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Abstract. Cylindrical algebraic decomposition (CAD) is a core algo-
rithm within Symbolic Computation, particularly for quantifier elimina-
tion over the reals and polynomial systems solving more generally. It is
now finding increased application as a decision procedure for Satisfiabi-
lity Modulo Theories (SMT) solvers when working with non-linear real
arithmetic. We discuss the potentials from increased focus on the logical
structure of the input brought by the SMT applications and SC2 project,
particularly the presence of equational constraints. We also highlight the
challenges for exploiting these: primitivity restrictions, well-orientedness
questions, and the prospect of incrementality.

1 Introduction

1.1 Cylindrical Algebraic Decomposition

The original aim of Cylindrical Algebraic Decomposition (CAD), as introduced
by [Col75], was Quantifier Elimination (QE). More precisely, given

Qk+1xk+1 . . . QnxnΦ(x1, . . . , xn) (1)

where Qi ∈ {∀,∃} and Φ is a Tarski Formula; produce an equivalent formula,
Ψ(x1, . . . , xk) which is quantifier free. Here a Tarski Formula is a Boolean com-
bination of predicates fj σj , 0 with σj ∈ {=, 6=, >,≥, <,≤}, fj ∈ Q[x1, . . . , xn].

The CAD of [Col75] was a major breakthrough, with a running time “merely”
doubly-exponential in n, as opposed to previous methods [Tar51].

The methodology of Collins’ CAD is broadly as follows:

1. Retaining from (1) only the fj (call this set Sn) and the order of the xi,
compute a CAD of Rn, sign-invariant for the fi.

(a) Repeatedly project S` ⊂ Q[x1, . . . , x`] to S`−1 := PC(S`) ⊂ Q[x1, . . . ,
x`−1] where PC is Collins’ projection operator.

(b) Isolate real roots of S1 to produce a CAD of R1 sign-invariant for S1.



(c) Repeatedly lift the decomposition of R`−1 to one of R`, sign-invariant
for S`. To lift over a cell in R`−1 we substitute a sample point of the cell
into S`; perform univariate root isolation and decompose accordingly.
PC is chosen so that the sample point is representative of the whole cell.

2. Using the Qi and Φ identify cells of the induced CAD of Rk true for (1).
3. Deduce Ψ .

There have been many improvements since [Col75]: we quote only two here,
referring to [BDE+16] for a more detailed summary.

[McC84]: This replaced the operator PC by a much smaller operator PM ,
simultaneously replacing “sign-invariant” by “order-invariant” in Step 1. Howe-
ver, the system has to be “well-oriented”, which can only be seen with hindsight,
when a lack of it manifests itself by a polynomial being nullified, i.e. vanishing
entirely, over a cell of dimension > 0.

[Laz94]: This replaced the operator PM by a slightly smaller operator PL

and significantly modified the lifting procedure, simultaneously replacing “order-
invariant” by what is now called “Lazard-valuation-invariant” in Step 1. A gap
in the proof of [Laz94] was soon spotted. It was rectified recently by [MH16], but
using the technology of order-invariant and under the well-oriented restriction.
A complete resolution, in terms of Lazard invariance, has been presented in the
preprint [MPP17].

1.2 New Applications: SC2

The authors are involved in the EU Project SC2 which aims to forge interaction
between the communities of Symbolic Computation and Satisfiability Checking
[SC2]. CAD and QE are traditionally found in the former but recently the techno-
logy behind them have been applied in Satisfiability Modulo Theory (SMT) sol-
vers [JdM12, for example] where the problem is usually not to perform full QE
but to test satisfiability, finding either a witness point or (minimal) proof of
unsatisfiability. Such solvers are used routinely in industries such as software
verification. The problem sets are different to those typical in CAD: often lower
degree polynomials but far more of them and in more variables. Viewed from
Satisfiability Checking the CAD procedure outlined above is curious, particular
in its discarding of the logical structure in Step 1.

2 Potentials

2.1 Equational Constraint

The fact that the σj and Φ are essentially ignored in Step 1 was noticed in
[Col98], at least for the special case

Φ(x1, . . . , xn) ≡ F1(x1, . . . , xn) = 0 ∧ Φ′(x1, . . . , xn) (2)

(where F1 depends non-trivially on xn and is primitive): intuitively the key idea
is that we do not care about the polynomials in Φ′ away from F1 = 0. We refer to



F1 = 0 as an equational constraint (more generally, an equation implied by the
formula). This was formalised in [McC99]. The key result there is the following.

Theorem 1 ([McC99, Theorem 2.2]). Let r > 2, let f(x1, . . . , xr) and
g(1, . . . , xr) be real polynomials of positive degrees in the main variable xr, let
R(x1, . . . , xr−1) be the resultant of f and g, and suppose that R 6= 0. Let S be
a connected subset of Rr−1 on which f is delineable and in which R is order-
invariant. Then g is sign-invariant in each section of f over S.

In the context of (2) this justifies replacing PM (Sr) by the reduced projection
operator

PM (F1;Sr) := PM ({F1}) ∪ {Resxr (F1, fi) : fi ∈ Φ′}, (3)

at least for the first projection. If Sr has n polynomials of degree d, PM (Sr) has
1
2n(n+ 1) polynomials of degree O(d2) whereas PM (F ;Sr) has n such.

2.2 Multiple Equational Constrains

If there are multiple equational constraints then it is possible to use a variant
(slightly enlarged) of the reduced operator (3) for projections beyond the first.
The idea is to propagate the constraints by noticing their resultant is also implied
by the formula but does not contain the main variable [McC01].

More recently, in [EBD15] the present authors identified savings in the lifting
phase: the fact that Theorem 1 provides not just delineability but sign-invariance
for g means there is no need to isolate and decompose with respect to the real
roots of g. This, combined with the use of Gröbner Basis technology to control
the degree growth of projection polynomials allowed us to present an impro-
ved complexity analysis of CAD with multiple equational constraints in [ED16].
Broadly speaking, we decrease the double exponent by one for each equational
constraint.

2.3 Equational Constraints of Sub-formulae

If instead of (2), our problem has the form

Φ(x1, . . . , xn) ≡ (f1 = 0 ∧ Φ1) ∨ (f2 = 0 ∧ Φ2) ∨ · · · , (4)

then we can write it in the form (2) by letting F1 =
∏
fi. However, as was

observed in [BDE+13], we can do better by analysing the inter-dependencies
in (4) more carefully, building a truth-table invariant CAD (TTICAD) for the
collection of sub-formulae. Intuitively the key idea is that we do not care about
the polynomials in Φi outside fi = 0. TTICAD was expanded in [BDE+16] to the
case where not every disjunct has an equation (so there is no overall equational
constraint for Φ).

3 Challenges

Section 2 identifies a wealth of technology for making greater use of the logical
structure of the CAD input. However, there are a number of challenges.



3.1 Need for primitivity

All the theory of reduced projection operators requires that the constraint be pri-
mitive. No technology currently exists (beyond reverting to sign-invariance) for
the non-primitive case (although ideas were sketched in [EBD15]). Note that the
restriction is not just on the input but also constraints found through propaga-
tion. In [DE16] the Davenport-Heinz examples [DH88] used to demonstrate the
doubly exponential complexity of CAD were shown to lack primitivity, showing
that the non-primitive case is genuinely more difficult.

3.2 Well-orientedness

All the existing theory of reduced projection operators rests on the mathematics
of order-invariance developed for PM . The reduced operators not only require
this condition of PM but actually extend it (they are less complete). The lack of
this condition is only discovered at the end of CAD (when we lift with respect
to the offending polynomials). For traditional CAD this means a large waste of
resources starting the calculation again.

As described in Section 1 there is a new sign-invariant projection operator
PL which achieves the savings of PM without sacrificing completeness. It may
be possible to expand this to a family of reduced operators, but this requires
development of the corresponding Lazard valuation invariance theory.

3.3 Incremental CAD

A key requirement for the effective use of CAD by SMT-solvers is that the CAD
be incremental: that polynomials can be added and removed to the input with
the data structures of the CAD edited rather than recalculated. Such incremental
CAD algorithms are now under development by the SC2 project [SC2].

These could offer a partial solution to the difficulties of well-orientedness.
I.e. if a particular operator is found to not be well-oriented at the end of a
CAD calculation the next step would be to revert to a less efficient operator
which is usually a superset of the original one. Hence we could edit the existing
decomposition to take into account these additional polynomials.

However, the use of CAD with equational constraints incrementally may exhi-
bit strange behaviour in the SMT context. For example, removing a constraint
that was equational could actually grow the output CAD since it necessitates
the use of a larger projection operator. Correspondingly, adding an equational
constraint could allow a smaller operator and shrink the output. It is not clear
how SMT solvers heuristics should be adapted to handle these possibilities.
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