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Abstract 12 

This work investigates the catalytic performance of bimetallic Ni-Cu/Al2O3 catalysts for syngas 13 

production by methanol steam reforming. The synthesis and characterization of a series of Nix-Cuy/Al2O3 14 

catalysts with various stoichiometric fractions (x= 10, 7, 5, 3 and 0wt% and y= 0, 3, 5, 7 and 10wt% to 15 

Al2O3 support, respectively) are investigated and discussed. The catalytic performance is evaluated 16 

experimentally at temperature range of 225-325°C. Both mono-metallic catalyst (10wt.%Cu/Al2O3 and 17 

10wt.%Ni/Al2O3) and bi-metallic catalysts (7wt.%Cu-3wt.%Ni/Al2O3, 5wt.%Cu-5wt.%Ni/Al2O3 and 18 

3wt.%Cu-7wt.%Ni/Al2O3) are synthesized using an impregnation method and characterized by means of 19 

SEM, temperature programmed reduction (TPR), BET analysis, XRD and TGA. It is found that the 20 

bimetallic Ni-Cu catalyst had a strong influence on the amount of CO2 and CO produced due to the 21 

different selectivity towards the water gas shift reaction and methanol decomposition reaction. The 22 

increase of the Ni content leads to an increase in CO and decrease in CO2 yields. The bimetallic catalyst 23 

did not produce CH4, revealing that Cu alloying in Ni catalyst had an inhibiting effect for CO and/or CO2 24 

hydrogenation.  25 
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1. Introduction  1 

Methanol is being used as source of fuel to produce syngas in small scale reformers [1]. The 2 

conversion of methanol to syngas takes place over a lower temperature range of 200-325°C compared to 3 

other liquid fuels such as ethanol which is only converted at temperatures above 500 °C. The absence of 4 

C-C bonds in methanol leading to low energy chemical bonds makes the reforming of methanol popular 5 

for the development of fuel processor for hydrogen production and electricity generation using fuel cells 6 

[2, 3]. 7 

The steam reforming of methanol (Eq. 1) ideally produces dry gases consisting of 75 vol% of 8 

hydrogen and 25 vol% carbon dioxide with complete stoichiometry conversion [4, 5]. The methanol 9 

steam reforming process (Eq. 1) [6-10] is represented by summation of decomposition reaction of 10 

methanol (Eq. 2) and water gas shift reaction (Eq. 3) [7, 11, 12]. According to the stoichiometry of the 11 

reactions, complete steam reforming of methanol notwithstanding equilibrium limitations is predicted 12 

using highly active and selective catalyst to produce hydrogen and carbon dioxide at a reforming 13 

temperature of (200-300°C) and at atmospheric pressure [7, 11, 12]. 14 

CH3OH + H2O ⇌ CO2 + 3H2 ΔH°298 = +49.5 kJ/mol (Eq. 1) 

CH3OH ⇌ CO + 2H2 ΔH°298 = +90.2 kJ/mol (Eq. 2) 

CO + H2O ⇌ CO2 + H2 ΔH°298 = −41.0 kJ/mol (Eq. 3) 

The bimetallic effect of catalyst for methane steam reforming was studied [13-15].Ni-Cu based 15 

catalysts were discussed in the literature for steam reforming of both ethanol [16-18] and methanol [19-16 

21]. Ni-Cu supported on carbon nanotubes have been studied recently[19]and it was observed that alloy 17 

Ni with Cu could weaken the adsorption between Ni and hydrogen thus enhancing the catalyst activity 18 

due to the increase of methanol contact with Ni particles. 19 

NixCuy-Al catalysts were also synthesised with different Ni-Cu contents [20].The results showed 20 

that NiCu alloy had improved catalyst performance compared to the monometallic Cu for methanol and 21 

ethanol reforming. It was also demonstrated that the introduction of Cu in the catalyst formulation 22 

suppresses coke deposition and the sintering of the active phase in steam reforming. The addition of Cu 23 

revealed a positive effect by preventing the formation of methane with enhanced stability. The 24 

experiment was conducted by constant increase of the reaction temperature. However, it cannot prove 25 
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whether the formation of CH4 from hydrogenation reaction was supressed as the temperature was 1 

increasing during the experiment, for which a study under steady operation conditions was required. 2 

 3 

We also studied 5%Ni-5%Cu/Al2O3 previously by comparison with two commercial catalysts: 4 

Ni/Al2O3 and Cu/ZnO/Al2O3[21]. It was shown that Cu increased the active particle size of Ni compared 5 

to Ni/Al2O3 and Ni improved Cu dispersion compared to Cu/ZnO/Al2O3 catalyst. The bimetallic catalyst 6 

with 5%Ni-5%Cu/Al2O3 proved to be very active both in methane and methanol steam reforming 7 

compared with commercial catalysts.  8 

In the current work, we systematically investigated the bimetallic catalytic activity by performing 9 

reaction conditions for four hours in order to study the gas mixture composition under constant reaction 10 

temperature and stable operation conditions. The main problem that this work intends to answer is the 11 

effect of the metallic/alloy phase of the catalysts with different loadings on the catalytic performance 12 

towards syngas production. Thus, the reaction yields and pre and post characterisation of the catalysts 13 

are investigated for mono-metallic, bimetallic and physical mixture of single metal catalysts.  14 

Various loadings of bimetallic, 7wt.%Cu-3wt.%Ni/Al2O3, 5wt.%Cu-5wt.%Ni/Al2O3 and 7wt.%Ni-15 

3wt.%Cu/Al2O3 catalysts were synthesized using impregnation method and characterized by different 16 

techniques. The results were compared with the monometallic 10wt.%Cu/Al2O3 and 10wt.%Ni/Al2O3 17 

catalysts.  18 

 19 

2.1 Catalyst preparation  20 

The Nix-Cuy/Al2O3 catalyst was synthesised via an impregnation method. Both mono-metallic 21 

catalysts, 10wt.%Cu/Al2O3 and 10wt.%Ni/Al2O3, and bi-metallic catalysts (7wt.%Ni-3wt.%Cu/Al2O3, 22 

5wt.%Ni-5wt.%Cu/Al2O3 and 3wt.%Ni-7wt.%Cu/Al2O3) were prepared. Nickel nitrate 23 

(Ni(NO3)2.6H2O) and/or copper nitrate (Cu(NO3)2.3H2O) provided commercially (Fisher Scientific) 24 

were dissolved in high purity ethanol (99.8%) using a magnetic stirrer. To ensure good mixing and 25 

dissolution, the mono-metal solution was mixed for 30 minutes. However, for the bi-metallic catalyst 26 

type, a copper metal solution was prepared by mixing the solution for 30 minutes, then nickel nitrate was 27 

added to the prepared solution and it was further mixed for 30 minutes. To the above-prepared nitrate 28 

metal solution, 6 grams of trilobe Al2O3 supplied by Johnson Matthey were added and mixed for two 29 
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hours using an ultrasonic mixer/heating bath (Bandelin Sonorex bath) set at a temperature of 27°C. The 1 

catalyst was dried overnight in a static oven at 100°C. In the final preparation stage the catalyst was 2 

heated for calcination to 500°C at rate of 5°C/min, held at that temperature for 5 hours, then finally 3 

cooled at rate 5°C/min to ambient room temperature. 4 

The prepared mono-metallic and bi-metallic catalysts in the rest of this work will be denoted as  5 

10%Cu, 10%Ni , 7%Ni-3%Cu, 5%Ni-5%Cu and 3%Ni-7%Cu for brevity. 6 

 7 

2.2 Catalyst characterization  8 

The catalysts were characterized using Scanning Electron Microscope (SEM), nitrogen 9 

adsorption-desorption cycles analysed by the Brunauer Emmett Teller (BET) method to determine 10 

surface area, Temperature Programmed Reduction (TPR), X-ray Diffraction (XRD) and Thermo 11 

Gravimetric Analyses (TGA). 12 

A Philips XL-30 with LaB6 filament SEM fitted with an Oxford Instruments INCA Energy 13 

Dispersive X-ray Spectroscopy (EDS) system was used to study the catalyst morphology and 14 

composition for both fresh and spent catalysts. The SEM apparatus uses a NordlysS camera which is able 15 

to produce images with minimal geometric distortion at a resolution of 1344x1024 pixels. The SEM 16 

captures adjusted angle from 15°-130° upon a 50x50 mm stage. The scanned samples were coated with 17 

gold before being introduced to the microscope chamber. The external morphology of the samples was 18 

recorded in the range of 1 µm up to 100 µm and a two-dimensional image was displayed on the computer 19 

screen using INCA software. 20 

 21 

In order to determine the catalyst surface area and average pore size for fresh and spent catalysts, 22 

the samples were analysed by the nitrogen adsorption-desorption method. The measurements were 23 

carried out over approximately 1.4g of catalyst sample using a Micrometrics ASAP 2010 analyser.  24 

Accelerated Surface Area and Porosimetry (ASAP) use the static volumetric technique to determine 25 

surface area using N2physisorption isotherms at -196°C. The volume of gas adsorbed was recorded by 26 

the instrument. Then the experiment data collected was used to calculate the BET surface area and 27 

average pore size[22]. 28 

 29 
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The TPR runs were conducted using a Micrometrics AutoChem 2920 Analyzer on 1g fresh 1 

catalyst ground by pestle and mortar. The catalyst sample was pretreated using argon as preparation gas 2 

at flow rate 50 ml/min for cleaning the entire lines of the apparatus. The sample was pretreated by 3 

increasing the temperature up to 500°C at 10°C/min and held for one hour in order to remove any 4 

moisture from the sample and tube, then the sample was cooled down to ambient temperature.  After 5 

that, 10%H2/90%Ar at flow rate of 50 ml/min was introduced and the temperature was increased to 6 

900°C at 10°C/min to record hydrogen uptake using Thermal Conductivity Detector (TCD) [23]. 7 

 8 

The XRD characterization was performed using a Bruker D8 Advanced Diffractometer. The 9 

catalyst was crushed using a mortar and pestle in order to obtain a powder of the catalyst then it was 10 

scanned and recorded at room temperature in the two theta range from 30° to 90°, with 0.02° step size 11 

and CuKα radiation, λ=0.154 nm and K=0.9. The XRD patterns were assigned according to the XRD 12 

database (PDF-4+2012) provided by International Centre for Diffraction Data (ICDD). 13 

 14 

A TGA was carried out using a NETZSCH TG 209 F1 instrument [24]. The mass of the used 15 

catalyst was monitored against the programmed temperature in order to study the mass changes of carbon 16 

formed on the used catalyst [25].The amount of carbon formation on the catalyst after the reaction for all 17 

operated catalysts at 225-325°C and S/C (steam to carbon ratio) of 1.7 was achieved by introducing air 18 

(50 ml/min) into 20 mg of the spent sample and heating the sample from 25°C to 900°C at a ramp rate 19 

of 10°C/min. Then, the catalyst selectivity for solid carbon (SelC) was estimated as shown in Eq. 4.  20 

 21 

inOHCH

carbon
C

n

n
Sel

,3

100(%)   
 (Eq. 4) 

)(molispeciesfordurationreactionformolestotalisnWhere i . 22 

 23 

2.3 Catalytic reactivity test 24 

The methanol steam reforming reaction was investigated in terms of reaction conditions, fuel 25 

conversion and the amount of H2, CO2,CO and CH4 produced. Fig. 1 presents the experimental rig used 26 

for the current study. The rig consists of three modules; the feed, reactor and gas analysis modules. The 27 

feeding module is composed of a Cole-palmer EW-74930-05 series one pump which can supply water-28 
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methanol premix to the vaporization zone and reactor. A vaporizer constructed from trace heating tape 1 

(OMEGA FGR-100) wrapped around the feed pipe is used to generate steam at 110°C, the temperature 2 

of which was controlled using a West 2300 PID controller. Digital Brooks mass flow controllers were 3 

used to control the flow rate of the various gases fed to the reactor during the catalytic tests. The reactor 4 

module consists of a high temperature furnace (Severn Thermal Solutions Ltd.). Inside the furnace, the 5 

fixed bed reactor was constructed of stainless steel tube (316L) with inner diameter 10.9 mm, wall 6 

thickness 0.89 mm and tube length of 395 mm. 3g catalyst was packed into the reactor and the void space 7 

above and below was filled with glass beads; the catalyst bed height was 50mm. The temperature of the 8 

reactor was measured using a K type thermocouple fixed near the centre of the bed. The reformate stream 9 

at the outlet of the reactor was cooled before proceeding for gas analysis. Therefore, a condenser 10 

facilitated by ice cubes in a bath surrounding a coiled section of the reactor outlet pipe at a temperature 11 

of -2°C was used. After cooling, the unreacted liquid was separated from gaseous stream in a specially 12 

designed gas-liquid separator unit. The various gases generated in the reaction were analysed using a 13 

Refinery Gas Analyzer (RGA). The reformate gases were sampled using an online connection to Agilent 14 

7890A model gas analyzer. The gas sample duration was five minutes before the generated gas was 15 

withdrawn out to the vent. 16 

 17 

 18 

 19 

Fig. 1.Experimental test rig flow sheet diagram. 20 
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 1 

Before the reaction commenced, the system was purged with N2 for five minutes to remove the air 2 

from the pipes and reactor bed. Then, hydrogen at flow rate of 10 ml/min was introduced to reduce the 3 

catalyst at its reduction temperature determined from TPR (Fig.6), the TPR profile revealed that 10%Cu 4 

could be reduced at 250°C, 10%Ni at 650°C, 7%Cu-3%Ni at 350°C, 5%Cu-5%Ni at 380°C and 7%Ni-5 

3%Cu at 425°C. The reduction process was carried out by raising the temperature to its target point at a 6 

rate of 5°C/min and maintaining it for 30 minutes in hydrogen flow before switching to pure N2 for 7 

purging. Methanol steam reforming was carried out at temperatures of 225, 250, 275, 300 and 325°C in 8 

order to study the catalyst reactivity and methanol conversion. Distilled water mixed with pure methanol 9 

(99.99%) in a specific mole ratio of 1.7 was injected using the pump at constant flow rate of 0.06 ml/min. 10 

Then, the reactor was left for one hour in order for the temperature to stabilize under the reaction 11 

conditions. Once stable operation was achieved, samples were withdrawn for gas analysis, which was 12 

repeated every 15 minutes and recorded for 3 hours run duration of the catalyst reactivity test. The output 13 

flow rate was measured manually using bubble flow meter and stopwatch to calculate the flow rate of 14 

reformate.  15 

In order to study conversions and products yields; an elemental analysis (carbon and hydrogen 16 

balance) using reactor exit concentrations of CO, CO2, CH4 and H2 and the inlet flow of methanol was 17 

performed. The unmeasured amount of H2O was calculated. The carbon balance Eq. 5 contains two 18 

unknowns, dryoutn ,
 , outOHCHn ,3

 . 19 
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(Eq. 5) 

 

where, in  and out subscriptsdenote relevant mol entering or leaving the reaction. 20 

The hydrogen balance analysis was performed as shown in Eq. 6. Hydrogen entering the 21 

reaction from water and methanol equals the hydrogen leaving the reaction.  The Eq. 6 contains three 22 

unknowns, dryoutn ,
 , outOHn ,2

 and outOHCHn ,3
  23 
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From the above elemental analysis, the unknown dryoutn ,
 was measured in the experiment from bubble 1 

meter after water condensation, outOHCHn ,3
 and outOHn ,2

  were calculated.     2 

The conversions for methanol and water were obtained by Eq.7-8: 3 
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(Eq. 7) 

 

(Eq. 8) 

The molar flow rates of products from the reaction were calculated by:   4 

dryoutiouti nyn ,,
   

(Eq. 9) 

The products yields for hydrogen, carbon dioxide and carbon monoxide were obtained in mol/min per 5 

mol/min of methanol as shown in Eq.10-12:   6 

inOHCH
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n
yieldH

,

,

2

3

2




  (Eq. 10) 
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3. Results and Discussion  8 

3.1 Catalytic reactivity test 9 
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The catalytic reactivity measurement was performed over a temperature range of 225-325°C, with 1 

the S/C ratio of 1.7 and liquid hourly space velocity of 0.77h-1. The methanol and water conversions are 2 

displayed in Fig. 2. The bimetallic catalyst revealed a lower water conversion than 10%Cu catalyst at all 3 

operating temperatures and showed a superior methanol conversion at 300-325°C. For 7%Cu-3%Ni 4 

catalyst, the methanol conversion decreased from 94% at 225°C to 90% at 275°C, then it showed an 5 

increase up to 98.5% at 325°C. The 7%Cu-3%Ni catalyst revealed a slight increase in water conversion 6 

within 225-275°C then it decreased rapidly within 300-325°C. The slight increase in water consumption 7 

indicates that methanol steam reforming is a part of the reaction. However, the water consumption was 8 

less than in 10%Cu catalyst for all temperatures which explains the existence of decomposition reaction 9 

as explained later from the amount of CO produced. Both 5%Cu-5%Ni and 3%Cu-7%Ni catalysts 10 

showed an increase in methanol conversion with increasing the reaction temperature (87.6%-97.8% for 11 

5%Cu-5%Ni and 76.8-95.9% for 3%Cu-7%Ni) which is explained by the possible methanol 12 

decomposition reaction that occurs on Ni species in bimetallic catalyst where a lot of CO was observed. 13 

The water consumption for 5%Cu-5%Ni was less than 10%Cu and it decreased with increasing the 14 

reaction temperature. There was no water consumption for 3%Cu-7%Ni, this explains the low methanol 15 

conversion at low reaction temperature (225-250°C) since the methanol decomposition reaction is the 16 

dominant and the conversion increase with increasing the reaction temperature. 17 

 18 

 19 

200 225 250 275 300 325 350

50

60

70

80

90

100

 

 

 10% Cu

 7% Cu - 3% Ni

 5% Cu - 5% Ni

 3% Cu - 7% Ni

 Equilibrium

C
H

3
O

H
 C

o
n

v
e
rs

io
n

 (
%

)

Temperature (
o
C)

a)

 20 
 21 

 22 



10 

 

200 225 250 275 300 325 350

0

10

20

30

40

50

60

70

 

 

 10% Cu

 7% Cu - 3% Ni

 5% Cu - 5% Ni

  3% Cu - 7% Ni

 Equilibrium

W
a
te

r 
c
o

n
v
e
rs

io
n

 (
%

)

Temperature (
o
C)

b)

 1 

Fig. 2. Methanol and water conversion with  S/C of 1.7 for 10%Cu, 7%Cu-3%Ni, 5%Cu-5%Ni and 3%Cu-7%Ni 2 

methanol catalysts: (a) methanol conversion and (b) water conversion 3 

The steam reforming reaction showed that 10%Cu produced the highest amount of hydrogen within 4 

225-300°C compared to other prepared catalysts, as shown in Fig. 3a. It was noticed that adding Ni metal 5 

to the Cu catalyst reduced the amount of hydrogen produced and showing that the bimetallic catalyst is 6 

less selective for hydrogen production than the monometallic Cu catalyst at such an operating 7 

temperature. The hydrogen yield of 2.2 mol/mol-CH3OH was observed for the 5%Cu-5%Ni catalyst at 8 

325°C which is the highest amount for bimetallic catalyst at such temperature. The hydrogen yield was 9 

approximately constant (2.0-2.2 mol/mol-CH3OH) for 7%Cu-3%Ni and 5%Cu-5%Cu catalysts. The 10 

hydrogen yield increased from 1.5 mol/mol-CH3OH at 225°C to 1.8 mol/mol-CH3OH at 325°C for 11 

3%Cu-7%Ni catalyst. More Ni metal in the catalyst made the catalyst less selective to hydrogen as 12 

observed for the 3%Cu-7%Ni catalyst. This confirms that Ni rich catalysts (with more than 5wt.%) are 13 

favourable for the decomposition reaction rather than the steam reforming reaction itself. For bimetallic 14 

catalyst, the decrease in hydrogen amount compared to 10%Cu could be due to the active methanol 15 

decomposition reaction over Ni and the reverse water gas shift reaction affecting the concentration of 16 

hydrogen produced as both reactions are thermodynamically favoured at such operation temperature. 17 

 18 

 19 
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Fig. 3. H2, CO2 and CO yields within 225-325°C and S/C of 1.7 for 10%Cu, 7%Cu-3%Ni, 5%Cu-5%Ni and 3%Cu-2 

7%Ni methanol catalysts: a) H2 yield, b) CO2 yield and c) CO yield. 3 

The carbon oxide yield profiles are presented in Fig. 3b and c as a function of temperature for various 4 

catalysts. The influence of increase the Ni content in the catalyst on reformate yield had shown an 5 

increase in CO and decrease in CO2. It is observed from Fig. 3b that increasing the amount of Ni content 6 

in the catalyst affects in a negative way for CO2 production compared to 10% Cu. The amount of CO2 7 

formed in operated bimetallic catalyst is less than the amount obtained with the monometallic Cu catalyst. 8 

It was also observed that with 10%Cu, 7%Cu-3%Ni, 5%Cu-5%Ni catalysts, the amount of CO2 decreased 9 

when increasing the temperature in the range of 225-325°C. However, the amount of CO2 formed with 10 

3%Cu-7%Ni decreased within 225-275°C and then increased within 300-325°C, this observation is 11 

discussed later. From Fig. 3c, the amount of CO produced increased with the increase of Ni content upon 12 

the catalyst. The trend in CO yield with catalyst type is opposite to the trend of CO2 shown in Fig. 3b. 13 

In order to understand the effect of the Ni content, methanol steam reforming over 10% Ni catalyst 14 

was tested.  The main products over 10% Ni (Table 1) were CO and H2, which were produced from the 15 

methanol decomposition reaction. The formation of a small amount of CO2 is related to the water gas 16 

shift reaction. The methanol steam reforming over 10%Ni produced a significant amount of CH4 due to 17 

CO and CO2 hydrogenation which was not observed in 10%Cu and bimetallic Ni-Cu catalysts. The 18 

difference between 10%Ni catalyst and 10%Cu catalyst is that the latter one promotes the water gas shift 19 

reaction as observed from the formation of large quantities of CO2 and small quantities of CO in Fig. 3b 20 
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and c, respectively. As a result, the water gas shift reaction equilibrium shifts towards the reactants with 1 

increasing the temperature at which the conversion of CO to CO2 is decreased as observed for 10% Cu 2 

in Fig. 3b. 3 

The bimetallic effect for Ni-Cu catalyst was also compared with the physical mixture of single metal 4 

10%Cu and 10% Ni catalysts (Table 1). The reaction over the physical mixture of single metal 10%Ni 5 

and 10% Cu (Table 1) showed significant formation of CH4 which was not observed for 10% Cu and Ni-6 

Cu catalysts. Copper-based catalysts have good activity for the water gas shift reaction, and have no 7 

methanation activity. The existence of single Ni catalyst in the reactor promotes CH4 formation by CO 8 

and CO2 hydrogenation. The reaction over physical mixture of catalyst showed less CO and more CO2 9 

than the bimetallic catalytic system. This indicates that the 10%Cu catalyst in the physical mixture of 10 

catalyst controls the high activity of the water gas shift reaction. 11 

Table 1. Product yield for methanol reaction for 10%Ni and for physical mixture of single metal 10%Cu and 10%Ni 12 

catalysts. 13 

*Physical mixture of single metal (1.5 g of 10%Cu and 1.5 g of 10%Ni). 14 

 15 

By comparing the carbon oxide yield over monometallic 10%Cu, 10%Ni and physical mixture of 16 

single metals 10%Cu and 10%Ni catalysts, it was observed that the CO amount is strongly dependent on 17 

the Cu content in the bimetallic Ni-Cu catalysts, which affects the water gas shift reaction equilibrium. 18 

The decrease in Cu content with respect to Ni in the catalyst showed an increase in CO formation, 19 

suggesting that the water gas shift reaction moves towards reactants. The increase in Ni content with 20 

respect to Cu on the bimetallic catalyst revealed additional CO derived from the methanol decomposition 21 

reaction. The bimetallic Ni-Cu catalyst did not produce CH4,suggesting an inhibiting effect of Cu 22 

alloying for CO and CO2 hydrogenation on Ni. Hence, that Cu has a low CO dissociation activity where 23 

 Temperature 

(°C) 

Conversion (%) Yield (mol/mol CH3OH) 

CH3OH  H2O H2 CO2 CO  CH4  

10%Ni 325 70.9 15.0 1.47 0.11 0.50 0.10 

10%Ni, 10%Cu* 325 96.1 22.5 2.08 0.71 0.13 0.11 

10%Ni, 10%Cu* 300 91.6 15.3 1.84 0.68 0.14 0.09 

10%Ni ,10%Cu* 275 86.9 27.0 2.03 0.72 0.11 0.03 
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CO remains on the catalyst surface. As a result, the Cu presented in Ni-Cu catalyst prevents the CO 1 

activation on Ni sites in Ni-Cu catalyst. 2 

The reaction activity profile (Fig. 3b and Fig. 3c) for carbon oxide yield for 3%Cu-7%Ni revealed 3 

slightly different trends over 5%Ni-5%Cu and 7%Cu-3%Ni catalysts. The amount of CO2 formed with 4 

3%Cu-7%Ni decreased within 225-275°C then increased at temperatures in the range of 300-325°C. The 5 

Cu promotes the water gas shift reaction at low temperature and the reaction equilibrium moves towards 6 

the reactants by increasing the temperature. Hence, the CO amount will increase. On the other hand, Ni 7 

promotes methanol decomposition reaction and the reaction becomes very operative with increasing the 8 

temperature. Accordingly, it is expected that the amount of CO would increase and CO2 decrease with 9 

increasing the reaction temperature as observed for 5%Ni-5%Cu and 7%Cu-3%Ni catalysts. Indeed, the 10 

reverse water gas shift reaction was found to be active at temperatures of 300-325°C for 7%Cu-3%Ni 11 

and 5%Cu-5%Ni catalysts, evidenced by a drop in water consumption (Fig. 2b.) at these high 12 

temperatures. For 3%Cu-7%Ni catalyst, the Ni rich alloy effect was observed. The Ni-Cu alloy phase is 13 

responsible for balancing the amount of CO with respect to CO2.  14 

In summary, a higher metal content of Ni over Cu has a strong influence upon the amount of CO2 15 

by controlling the dominant reaction paths. When increasing the amount of Ni, the effect of bimetallic 16 

Ni-Cu becomes dominant in the reaction. The decomposition reaction on the metallic phase of Ni-Cu is 17 

responsible for producing a high amount of CO in the products. From the above results, the 18 

decomposition reaction of methanol occurs predominantly on the metallic phase of Ni-Cu and the reverse 19 

water gas shift reaction occurs at the Cu site and increase with increasing the reaction temperature, where 20 

these reactions are the major contributors for the CO production. The decomposition reaction mainly 21 

transforms methanol to CO and H2 (Eq.2) and slow water gas shift reaction converts CO to CO2 (Eq.3), 22 

the existence of the alloy phase of metal and/or metal phase determines CO2 and CO amount. The 23 

increasing Ni metals content had a positive effect on methanol conversion and showed a high methanol 24 

conversion at 300-325°C. The methanol conversion was high for 5%Cu-5%Ni and 7%Cu-3%Ni (98.5%) 25 

at 325°C which could possibly be explained by the active decomposition reaction. The increase of Ni 26 

metals content showed an adverse effect on the amount of hydrogen produced. Increasing the amount of 27 

Ni metals content from 3% to 7% led to a big decrease for CO2 and an increase for CO. It is also noticed 28 

that the bimetallic Ni-Cu catalyst produced negligible amount of CH4. It was validated experimentally 29 
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in this work that performing methanol steam reforming reaction over pure 10%Ni catalyst or over 1 

physical mixture of single metal 10%Ni and 10%Cu catalysts at 325°C and S/C of 1.7 produced a 2 

noticeable amount of CH4 (up to 0.11 mol/mol-CH3OH). The effects of the Ni-Cu alloy phase in the 3 

reaction for all bimetallic catalysts were observed from the negligible amounts of CH4 produced during 4 

the reaction, which means that the alloy phase is responsible for decreasing the hydrogenation effects of 5 

CO or CO2 to produce CH4. 6 

 7 

3.2 Catalyst characterization  8 

3.2.1 SEM Imaging 9 

Fig.4 shows the SEM images for all the prepared catalysts. Fig. 4a presents the Al2O3 support and the 10 

variation in darkness from light grey (low aluminium concentrations) to dark grey (high aluminium 11 

concentrations). Fig.4b presents the catalyst with 10% Cu and the copper species as shaded white patches 12 

(highlighted by a marked blue circle) distributed over a light grey background of Al2O3 support. The 13 

estimated size of particles is 5-15 µm. The SEM image of 10%Ni/Al2O3 catalyst in Fig.4c shows an 14 

irregular distribution of bright white spherical species (highlighted by a marked red circle) upon a dark 15 

grey background of Al2O3 with particle size of 6-12 µm. Fig.4d shows the surface morphology of 7%Cu-16 

3%Ni/Al2O3 catalyst. Copper species (shaded white, highlighted by a marked blue circle) and Ni species 17 

(bright white, highlighted by a marked red circle), the approximate size of species is 6.5 µm. Performing 18 

SEM for 5%Cu-5%Ni shows that both Cu particles (shaded white, highlighted by a marked blue circle) 19 

and Ni particles (bright white, highlighted by a marked red circle) are distributed throughout the light 20 

grey of the Al2O3 support with approximate sizes 4.4-10.9 µm. Agglomerates of larger particle sizes 21 

(highlighted by a marked red circle) are apparent in the 7%Ni-3%Cu sample (Figure 4f) compared to 22 

7%Cu-3%Ni (Figure 4d) and 5%Ni-5%Cu (Figure 4e) samples. Introducing additional Ni to the 23 

bimetallic system caused morphological changes compared to 7%Cu-3%Ni and 5%Ni-5%Cu samples 24 

[26]. This is related to the fact that Ni species normally reveal more agglomerates with increasing Ni 25 

concentration [27]. 26 

 27 

 28 



16 

 

 1 

Fig.4. SEM images of the prepared catalysts: a) Al2O3, b) 10%Cu, c) 10%Ni, d) 7%Cu-3%Ni, e) 5%Cu-5%Ni and 2 

f) 7%Ni-3%Cu. 3 

The morphological appearance of the prepared catalysts post the reaction (10%Cu, 7%Cu-3%Ni, 5%Cu-4 

5%Ni and 3%Cu-7%Ni) operated at 225°C and 325°C and the S/C of 1.7 are shown in Figures 5 and 6, 5 

    

    

    



17 

 

respectively. The SEM images of the used 10%Cu catalyst which had been previously exposed to a 1 

temperature of 225°C during reaction, depicted in Figure 5a, shows a shade of white spots which 2 

correspond to Cu species (highlighted by a marked blue circle) distributed over grey Al2O3 support. Small 3 

agglomerates of particles are apparent on the left side of the image (highlighted by a marked green circle). 4 

The distribution of particles showed uniformity over the support. The SEM image of the used 10%Cu 5 

catalyst reacted at 325°C in Figure 6a showed shade white spots (highlighted by a marked blue circle) 6 

which represent Cu species distributed over shades of grey Al2O3 support but more agglomeration 7 

(highlighted by a marked green circle) have appeared on the catalyst compared to the SEM image of the 8 

used 10%Cu catalyst reacted at 225°C. This would be explained by the fact that increasing the reaction 9 

temperature to 325°C leads to the sintering of copper crystallites, causing coarsening [28]. 10 

 11 

 12 

 13 

Fig.5. SEM images of the used methanol catalysts reacted at 225°C and S/C of 1.7: a) 10%Cu, b) 7%Cu-3%Ni, c) 14 

5%Cu-5%Ni and d) 3%Cu-7%Ni. 15 

 16 

 17 
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 1 

Fig.6. SEM images of the used methanol catalysts reacted at 325°C and S/C of 1.7: a) 10%Cu, b) 7%Cu-3%Ni, c) 2 

5%Cu-5%Ni and d) 3%Cu-7%Ni. 3 

The surface morphology of the used 7%Cu-3%Ni catalyst reacted at 225°C is showed in Figure 5b. 4 

Shades of white spots which represent Cu species (highlighted by a marked blue circle) and bright white 5 

spots which refer to Ni species (highlighted by a marked red circle) are distributed uniformly across the 6 

surface of the aluminium support with small agglomerates of particles appearing on the catalyst surface 7 

(highlighted by a marked green circle). Figure 6b shows the SEM image of the used catalyst operated at 8 

325°C in the reaction, from which it is observed that larger agglomerates of particles appear on the 9 

catalyst surface (highlighted by a marked green circle) compared to 7%Cu-3%Ni reacted at temperature 10 

225°C. 11 

 12 

The SEM image of the used 5%Cu-5%Ni reacted at 225°C in Figure 5c shows shades of white spots 13 

which correspond to Cu species (highlighted by a marked blue circle) and bright white spots which 14 

represent Ni species (highlighted by a marked red circle) distributed across the surface of the Al2O3 15 

support. The SEM image of the used 5%Cu-5%Ni reacted at 325°C is reported in Fig.6c. It is observed 16 

that a uniform distribution of species occurs with smaller agglomerates (highlighted by a marked green 17 
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circle) compared to the used 10%Cu and 7%Cu-3%Ni catalysts reacted at 325°C. However, some cracks 1 

(highlighted by a marked black circle) are visible for the used 5%Cu-5%Ni reacted at 225°C and 325°C. 2 

 3 

The SEM image in Figure 5d for the used 3%Cu-7%Ni reacted at 225°C showed bright white spots which 4 

refer to Ni species (highlighted by a marked red circle) throughout the support with large agglomerates 5 

(highlighted by a marked green circle) and cracks observed on the surface (highlighted by a marked black 6 

circle). From Figure 6d, the used 3%Cu-7%Ni catalyst reacted at 325°C showed large agglomerates of 7 

bright white spots which correspond to Ni species agglomeration (highlighted by a marked green circle). 8 

 9 

3.2.2 BET surface area 10 

The BET surface area for fresh prepared catalyst showed that the surface area ranged from 120 m2/g for 11 

10%Cu to 128 m2/g for 5%Cu-5%Ni catalyst. The surface area of trilobe alumina used as support was 12 

142 m2/g. Impregnated samples resulted in a lower surface area with respect to pure Al2O3 due to pore 13 

blockage during metal deposition. The BET surface area showed that the used catalysts had a lower 14 

surface area than the fresh catalysts as summarized in Table 2. This  15 

behaviour can be explained by the pore-blockage of the support after the reaction. Both temperatures 16 

showed similar results indicating that increasing the reaction temperature from 225°C to 325°C causes 17 

only minor changes to the catalyst surface area. 18 

 19 

Table 2.BET surface area for the fresh and used methanol catalysts reacted at 225°C, 325°C and S/C of 1.7. 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 Surface area (m2/g) 

 fresh  reacted at 

225°C  

reacted at 

325°C  

10%Ni 122 119 117 

10%Cu 120 96 98 

7%Cu-3%Ni 125 94 94 

5%Cu-5%Ni 128 90 89 

3%Cu-7%Ni 125 94 95 
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3.2.3 TPR  1 

The hydrogen uptake for the catalyst reduction is shown in Fig.7. The 10%Cu catalyst is reduced at 2 

250°C. The wide peak at this reduction temperature is attributed to the dispersion of CuO over the Al2O3 3 

support and the amount of hydrogen required reacting with reducible particles. The finding agrees with 4 

that found by Jones and Hagelin [29]. The 10%Ni catalyst revealed multi broad peaks at 400°C and 5 

650°C. Both peaks are attributed to a range of interactions between NiO and the Al2O3 support. The 6 

reduction temperature at 400°C corresponds to weak interaction between NiO and Al2O3 support and the 7 

reduction temperature at 650°C is likely to be related to a strong interaction of NiO and Al2O3[30-32]. 8 

The TPR profile of the bimetallic Ni-Cu catalysts (Fig. 7) shows three hydrogen uptake peaks. The first 9 

obtained peak on 7%Cu-3%Ni and 5%Cu-5%Ni showed high hydrogen uptake compared to 7%Ni-10 

3%Cu. This indicates that a high area of hydrogen uptake peaks is related to the amount of reducible 11 

species of CuO, which increases in samples containing higher percentages of Cu. Therefore, the first 12 

sharp peak is associated with pure CuO and is shifted compared to the monotype Cu catalysts due to 13 

different amounts of Cu loadings and the rate of hydrogen uptake on CuO species. The broad peak in the 14 

middle (350°C for 7%Cu-3%Ni, 380°C for 5%Cu-5%Ni, 425°C for 7%Ni-3%Cu) of the TPR trace for 15 

the bimetallic catalyst can be associated with NiCuO interaction with support which was used to 16 

determine the reduction temperature for the subsequent reaction study. In addition, it can also indicate a 17 

weak interaction of NiO with support. The last peak is related to a strong interaction of NiO with the 18 

support. The difference in the position of reduction peaksreported here is related to the fact that the 19 

temperature of the reduction peaks strongly depend on the particle dimension and the interaction strength 20 

between metal particles and the support[15]. 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 
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 5 

 6 

 7 

Fig.7. TPR for the prepared catalysts. 8 

3.2.4 XRD 9 

The XRD pattern performed for the unused catalyst is shown in Fig.8a. The monotype catalyst suggested 10 

the existence of NiO in the 10%Ni catalyst sample at (2θ = 45°, 60°) with the average crystallite diameter 11 

calculated by Scherrer’s equation (




cos

K
L  ) of 17.8 nm. The monotype catalyst of 10%Cu showed 12 

XRD patterns of CuO spectra at (2θ = 35°,39°,50°,55°,58°,61°,75°) and the average crystallite size of 13 

CuO was 17.9 nm. On the other hand, the bimetallic catalysts indicated the formation of NiO, CuO phases 14 

and NixCu1-xO phase at (2θ = 36°). For instance, the crystallite diameter size of NixCu1-xO was 16.7 nm. 15 

 16 

The XRD patterns for the used catalysts operated at 225°C and 325°C and S/C of 1.7 are shown in Fig.8b 17 

and Fig.8c, respectively. The XRD patterns showed that no metal oxide phase was detected, except for 18 

aluminates related to the support material. The monotype catalyst 10%Cu showed XRD patterns of Cu 19 

metals at 2θ = 44°, 50° and 72° and the average crystallite size of Cu was 18.1 nm. The bimetallic used 20 

catalysts showed patterns related to metallic Ni and metallic Cu and for Ni-Cu. The average crystallite 21 

size of bimetallic catalysts is 16.8 nm at 2θ = 37°. The formation of a Ni-Cu alloy reported in the literature 22 

depends on the amount of Ni contents, indicating the Ni rich alloy or Cu rich alloy catalyst [20, 33]. The 23 

rich Ni alloy phase or rich Cu alloy phase determines the reaction paths. For instance, a dominant 24 

decomposition reaction occurred with 7%Ni-3%Cu over the metallic phase of Ni which was concluded 25 

from the high concentration of CO produced at 225-275°C. However, 7%Cu-3%Ni showed a dominant 26 
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decomposition reaction over the metallic phase of Cu as a large amount of CO was produced at 300-1 

325°C. The XRD patterns for used catalyst operated at 225°C and 325°C showed similar patterns, such 2 

that the effects of reaction temperature on the metal phase cannot be deduced. However, the XRD 3 

patterns displayed less diffuse and sharper patterns for the catalysts reacted at 325°C than 225°C. This 4 

would be possible due to crystallite growth with increasing the reaction temperature.  5 

 6 

 7 

 8 

 9 

 10 

a 
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 4 

 5 

 6 

 7 

Fig. 8.XRD patterns for fresh and used catalysts: a) fresh catalysts, b) used catalysts reacted at 225°C and S/C of 1.7 8 

and c) used catalysts reacted at 325°C and S/C of 1.7. 9 

3.2.5TGA  10 

b 

c 
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Table 3 presents the results of carbon selectivity (Eq.4) for the reacted catalysts. The carbon formation 1 

depends on the catalyst composition and reaction temperature [34]. The bimetallic rich Ni catalyst 2 

(5%Cu-5%Ni and 3%Cu-7%Ni) reacted at temperature 300°C showed less carbon deposition than 3 

10%Cu and 7%Cu-3%Ni. On other hand, 7%Cu-3%Ni and 3%Cu-7%Ni showed less carbon deposition 4 

than 10%Cu reacted at temperature 250°C. The 10%Cu catalyst produced less carbon than 7%Cu-3%Ni 5 

and 5%Cu-5%Ni reacted at temperature 225°C. It was found that the dominant reaction over Ni metals 6 

is methanol decomposition reaction. Therefore, an abundance of CO was noticed in the reformate gases 7 

with Ni containing catalysts compared to the gas composition from the 10%Cu catalyst. Previous work 8 

in an alloying effects claimed that Cu surface energy is lower compared with Ni and a small size 9 

mismatch between Cu and Ni allows Cu atoms to segregate on the Ni-Cu surface causing the Ni sites 10 

responsible for carbon formation [35]. The Cu species doesn’t easily dissociate CO at low temperature 11 

[20, 36-38]. The current results of carbon formation can’t deduce whether the Cu alloying with Ni has 12 

any strong evidence that carbon selectivity can be reduced during methanol steam reforming for current 13 

operation conditions.   14 

Table 3. Carbon selectivity on the used methanol catalysts reacted at 225-325°C and S/C of 1.7. 15 

 16 

 10%Cu 7%Cu-3%Ni 5%Cu-5%Ni 3%Cu-7%Ni 

T (°C) SelC (%) SelC (%) SelC (%) SelC (%) 

225 0.3 

1.4 

0.8 

1.1 

1.8 

0.9 

0.2 

0.8 

1.4 

1.3 

0.6 

1.1 

0.8 

0.3 

2.3 

0.3 

0.3 

1.4 

0.3 

1.2 

250 

275 

300 

325 

 17 

 18 

4. Conclusions  19 

The increasing Ni metals content had a positive effect on methanol conversion and showed a high 20 

methanol conversion at 300-325°C. The methanol conversion was high for 5%Cu-5%Ni and 7%Cu-21 

3%Ni (98.5%) at 325°C which could possibly be explained by the active decomposition reaction. The 22 

current work also revealed that bimetallic catalytic performance affected the reformate compositions 23 

compared to the monometallic catalysts trying to investigate if the metallic and alloy phase of metals will 24 

affect the catalytic performance toward the syngas production in methanol steam reforming process. The 25 

influence of increase the Ni content had shown an increase in CO and decrease in CO2 yields. This 26 
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confirmed that Ni rich catalysts (more than 5wt%) is favourable for methanol decomposition reaction. 1 

The bimetallic catalyst did not produce any CH4, revealing that Cu alloying in Ni catalyst had an 2 

inhibiting effect for CO and/or CO2 hydrogenation. The results showed that Cu-based catalysts had good 3 

activity for the water gas shift reaction, and had no methanation activity. The existence of single Ni 4 

catalyst in the reactor promoted CH4 formation by CO and CO2 hydrogenation. The reaction over physical 5 

mixture of catalyst showed less CO and more CO2 than the bimetallic catalytic system. This indicated 6 

that the 10 wt % Cu catalyst in the physical mixture of catalyst controls the high activity of the water gas 7 

shift reaction. The current results of carbon formation can’t deduce whether the Cu alloying with Ni has 8 

any strong evidence that carbon selectivity can be reduced during methanol steam reforming for current 9 

operation conditions. 10 
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