along n0. The latter FFT however
can be performed using strided FFTW functions.

(a) (b)

Figure 18: Data division for a transpose-free FFT: (a) Complex data of size
n0 × n1 × (n2/2+ 1) in Fourier space. (b) Real data of size n0 × n1 × n2 in real
space. Note that there is no exchange of axes here. Compare it with Fig. 15.

Now let us briefly compare the performances of the two methods. The
transpose-free scheme avoids local transpose, hence it saves some communication
time compared to the usual FFT. A flip side of the transpose-free scheme is that
it needs strided FFT that is prone to cache misses because the data are not
contagious. Note, however, that intelligent cache prefetch algorithms [1] could
helps in efficient implementation of strided FFT.

To compare the efficiencies of the aforementioned FFT schemes, we per-
formed FFTs using both the schemes. Since FFTW involves local transposes,
we use this as one of the benchmark programs. We wrote a transpose-free FFT
function as the other benchmark program. The tests were performed on IBM
BlueGene/P (Shaheen I) of KAUST for a pair of forward and inverse transforms
on 10243 and 20483 grids.

In Fig. 19(a,b) we present the results for the 10243 and 20483 grids. In the
figure the time taken by FFTW and transpose-free FFT are shown by red circle
and black diamonds respectively. We observe that the transpose-free FFT is
10% to 16% more efficient for 10243 data, and 5% to 14% more efficient for
20483 data. The gain by the transpose-free FFT decreases as the number of
processors are increased. The difference in time is a sum of two factors: (a)
gain by avoidance of local transpose, and (b) loss due to strided FFT. We need
a more detailed diagnostics to analyse the two algorithms. For example, we
need to separately compute the computation and communication time. Also, it
will be useful to estimate the time for the collection of the strided data, as well
as that of the strided FFT. These works will be performed in future.
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Figure 19: Comparison between FFTs with transpose and without transpose for
(a) 10243 grid, and (b) 20483 grid. Transpose-free FFT is marginally superior
than the one with transpose.
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The FFT operations in FFTK, which has pencil decomposition, in transpose-
free. The only difference between the slab-based FFT described in this ap-
pendix and the pencil-based FFT is that the data exchange in pencil-based
FFT takes place among the respective communicators. For example, among the
MPI_COM_ROW and MPI_COM_COL communicators of Fig. 2.
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