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In this research, Glass Fibres (GL), Kraft pulp Fibres (KF) and Nano Silica Fume (NSF) were 23 

used to produce Cement Composite Board (CCB). 24 

Fifteen groups of mix proportions were produced to investigate the effects of fibre content 25 

and size along with the effect of NSF on interaction, bonding and mechanical properties of 26 

CCB. Density, Water Absorption, Moisture Movement, Flexural Strength test and Scanning 27 

Electron Microscopy observations were conducted. The results showed that some mixes could 28 

meet the standard requirements and also the inclusion of GL and NSF into the mix containing 29 

KF (extracted from waste cardboard) could enhance the characteristics of CCB. 30 

 31 

Keywords: cement composite, Cement Board, Glass fibre, Nano Silica Fume, waste 32 

cardboard 33 

1 Introduction 34 

Cementitious composites are typically characterised as being brittle with low tensile strength 35 

and strain capacities. Fibres are introduced into the matrix to overcome these weaknesses 36 

[1,2]. The effectiveness of the fibre reinforcement depends on a number of factors, such as 37 

mix preparation process, size, type, geometry, volume and dispersion models of fibres [3,4]. 38 

Reinforcement fibres not only improve bearing capacity of CCB but also increase fracture 39 

toughness of specimens by decreasing the concentrated applied stresses acting on the tip of 40 

cracks [5,6].  41 

Typical CCBs consist of two or more types of fibres. Some fibres are used to enhance the 42 

production process, other may have an important role in increasing the bearing capacity and 43 

fracture toughness [3-5]. Thus, the combination of fibres and materials can offer more 44 

benefits than the individual entities. 45 
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Different types of fibres from natural and synthetic sources have been investigated for their 46 

suitability in CCB. Cellulose fibres have increasing popularity over the past two decades, due 47 

to their renewability, accessibility, low-cost production process, mechanical property, and 48 

compatibility with hydrated cement media [1,6-8].  49 

The interfacial bond between fibres and hydrated cementitious material has an important role 50 

in increasing the bearing capacity of CCB. It is essential to use appropriate fibres and accurate 51 

proportion of materials in the mix design to achieve the best efficiency of the product. For 52 

example, steel fibres have high tensile strength but are weak in interfacial bonding with 53 

hydrated cement products. So, they pull out from the matrix in the first stages of loading 54 

before reaching their maximum tensile strength. Several methods have been suggested to 55 

increase the interfacial bond such as applying additives, fibre treatment and decreasing the 56 

fibre-cement gaps using the vacuum/compressive pressure in the production of CCBs 57 

[3,6,9,10]. 58 

Concerns have been raised regarding the use of CCBs in roofing and cladding applications, 59 

mainly due to long-term exposure to aggressive environments. The studies showed that CCBs 60 

containing cellulose fibres solely are more sensitive to aggressive ambient conditions and may 61 

undergo a reduction in flexural strength and fracture toughness over time. This is associated 62 

with a decrease in bearing capacity of CCBs, due to a combination of deterioration of cellulose 63 

fibres in the high alkaline environment, fibre mineralisation and volume increasing due to their 64 

high water absorption. The high alkaline matrix could easily decompose the lignin and 65 

hemicellulose phase that linked individual filaments and resulting in an inhibitory effect on 66 

hydration of cement and weakness in fibre structure. In addition, cellulose volume variation 67 

could create cracks in the interfacial zone leading to a decrease in fibre pull out strength 68 

[1,5,11,12]. 69 
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To provide a less aggressive environment for cellulose fibres, the concentration of hydroxyl in 70 

the pore solution needs to be reduced. This could be done by introducing Sulpho Aluminate, 71 

Metakaolin or micro silica into the mix [13,14]. The addition of pozzolans such as Nano Silica 72 

Fume (NSF) in the cement composite reinforced by natural and polymeric fibres could increase 73 

the flexural behaviour of samples [3,11,15].    74 

Previous research carried out by the first and second author has shown that the negative 75 

effects of lignocellulosic particles cement interaction can be controlled by NSF to enhance 76 

durability and flexural strength of CCB [3,5].  77 

Following concerns relating to asbestos hazard on human health, in the early 1970s, a global 78 

movement was established to remove asbestos fibres from a wide range of products such as 79 

asbestos-cement board. One of the most important synthetic fibres used as a replacement for 80 

asbestos fibres in cement board production is PVA (Poly Vinyl Alcohol) which can be relatively 81 

expensive. It should be taken into account that besides monopolising PVA production 82 

technology by several companies, difficulty in accessibility and the high cost of PVA are other 83 

adverse factors to using those fibres in some developing countries [1,4,16].  84 

In this research, an attempt has been made to investigate the feasibility of producing CCB 85 

using a combination of GLs, KFs and NSF, which are relatively cost effective and also readily 86 

accessible in most countries. 87 

GL has a number of advantageous such as low cost, high tensile strength, and high chemical 88 

resistance. It has already been used in cement mortar and demonstrated to have significantly 89 

improved the tensile strength and ductility characteristics.  90 

The use of normal type GLs incorporated to CCB has shown poor durability due to the 91 

following; 92 

i) Hydroxyl ions resulted from cement hydration can cause corrosion on the fibres. 93 
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ii) Precipitation of calcium hydroxide within the GLs, can change the microstructure of 94 

fibres from flexible to rigid. This may change the mode of failure from fibre pull out to 95 

fibre fracture. 96 

iii) Densify the interfacial zone decrease fibres compliance, consequently the non-uniform 97 

tensile stress induced by flexural loading would disrupt fibre-bridging effect in cracks. 98 

To overcome those above-mentioned problems, it has been suggested to apply “alkali 99 

resistant GLs” instead of normal GLs in production of CCB [4,17]. In other words, only alkali 100 

resistant GL should be used in cement composite, otherwise, due to chemical corrosion of 101 

normal GLs in alkaline media, CCBs can become brittle and weaker through the cement 102 

hydration process [18,19]. Currently, alkali resistant GL which is highly resistant to alkalis, 103 

acids and corrosion have been developed for reinforcing of cement composite. 104 

The use of Nano silica fume in CCB has already been investigated by authors [3] and the results 105 

showed that NSF could increase the flexural strength, bending strength and fracture 106 

toughness of CCB reinforced by cellulose fibres.   107 

In this research, the characteristics of CCB reinforced by Kraft pulp fibres extracted from waste 108 

cardboard and alkali resistant GL incorporating NSF have been investigated. 109 

2 Experimental Methodology 110 

2.1 Materials  111 

The materials used in this research include: 112 

 Portland cement: Ordinary Portland cement Type I, satisfying the requirement of BS 113 

EN 197-1: 2000. 114 
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 Kraft pulp fibres extracted from waste cardboard and refined by using laboratory 115 

refiner equipment. 116 

 Nano Silica Fume (Grade 999): particle size distribution, physical and chemical 117 

properties of Nano silica have been illustrated in Table1 118 

Table 1: Physical and chemical properties of Nano silica fume. 119 

Colour White 

Melting Point (oC) Approx. 1650 

Solubility (Water) Poorly water soluble 

Specific Gravity (Water = 1.0) 2.25 

Bulk Density (kg/m3) 95-105 

Specific Surface (m2/g) 50-60 

pH Value 3.6-4.5 

 120 

 Glass Fibres: GL has a three-dimensional structure and is considered as isotropic 121 

materials comprises of a long network of oxygen, silicon and other atoms arranged in 122 

a random fashion. The GLs provided for this research have the non-crystalline 123 

structure, that is, amorphous, with no distinct shape and classed as alkali resistant 124 

glass fibres. They were used in 3mm and 6 mm lengths. The properties of Kraft fibres 125 

extracted from waste cardboard and GL are given in Table 2. 126 

 127 

Table 2: Physical properties of the fibres. 128 
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 129 

 130 

 131 

 132 

 133 

 134 

 135 

 136 

 137 

 138 

 139 

 140 

 141 

 142 

 143 

* Average length obtained from 50 fibres. 144 

**Pulp fibres have ribbon shapes (not cylindrical shapes) with 20-35 micron 145 

width. 146 

It should be noted that due to the short length of fibres, measuring the tensile strength was not 147 

possible with existing equipment. 148 

The freeness of pulp is designed to give a measure of the rate at which a dilute suspension of 149 

pulp (3 g of pulp in 1 L of water) may be drained. The freeness, or the drainage time of pulp is 150 

Glass fibres 

Fibre Length (mm) 3 & 6 

Filament Diameter (µm) 14-16 

Size Content (%) – ISO 1887: 1980 1.0 

Moisture (%) – ISO 3344: 1977  0.35 max. 

Modulus of Elasticity (GPa) 70-80 

High dispersion (filaments per kg) 220 * 106 

Kraft fibres 

*Average length (mm) 1.1 

**Width (Micron)  20-35 

Specific gravity  (measured by helium pycnometer) 
1.5 

Tensile strength Not specified 

Freeness  580 
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related to the surface conditions and swelling of the fibres. Drainage of unrefined pulp, which 151 

is measured as freeness, can give an indication of:  152 

 The fibre length. In which, the long fibres have more freeness compared to short 153 

fibres. 154 

 Damage to fibres during pulping, bleaching or drying. In which, short fibres or fines 155 

that are produced during the pulping operation reduce pulp freeness. 156 

 The refining energy required to achieve certain slowness during stock preparation.  157 

In this study, the freeness test was carried out according to AS/NZS 1301.206s:2002 standard. 158 

Freeness is commonly called Canadian Standard Freeness (CSF) because it has been based on 159 

the test developed by the Canadian Pulp and Paper Research Institute. For the current study, 160 

CSF measured for KFs was around 560-600. 161 

2.2 Production of the specimens 162 

For each mix code, the slurry contains water, cementitious materials and fibres with a high 163 

water/cement ratio (i.e. around 3 by the weight of cement) was prepared in a mixer.   164 

Then it is poured into a mould and subjected to vacuum and compressive stress of 7 kN/m2 to 165 

form a flat sheet. After the slurry dewatering process, pad (dimensions 180 × 82 × 7 mm) was 166 

demoulded and cured for 21 days at 95% of relative humidity and air cured in the laboratory 167 

for 7 days at a temperature of 20 ± 2 °C. The cured specimens were subsequently tested. 168 

 169 
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2.3 Tests  170 

The following subsections outline the tests undertaken in accordance with 1) BS EN 494:2004 171 

+A3:2007 (Fibre-cement profiled sheets and fittings – Product specification and test methods) 172 

and 2) BS EN 12467:2004 (Fibre-cement flat sheets – Product specification and test methods). 173 

2.3.1 Density 174 

To measure the density of the specimens, a routine laboratory method was used. Initially the 175 

mass of the specimens placed in laboratory environment (20±2 °C and 40%-50% RH) for one 176 

day was measured. Then to find the volume of the specimens, they were submerged into the 177 

water and the displaced water was measured. The result of mass divided by volume was 178 

considered as density of the specimens.  179 

2.3.2 Water Absorption 180 

Water absorption was conducted in accordance with ASTM C1186-08 (2012) with reference 181 

to ASTM C1185-08 (2012). In this test, to meet the standard requirement, the specimens are 182 

dried in an oven at 90 ±2 °C until constant weight was achieved, then allowed to cool to room 183 

temperature and are weighted.  The specimen is then submerged in potable water at 20 ± 4°C 184 

for 48 ± 8 hours. Then the specimen is removed and excess water wiped from the surfaces 185 

using a damp cloth and weighed again. The weight increased due to submerging the specimen 186 

in water is expressed in percentage as the water absorption. 187 

2.3.3 Moisture Movement 188 

Moisture movement was conducted in accordance with ASTM C1186-08 (2012) with reference 189 

to ASTM C1185-08 (2012). In this test, the linear deviation in length of the specimen due to 190 

moisture absorbed from the surrounding environment is determined. To find the moisture 191 

movement according to the standard procedure, the difference between the length of the 192 
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specimen at Relative Humidity (RH) of 90% and 30%, needs to be divided by the length at 30% 193 

RH and the result is expressed in percentage.  194 

 195 

2.3.4 Flexural strength 196 

Flexural behaviour of the specimens under a three-point load system according to BS 197 

EN12467:2004. The specimens were subjected to three-point loading flexural test to failure 198 

point which must occur between 30 and 60 seconds of loading time. 199 

 200 

2.3.5 SEM 201 

The JEOL JSM-6060 LV SEM machine was used for this study. The samples were mounted on 202 

stubs and were gold coated using the sputter coater to enhance conductivity. The samples 203 

were then placed in the vacuum chamber of the SEM machine and images were captured with 204 

different magnifications for the selected specimens. To obtain improved views of the fibres, 205 

some images were captured after tilting the samples 75 degrees in relation to the horizontal 206 

plane. In the observation, microstructure of fibres, fibre–cement interfacial areas and fibre 207 

bonding were studied. 208 

 209 

2.4 Fibre preparation and mix design 210 

The waste cardboard was shredded into strips 50×5 mm in size. They were then soaked in 211 

water and rinsed periodically for two days. The saturated pieces of cardboard were then 212 

refined using a laboratory refiner until a uniform Kraft pulp fibres were obtained.  213 
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The mix design plan is illustrated in Table 3. A broad range of fibre content, fibre size and NSF 214 

content has been investigated in this research. As shown, fifteen groups of mixes were 215 

developed to investigate; 216 

1. The effect of the size (3 mm and 6 mm) and fibre content (1%, 2% and  3% by the weight of 217 

the cementitious materials). 218 

2. The effect of NSF content (1%, 2% and 3%) as a replacement for cement on the specimens 219 

reinforced by 3 mm and 6 mm GLs. 220 

3. The effect of the combination of 3 mm and 6 mm GL with and without NSF. 221 

In all mixes, the amount of water was 300 grams which leads to water cementitious materials 222 

ratio of 3 for making the slurry. In Table 3, the amount of Kraft pulp fibres extracted from 223 

waste materials is kept constant (i.e. 4 grams) for all mixes which is 4% by the weight of 224 

cementitious materials. This amount of KF has already been studied by the authors as an 225 

optimum quantity when in combined with polymeric fibres [2,16]. 226 

In Table 3, the following symbols are defined: 227 

K: Kraft pulp fibres extracted from waste cardboard GL: Glass fibres (alkali resistant type) 228 

N: Nano silica fume 229 

 230 

Table 3: Details of mix proportions for groups of mix design. 231 

Mi

x 

Mix Code N 

(g) 

Cement 

(g) 

GL             3-

mm (g) 

GL           

6-mm (g) 

1 K4 (Control) 0 100 0 0 

2 K4-GL1-3mm 0 100 1 0 
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 232 

 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 

 241 

 242 

 243 

The 244 

number after the symbol shows the percentage of the materials by the cement weight. For 245 

example, K4-GL1-3mm-GL1-6mm-N2 means all the specimens of this group contain 4% Kraft 246 

pulp fibre, 1% glass fibre of 3 mm length, 1% glass fibre of 6 mm length and 2% by weight 247 

Nano silica fume.  248 

Six replicate specimens were manufactured for each group, allowing multiple tests to be done 249 

and averages taken. The first row of Table 3 (i.e. K4) belongs to the control mix that was 250 

produced only by Kraft pulp fibres, cement and water. 251 

3 K4-GL2-3mm 0 100 2 0 

4 K4-GL3-3mm 0 100 3 0 

5 K4-GL1-6mm 0 100 0 1 

6 K4-GL2-6mm 0 100 0 2 

7 K4-GL3-6mm 0 100 0 3 

8 K4-GL2-3mm-N1 1 99 1 0 

9 K4-GL2-3mm-N2 2 98 2 0 

10 K4-GL2-3mm-N3 3 97 3 0 

11 K4-GL1-6mm-N1 1 99 0 1 

12 K4-GL1-6mm-N2 2 98 0 2 

13 K4-GL1-6mm-N3 3 97 0 3 

14 K4-GL1-3mm-GL1-6mm 0 100 1 1 

15 K4-GL1-3mm-GL1-6mm-

N2 

2 98 1 1 
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It should be noted that during the manufacturing procedures when the slurry was being 252 

mixed, it was observed that the specimens containing GL greater than 3% fibre content, the 253 

fibres were clustered and clumped hence disrupts the uniformity of fibres throughout the 254 

matrix. For this reason, the highest fibre content that was introduced during the slurry mixing 255 

was limited to 3% for glass fibres, as shown in Table 3. 256 

The mix design shown in Table 3 is a part of the larger table including more than thirty mixes 257 

which have been made and tested in this research but after flexural testing of the specimens, 258 

it was revealed that flexural strength for many of mixes was less than 6 MPa. So, in this paper, 259 

only the results of some mixes which had a flexural strength greater than 6 MPa along with 260 

control group are analysed and discussed.  For instance, the primary results showed that when 261 

the length of GL is 3 mm, the optimum fibre content to gain the highest flexural strength is 2% 262 

while for 6 mm length, the corresponding value is 1%. This will be discussed later in other 263 

sections. For this reason in Table 3, the effect of NSF on improving the flexural strength of the 264 

specimens reinforced by 2%  and 1% of 3 mm and 6 mm GL, respectively was chosen to be 265 

analysed in this paper. 266 

 267 

3 Results, Analysis and Discussion  268 

Results have been obtained for density, water absorption, moisture movement, flexural 269 

behaviour and SEM based on the relevant standards. To show the test precision, error bars 270 

are shown on all bar charts (i.e Fig.1 to 4). 271 

3.1 Density 272 

Fig.1 illustrates the average density of the specimens of each group at age 28-day. 273 
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 274 

  275 

 276 

Fig.1: Average density of the specimens in each group. 277 

 278 

As observed when GL is added to the mix, the density is relatively reduced comparing to the 279 

control group (K4). This may be associated with hydrophobic nature of the GLs.  Whereas the 280 

GLs have little or no affinity for water, they cannot absorb water like Kraft pulp fibres which 281 

have hydrophilic nature. 282 

Accurate observation of the specimens revealed that GLs are visible on the surface of the 283 

specimens reinforced by 3% GLs. This showed that incorporation of 3% GLs into the mix is too 284 

high to be embedded properly in the mix resulting in non-uniform dispersion GLs into the mix 285 

and higher concentrations being present at the surface that leads to further reduction in 286 

density.  287 

As seen, embedding NSF into the mix causes an increase in density for all groups reinforced 288 

by 3 mm and 6 mm GL’s. NSF comprises of amorphous (non-crystalline) silicon dioxide (SiO2), 289 
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with very small discrete particles. Large surface area due to very small size particles along with 290 

high SiO2 content makes NSF as a reactive pozzolan which enhances hydration kinetic by 291 

increasing the amount of beneficial cement hydration products. NSF reacts with calcium 292 

hydroxide crystals formed from the hydration of calcium silicates increasing C–S–H nucleation 293 

which leads to the denser microstructure of the matrix. It has been proved that NSF particles 294 

act as an activator to promote pozzolanic reactions and filler, thus using the appropriate 295 

proportion of NSF can fill the voids containing air and moisture resulting further density for 296 

the matrix. 297 

As presented in Fig.1, in spite of initial prediction, with increasing the NSF content from 2% to 298 

3%, density of the specimens decreases. This may associate with the optimum percentage of 299 

NSF. If NSF is used more than 2%, it could have different effects on the matrix, including; 1) 300 

the amount of small particles needed for filling the voids would be more than enough hence 301 

it may disrupt the appropriate grading in particle size distribution to reach the highest density. 302 

2) The amount of NSF required for consuming the calcium hydroxide is more than enough 303 

hence the extra NSF will not participate in chemical reactions or filling the voids, so the density 304 

will not increase.   305 

In this research, variations of density for CCB has been investigated to provide an additional 306 

and complementary parameter to determine any links between the density and other 307 

observations. 308 

3.2 Water Absorption 309 

Water Absorption (WA) is considered as a key feature for the long life durability of CCBs. Most 310 

applications of CCBs require as little WA as possible because it affects the rate of degradation 311 

severely.  312 

The average WA resulted from each group is presented in Fig. 2. 313 
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 314 

 315 

Fig.2: The results of average water absorption of the specimens in each group. 316 

 317 

As illustrated in Fig. 2, with increasing the fibre content (3 mm or 6 mm lengths) into the mix 318 

WA increases. With the addition of GLs, the amount of pores within the specimen increases 319 

resulting in more space to enter the water to the specimen. It should be noted that the 320 

mechanism of moisture absorption is different with water absorption in CCB. Moisture 321 

absorption is largely based on capillary action in which the humidity and moisture of the 322 

environment could be sucked into the specimens through tiny pores while in water 323 

absorption, the molecules of water enter and penetrate into the larger voids due to the 324 

hydrostatic pressure of water, rather than sucked by smaller capillaries. In other words, water 325 

absorption could be more susceptible due to water pressure rather than absorbing water due 326 

to capillary action.  327 
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As presented in Fig. 2, the specimens containing 6 mm GL have a slightly greater affinity for 328 

water absorption in comparison to the specimens composed of 3 mm fibres. This could be 329 

associated to this fact that the larger 6 mm fibres could create larger pores resulting further 330 

porosity.  331 

To investigate the effects of NSF on the characteristics of CCB both “fresh” and “hardened” 332 

cement composite should be studied considering the following: 333 

1- NSF could accelerate the hydration of tricalcium silicate (C3S) and C-S-H gel 334 

formation. It also aids to remove the non-hydrogen bond OH groups [3,15]. 335 

2- NSF has important effects on the air content in fresh state and on the porosity in the 336 

hardened state of the cement composite. Incorporating NSF into the mix, the air 337 

content of fresh cement composite increases. This phenomenon affects the viscosity 338 

of mix so that with increasing NSF, the viscosity of mix significantly increases 339 

because the fine particles of NSF decrease or stop escaping the entrapped air from 340 

the fresh mix. In hardened cement composite, NSF decreases the porosity because 341 

the pores (i.e. entrapped air) have been surrounded and disjointed by NSF. This 342 

finding is consistent with other carried out research [20,21]. 343 

3- Each cement composite mix has a specific capacity of NSF to reach the minimum 344 

porosity. As outlined, only some of NSF reacts with hydrated cement products and 345 

the rest fills the pores. By filling the pores, both within hydrated cement products 346 

and the fibre-cement interfacial zone are filled, the grading of all mixed content is 347 

improved and hence the porosity decreases. If the amount of NSF is more than 348 

enough for filling the gaps, the extra NSF particles disrupt the grading of mix content 349 

resulting in porosity rising.    350 
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Considering those aforementioned effects, an optimal amount of NSF could provide the 351 

lowest porosity for the hardened composite [19,21,22]. 352 

As seen in Fig. 2, two different tendencies due to incorporating NSF can be observed in 353 

hardened cement composite; increasing the small amount of NSF (i.e. 1%) leads to a decrease 354 

in the porosity while the high amount of NSF (i.e. 3%) leads an increase in the porosity. As 355 

observed, 2% NSF could be considered as a critical value (optimum proportion) resulting in 356 

minimum porosity and minimum water absorption.  Referring back to Fig.1, this statement is 357 

consistent with the observation that the highest density belongs to the group composed of 358 

2% NSF. 359 

 360 

3.3 Moisture Movement  361 

This test is used to check the appropriateness of the CCB that are exposed to moisture and 362 

high humidity. The average moisture movement for all groups is shown in Fig. 3. 363 

 364 
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 365 

366 

 Fig.3: The results of moisture movement for all groups. 367 

 368 

Fig. 3 shows that the amount of moisture movement for all groups is less than 0.20% which is 369 

the extremely small amount. CCB is a porous cementitious material containing cellulose fibres 370 

(Kraft pulp) that can absorb moisture and thus increase in size. This could be important for 371 

CCB depends on application purpose and should be in the permitted tolerance range. For most 372 

of the applications such as cladding and external walls, all groups fall in the permitted range 373 

of tolerances. 374 

The inclusion of varying proportions and lengths of hydrophobic GLs in the mix can reduce the 375 

moisture movement for all groups compared to control group (K4). However, with increasing 376 

GL content, the moisture movement increases too. As outlined in water absorption, GL can 377 

increased porosity either in the form of small capillaries or creation of larger voids within the 378 

specimen. So, when the moisture is drawn in due to any reason such as capillary action, the 379 

0.000

0.050

0.100

0.150

0.200

0.250
M

o
is

tu
re

 M
o

ve
m

e
n

t 
(%

)

Group code



20 

 

Kraft cellulose fibres absorb the moisture and swell leading to an increase in the size of the 380 

specimen. 381 

The effect of NSL on moisture movement is consistent with the results already outlined in 382 

water absorption and density sections with minor differences. As NSF is introduced into the 383 

mix, the density and water absorption are affected but both of them show an optimum of 2% 384 

NSF to achieve the highest density and the lowest water absorption. As depicted in Fig. 3 with 385 

increasing NSF, MM decreases continuously. This may be attributed to the capillary action in 386 

which with increasing NSF, the capillary pores that could be considered as pathways for tiny 387 

molecules of humidity, are blocked by NSF, consequently, MM decreases. Similar behaviour 388 

has already been reported by other researchers [21,22]. The fewer voids constrict the fibres 389 

and inhibit their ability to absorb water. The least amount of moisture movement that can be 390 

achieved is generally considered as a significant advantage for CCB.  391 

The mixes containing 3% of 6 mm GLs demonstrating higher water absorption rather than 3 392 

mm GLs due to further porosity resulting from “balling phenomenon” which is described in 393 

the next section.  394 

3.4 Flexural testing  395 

Flexural test is the most important mechanical properties of CCBs which has been pointed by 396 

all relevant standards. The results of the flexural test on the specimens after 28 days curing 397 

are shown in Fig. 4. 398 

 399 



21 

 

 400 

Fig.4: The average flexural strength of the specimens for each group. 401 

The last experiment conducted on the specimens was the flexural test. It is believed that the 402 

specimens may have been interfered by the tests conducted previously (i.e. WA and MM). 403 

This could demonstrate the flexural strength of the specimens in the worst case by simulating 404 

the real environmental conditions such as cycles of high-low humidity and wet-dry exposure 405 

experienced by the specimens. 406 

Fig. 4 shows; 407 

- The incorporation of GLs (3 mm or 6 mm) into the mix increases the flexural strength 408 

in all groups comparing to control mix (K4). This is due to mechanical characteristics 409 

of GL such as tensile strength and modulus of elasticity which could improve bearing 410 

capacity of CCB.  411 

- The effect of 3 mm length GLs in enhancing flexural strength is greater than 6 mm. 412 

- The maximum flexural strength of the specimens reinforced by 6 mm length GLs solely 413 

belongs to 1% fibre content which is considerably lower than 3 mm. The dominant 414 
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reason to decrease the flexural strength is associated with balling (clumping) 415 

phenomenon; When the percentage of 6 mm length of GLs in the mix increases more 416 

than optimum, the fibres cannot disperse uniformly throughout the mix and clump 417 

together in the form of ball shape, forming bundles of accumulated individual fibres 418 

with low specific contact area, resulting in weak points in matrix. This phenomenon 419 

disrupts the crack-bridging effect to stop cracks, whereas the initiation of those cracks 420 

is made more likely by the greater extension of unreinforced areas found in the 421 

specimens. This will be discussed later in microstructure section. 422 

- As seen, when the length of GL is 3 mm, the optimum fibre content to gain the highest 423 

flexural strength is 2% while for 6mm length, the corresponding value is 1%. For this 424 

reason, the effect of NSF on improving the flexural strength of the specimens was 425 

studied only on 2% fibre content for 3 mm GL and 1% fibre content for 6mm length. 426 

- The NSF has a positive effect on rising the flexural strength of the specimens 427 

reinforced by GLs. The optimum amount of 2% NSF led to the maximum flexural 428 

strength of 12 MPa for group K4-GL2-3mm-N2. This is due to bonding improvement 429 

within fibre-cement interfacial zone, decreasing porosity and uniform dispersion of 430 

fibres into the mix. This will be illustrated by microstructural studies of the specimens 431 

in the next section. 432 

- The simultaneous use of 3 mm and 6 mm length GLs couldn’t improve the flexural 433 

strength considerably comparing to the specimens reinforced by 3 mm or 6 mm solely.  434 

To study the flexural behaviour of the specimens during the loading procedure Figs. 5 to 7 435 

illustrate the effects of the percentage (1%, 2% and 3%) of GL content, length (3 mm and 6 436 

mm) of GL and NSF content (1%, 2% and 3%). 437 
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Fig. 5 compares the mid-span deflection against the flexural stress of the specimens reinforced 438 

by different percentage of 3 mm length of GLs. 439 

 440 

 441 

Fig.5: The effect of fibre content (1%, 2% and 3%) of GL-3mm on flexural behaviour. 442 

 443 

As seen in Fig. 5, adding GL to the mix increases not only the area under the curve which is 444 

directly related to fracture toughness but also the flexural strength of the specimens. Although 445 

the energy absorption (which is identified by the area under the curve) for all groups 446 

reinforced by GL is approximately identical, the flexural strength of K4-GL2-3mm reaches to 447 

10.4 MPa which is the greatest values in comparison to others. In other words, within the 448 

range of fibre content studied, the best proportion of GL for the specimens containing 4% of 449 

Kraft fibres is 2%, which provides the maximum of 10.4 MPa flexural strength. The mechanical 450 
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properties of GL, particularly, tensile strength plays an important role in bearing capacity of 451 

the specimens. This will be discussed later under microstructure study subsection.  452 

As seen in fig.5, the plots for the specimens containing GLs indicate several steps or 453 

fluctuations (serrated line). This is associated with initiation of microcracks due to fibre pull 454 

out or fibre breaking. The applied stress is then redistributed and is taken by other fibres, 455 

allowing further increases in load bearing. In other words, when a micro-crack is arrested by 456 

fibre crack bridging mechanism, the stress at interfacial zone rises until either the fibre breaks 457 

or pull out, whichever reaches maximum bearing capacity earlier. Then by forming the cracks, 458 

the stress is released immediately (serrated line in the plots) and by redistribution of stress, 459 

new micro-cracks appear elsewhere. This mechanism continues until the micro-cracks join 460 

with each other, forming a visible crack. Previous research carried out by the first author 461 

showed that redistribution of stress after initial cracks could be observed in CCB reinforced by 462 

Kraft fibres and polymeric fibres [2,3,16].  The visible cracks are initiated at mid-span where 463 

maximum tensile stresses are initiated in the component fibres. This stress is called “Bend 464 

Over Point”. From this point, the stress keeps rising but with a different slope.  As the crack 465 

width increases, the specimen elongation increases then the load is being taken by the fibres 466 

bridging the cracks until subsequent total failure occurs.  In addition, the introduction of GLs 467 

within the mix could increase the ductility of the specimens in the threshold of failure about 468 

three times in comparison to the specimens wholly reinforced with KFs. This is also associated 469 

with the high tensile strength and longer anchorage length of GLs compared to KFs.  470 

As outlined in Fig. 4, the highest flexural strength belongs to K4-GL2-3mm. So, this group was 471 

chosen to be investigated by inserting NSF in the matrix.  472 

Fig. 6 presents the effect of various percentage of NSF on the flexural performance of the 473 

specimens reinforced by only 2% GL-3mm. 474 
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  475 

 476 

 477 

 478 

Fig.6: The effect of NSF on the flexural performance of the specimens reinforced by 2% GL-479 

3mm. 480 

 481 

As illustrated in Fig. 6, introduction of NSF to a mix containing 4% KF’s and 2% GL’s only offers 482 

positives strength characteristics (fracture toughness and flexural strength) when 2% NSF is 483 

used. This is associated with the optimum percentage of NSF. It seems that 1% NSF is not 484 

enough to fill the voids or acts as an activator to enhance the cement hydration process. 485 

Similarly, 3% NSF seems to be more than enough for the mix that can interfere with the 486 

cement. Excessive use of NSF results in poor-graded particle size distribution within the 487 

hydrated cement products, fillers and fibres, disrupts both the mechanical and physical 488 
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properties of CCB.  As observed, 2% of NSF could meet the physical and mechanical 489 

requirements in terms of both filling the voids that lead to porosity reduction and activating 490 

calcium hydroxide to produce Calcium Silicate Hydrate (C-S-H). This statement is consistent 491 

with the results of density outlined in Fig1. In other words, the optimum percentage of NSF 492 

can enhance the grading of ingredients in terms of particle size distribution and pozzolanic 493 

activator to reach the highest density, lowest water absorption and appropriate moisture 494 

movement as outlined in the previous sections. 495 

 496 

 497 

 498 

Fig. 7 illustrates the effects of GL fibre’s length (i.e. 3 mm and 6 mm) on the flexural 499 

performance of CCBs. 500 

 As seen in Fig. 7, the flexural strength of specimens reinforced by longer GLs (i.e. 6 mm) are 501 

weaker than the specimens reinforced by 3 mm lengths of GLs. The maximum flexural strength 502 

experienced by the specimens reinforced by 3 mm GL’s are 10.3 MPa and 9 MPa for 2 % and 503 

3% fibre content respectively while the corresponding values for 6mm GL’s are 8.9 MPa and 504 

7.7 MPa respectively. As observed in Fig. 7, fracture toughness which relates to the area under 505 

the curve for the specimens reinforced by 3mm GL’s are relatively larger than the counterpart 506 

specimens reinforced by 6 mm GLs. This behaviour is attributed to the interaction of the 507 

relatively longer fibres with each other resulting in “balling phenomenon” which in turn 508 

reduces the bearing capacity of the specimens.  509 

 510 
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 511 

Fig.7: The effect of GL’s length on flexural performance of the specimens. 512 

 513 

Surrounding fibres by hydrated cement products could provide enough anchorage length for 514 

transferring the load by the bridge-cracking effect. In spite of this fact, during manufacturing 515 

process of the specimens, the long GLs (i.e. 6 mm) could not be distributed uniformly in the 516 

mix and clumped with each other or with cellulose fibres forming a ball shape twisted/tied 517 

fibres (i.e. balling phenomenon) that could be considered as the voids in the matrix. In other 518 

words, uniform fibre dispersion is essential in the matrix because the cracks initiate and 519 

advance from sections of a composite that has either fibre clumping or larger fibre free areas. 520 

4 Microstructure study (SEM) 521 

Microstructure studies of three samples including K4, K4-GL2-3mm and K4-Gl-3mm-N2 were 522 

carried out using SEM. The fibres and materials which have been focused on this study include; 523 

Kraft fibres, Glass fibres and Nano silica fume.  524 
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Fig. 8 indicates the fracture surface of KFs reinforced CCB in group K4, displaying Kraft fibres 525 

dispersion and the positions of some Kraft fibres after pulling out across the section. As 526 

seen, both types of failure including fibre breaking and fibre pull out are visible in Fig. 8. This 527 

confirms that there is a relatively strong bond in the interfacial zone within Kraft fibres and 528 

hydrated cement products. If the anchorage length of Kraft fibres falls in appropriate ranges, 529 

the mechanism of failure tends to pull out rather than breaking the fibres [1,16]. The voids 530 

shown in Fig. 8 have the same size as the fibres diameter confirming that the failure occurs 531 

due to a pull out mechanism. Apart from the voids created by pulling the fibres, there are 532 

other voids visible in Fig. 8 which have been formed in some part of unreinforced matrix due 533 

to partial compaction 534 

 535 

Fig.8: Interfacial zone within fibres and hydrated cement products in K4  (X100 & X900 536 

magnifications). 537 

 538 
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As seen in Fig. 8, the entire section has been dominated by calcium silicate hydrate (C-S-H) 539 

which are connected and surrounded by numerous needle shaped hydrates [20,21]. C-S-H is 540 

considered as the principle binding product within hydrated cement product. 541 

Fig. 9 depicts a cross section of sample K4-GL2-3mm in which the cylindrical GL’s have been 542 

covered by the small amount of hydrated cement products (magnified at top left inset of Fig. 543 

9) while ribbon shape  KFs (magnified at the bottom right inset of Fig. 9) have been almost 544 

fully covered.  Primarily, the most important cement hydrated products which are formed 545 

around GLs are ettringite needle shaped crystals that are formed from the reaction between 546 

calcium aluminate and calcium sulphate of cement. The formation of ettringite needle shaped 547 

crystals in the vicinity of polymeric fibres has already been reported by other researchers [4,7]. 548 

Several phenomena occur at early stages of hydration process. In addition to the plateau of 549 

the gel pore water intensity, the rate of consumption of capillary water is changed. As C-S-H 550 

grows, the capillary pores in the vicinity of GLs increase because of the hydrophobic 551 

property of GLs. The excess water that is not consumed in the hydration process will 552 

evaporate and leave the space within the matrix and thus increase the porosity. The porosity 553 

can cause a reduction in bearing capacity of the specimen and also increase water 554 

absorption as already discussed. 555 

 556 
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 557 

Fig.9: Hydrated cement products distribution on GL’s and KF’s  (X100  and X1600 558 

magnifications). 559 

 560 

As illustrated in Fig. 9, fibres are distributed randomly through the cross section. Some fibres 561 

are protruding outwards from the composite and some of them lay lengthways along the 562 

fractured face of the composite. Obviously, all distributed fibres can contribute in controlling 563 

the shrinkage cracks while only some of them which are distributed on the longitudinal axis of 564 

CCB could contribute in the flexural bearing capacity of CCB. 565 

As seen, in spite of the KFs, the lateral surface of the GLs is smooth and contains only some 566 

randomly distributed minute (i.e. 1.2 - 2µm) imperfections or debris. It seems that due to 567 

hydrophobic characteristics coupled with the smooth surface of GLs, the tendency of 568 

hydrated cement products for placing on the GLs is lower than KFs. Although signs of cement 569 

hydration products on the glass fibre are observable, interfacial bonding within GLs and 570 

hydrated cement cannot be as strong as KFs.  571 
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It is clear that GLs are not as hydrophilic (wettable) as the KFs. Wetting occurs due to 572 

intermolecular interactions when the two molecules are brought together [4]. As seen in Fig. 573 

9, although rough (irregular) surface and hydrophilic property of KFs could create a relatively 574 

strong bonding in interfacial zone, the slight adhesive bonding within GLs and the hydrated 575 

cement products are still observed.  576 

Generally, two types of bonding occur simultaneously at the fibre-cement interfacial zone 577 

described as, a) Mechanical interlocking resulted from friction within fibres and hydrated 578 

cement products and b) Chemical bonding which largely includes strong covalent O-H bonds 579 

and weaker Hydrogen bond. 580 

It should be noted that polymeric fibres with hydrophobic properties cannot establish any 581 

strong chemical bonding with hydrated cement products unless the structure of the polymeric 582 

fibres has metal ions to form an ionic bond in the interfacial zone. 583 

Since the mechanical characteristics of glass fibres in terms of elasticity modulus and tensile 584 

strength are substantially greater than KFs, it can increase flexural strength and fracture 585 

toughness of CCBs when an appropriate proportion of GLs is embedded into the mix. It should 586 

be noted that depending on the anchorage length, both fibre-breaking and pull out 587 

mechanisms have been observed in KFs while the high tensile strength of GLs justifies fibre 588 

pull out predominance. 589 

Fibres have an important role in transferring the load. As cracks progress, while the fibres 590 

carrying the maximum stress, fibre pull out is being occurred gradually. During this loading 591 

procedure, the main factor that ultimately controls this compromise is interfacial bond, not 592 

the properties of individual materials working alone [1,4,5]. 593 

Both Figs. 8 and 9, illustrate that the intensity of porosity in the fibre-cement interfacial zone 594 

is greater than other zones. This porosity could be considered as tiny cracks in the vicinity of 595 

http://en.wikipedia.org/wiki/Intermolecular
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fibres and could be attributed to fibre properties specifically water absorption. Water 596 

absorption is one of the intrinsic properties of Kraft pulp fibres which causes considerable 597 

volumetric changes in the structure of the cellulose fibres. This increases the water-cement 598 

ratio in the interfacial zone which has a negative effect on fibre-cement bonding due to 599 

differential drying shrinkage of the matrix. As a consequence, it can generate the cracks and 600 

cause a reduction in flexural strength.  601 

As already mentioned, in this research, to reduce porosity in the vicinity of the fibres, NSF was 602 

used as shown in Fig. 10. 603 

 604 

Fig.10. Effect of NSF on the microstructure of CCBs containing KF’s and GL’s. (x200  and 605 

x1000 magnifications). 606 

 607 

As seen in Fig. 10, both pozzolanic reactions and filler action cause GLs (highlighted at the 608 

right side of Fig. 10) and KFs (left side of  Fig. 10) are covered by hydrated cement products 609 

particularly Calcium Silicate Hydrate (C-S-H).  610 
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Pozzolanic reactions of NSF ensures that calcium hydroxide (CH, also called “portlandite” 611 

which is considered as less-beneficial hydration products) is consumed rapidly to increase C–612 

S–H nucleation which has the main role in providing the strength in a cement matrix. The 613 

reduction of CH could also improve the durability of cellulose fibres in alkaline media [3]. 614 

Pozzolanic reaction of NSF is also caused a reduction in the Ca/(Si + Al) ratio which can improve 615 

hydration products. It has been demonstrated that less than one-third of the calcium 616 

hydroxide (portlandite) reacts with NSF to form C-S-H. The rest of the calcium comes from the 617 

C-S-H that has already been produced in the early stages of hydration process by the reaction 618 

of Alite (C3S) before NSF promote pozzolanic reactions [20]. 619 

Muller et al. [20] showed that NSF has an important effect on reducing the porosity by 620 

consuming the water in both interlayer and gel pore spaces of C–S–H. C–S–H can be classified 621 

as “solid C–S–H” and “bulk C–S–H”. The “solid C–S–H” includes the Ca–O backbone layers with 622 

SiO2 tetrahedral and the interlayer water in between but excludes the water and any 623 

hydroxyls on the outer surface of the stacked layers. The “bulk C–S–H” is the C–S–H inclusive 624 

of the gel water [20]. Both solid and bulk resulting from NSF can decrease the porosity and 625 

consequently, lead to increasing fibre-cement interface bonding.  626 

It is well known that by reducing the porosity, water absorption and moisture movement 627 

decrease, whereas density increases. The more hydrated products deposit on glass and Kraft 628 

fibres, the more interfacial bonding is created, leading to the greater flexural strength and 629 

fracture toughness. 630 

The capillary pores (also called “interhydrate pores”) that are formed with growing C–S–H 631 

needles (hydration process) plateau rapidly with no further decrease. The reservoir of capillary 632 

water which has already been absorbed by cellulose fibres (i.e. KFs) reaches the interhydrate 633 
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pores over the hydration process and reacts with the silica fume that has already been placed 634 

in capillary pores [20,21]. 635 

As seen in Fig. 10, many of capillary voids or even large pores have not been filled by water 636 

that needed to be discussed from a viewpoint of porosity. Porosity would have a negative 637 

effect on durability and strength if the tiny voids are linked and joined together resulting in 638 

increasing penetrability of CCB.  In other words, the capillary pores which are not connected 639 

or joined with each other cannot affect the durability of CCB. They can even increase fracture 640 

toughness and also the durability of composite against environmental condition such as 641 

freeze-thaw cycling.  642 

5 Concluding remarks 643 

The results of this research showed that discrete alkali resistant glass fibres have an 644 

appropriate potential to be used in combination with Kraft pulp fibres, cement and Nano-silica 645 

fume to produce CCB’s. The following can be deduced from the study:  646 

1. Flexural strength of CCBs increases substantially as GLs are introduced into the 647 

mix containing only KFs .   648 

2. GLs with a length of 3 mm showed better consistency with other ingredients in 649 

the mix and could improve flexural strength, water absorption and moisture 650 

movement.  651 

3. The most impressive flexural strength results (12 MPa) belong to the group “K4-652 

GL2-3mm-N2” which comprises of 4% KF’s, 2% of 3 mm length GL’s, and 2% NSF.  653 

The corresponding values for water absorption, moisture movement and density 654 

of that group are 22.5%, 0.11% and 2260 kg/m3, respectively.  655 
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4. There is a particular limit for adding GLs into the mix depending on fibre size, 656 

manufacturing process and the amount of other ingredients. Extra fibres cause 657 

negative effects, such as non-uniform fibre dispersion or clumping fibres which 658 

could weaken CCB’s properties. In this study, laboratory observation indicates 659 

that 3% of cement weight is the maximum limit for incorporating of glass fibre 660 

into the mix.   661 

5. Microstructural studies showed that the pores in the vicinity of GLs are more than 662 

the counterpart KFs.   663 

6. Incorporating an appropriate percentage of NSF into the mix can improve the 664 

flexural strength and reduce the porosity of the specimens. Pozzolanic reaction 665 

along with filler action of NSF form a stronger bonding at fibre-cement interfacial 666 

zone and also improve the durability of CCB by decreasing the permeability of the 667 

matrix. 668 
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