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Abstract We present a comprehensive study of the effects of internal boundaries on the accuracy 

of residual stress values obtained from the eigenstrain method. In the experimental part of this 

effort, a composite specimen, consisting of an aluminum cylinder sandwiched between steel 

cylinders of the same diameter, was uniformly heated under axial displacement constraint. 

During the experiment, the sample temperature and the reaction stresses in the load frame in 

response to changes in sample temperature were monitored. In addition, the local (elastic) lattice 

strain distribution within the specimen was measured using neutron diffraction. The eigenstrain 

method, utilizing finite element modeling, was then used to predict the stress field existing 

within the sample in response to the constraint imposed by the load frame against axial thermal 

expansion. Our comparison of the computed and measured stress distributions showed that, 

while the eigenstrain method predicted acceptable stress values away from the cylinder 

interfaces, its predictions did not match experimentally measured values near them. These 

observations indicate that the eigenstrain method is not valid for sample geometries with this 

type of internal boundaries. 
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Introduction 
 

The term eigenstrain was introduced by Mura in 1987 [1] in micromechanical analysis of the 

origins of residual stress fields1. In current usage this term encompasses all inelastic strains, such 

as strains resulting from thermal expansion, purely plastic flow, phase transformations and/or 

compositional changes resulting in changes of the specific volumes of transformed regions. Such 

inelastic strains were first discussed by Reissner in 1931 [2] to describe misfit strains. 

Subsequently, Eshelby defined the term stress-free transformation strain in the computation of 

the elastic strain field within an ellipsoidal inclusion embedded in a matrix material (Eshelby, 

1957, 1959) [3, 4]. We use a simpler definition of eigenstrain which is based on elastic energy 

considerations. We note that, irrespective of their origin, eigenstrains, themselves, do not cause 

elastic energy storage in the atomic bonds of the body. Residual stresses, which indicate elastic 

energy storage in atomic bonds, arise within the body in response to external and/or internal 

constraint of the regions where eigenstrains are induced. If the final eigenstrain distribution is 

homogeneous at all points within the volume of an unconstrained body, the body dimension 

changes, but the body remains residual-stress-free; no elastic energy is stored in its atomic bonds. 

The “eigenstrain method for determining residual stresses” (eigenstrain method) was 

proposed to compute residual stresses which arise in response to eigenstrain distributions within 

a solid sample. In this formalism the eigenstrains used for the computation are estimated from 

residual stresses measured in test coupons, usually with simple geometries, which have been 

subjected to the same manufacturing process as the component of interest. The residual stresses 

in the actual component are, then, obtained by utilizing these inelastic strains in a finite-element 

model incorporating the boundary conditions of the component. The major advantage claimed 

for this approach is the ability to calculate the entire residual stress field within an actual 

engineering component from a limited set of residual stress data. This approach was first 

proposed by Fujimoto in 1970 [5] using the term inherent strain. A method to calculate the 

eigenstrain was not provided. In 1975, Ueda and co-workers [6] published the first complete 

application of the modern eigenstrain approach and calculated the total residual stress profile 

                                                        
1 The term “eigenstrain” stems from the word “eigen” in German which means “inherent, particular, characteristic or 
peculiar”. Thus, the term “eigenstrain” can also be termed “inherent strain”. Eigenstrain is not related to eigenvalues 
or eigenvectors commonly encountered in physical and mathematical analysis. In German literature residual stresses 
are termed “Eigenspannungen” [2]. 
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within a welded plate through finite element analysis. An improved version of Ueda’s technique 

was proposed by Hill (Hill et al., 1995, 1998) [7, 8] to obtain all three axial residual stress 

components in long welded joints; this method is limited to joints with simple geometries. 

With the advent of faster, more reliable, and cost-effective, computer–aided finite element 

techniques, the eigenstrain method has been extensively used to predict the residual stress fields 

in different applications such as friction stir welding (Luckhoo et al., 2009; Jun et al., 2010) [9, 

10], shot peening (Korsunsky, 2005; Jun et al., 2011; Song et al., 2012) [11-13], and laser shock 

peening (Korsunsky, 2006; Achintha & Nowell, 2011; Hu & Grandhi, 2012; Achintha et al., 

2013; Correa et al., 2015; Coratella et al., 2015) [14-19]. In 2010, Jun and Korsunsky [20] 

proposed the SIMple TRIangle method (SIMTRI) to implement the Eigenstrain Reconstruction 

Method (ERM) within the finite element modelling framework and demonstrated its versatility 

on a variety of problems. 

Despite the popularity of the eigenstrain method for computing stress values, its limitations 

have not been systematically examined in the literature. There was only a single article where the 

uniqueness of the eigenstrain formalism was formally discussed (Luzin, 2014) [21], where it was 

shown that, since the eigenstrain method involves the solution of inverse elasticity problems, its 

capability to uniquely predict residual stress tensor distributions is limited to simple component 

geometries with simple material and eigenstrain distributions. We were not able to find any 

articles which presented a rigorous analysis of the uncertainty associated with the eigenstrain 

formalism. To estimate the accuracy, one needs to know the actual values of eigenstrains, and 

corresponding residual stress distributions, within the actual component. This is a hard task in 

samples with complex geometries and heterogeneous distributions of physical properties. In 

addition, because of the multiple steps associated with the analysis and the complexity of the 

computations involved, propagation of error terms to estimate the uncertainty associated with the 

stress values obtained from the eigenstrain analysis is non-trivial. It is possible, however, to 

design samples which can yield some insight. In what follows we present the design and 

implementation of a simple thermo-mechanical test which can be used to quantify the 

uncertainties associated with the eigenstrain analysis.  
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Experimental Details 
 

Experiment Design and Samples 
 

The following steps are used in a typical application of the eigenstrain method:  

1- A proof sample with the same material properties as the component of interest, but with a 

much simpler geometry, is treated with the same manufacturing process to which the 

component of interest has been subjected. For example, a simple strip is shot-peened with 

the parameters of interest (Figure 1 (a)). 

2- Residual stresses are measured experimentally from the proof sample. For the strip in 

Fig. 1 (a), one can use diffraction (Noyan & Cohen, 1985, 1987) [22, 23], hole-drilling 

(Schajer 1988, 1988) [24, 25], contour methods (Prime, 2001; Prime et al., 2006) [26, 

27], or combined techniques (Schajer, 2010; Woo et al., 2013) [28, 29] for this purpose.  

3- FEM analysis is used to reconstruct the depth-dependent eigenstrain profile, 𝜀𝜀𝑖𝑖𝑖𝑖∗ (𝑧𝑧), in the 

proof sample which would result in the measured residual stresses. 

4- The calculated eigenstrain field, 𝜀𝜀𝑖𝑖𝑖𝑖∗ (𝑧𝑧), of the proof sample is used to model the residual 

stresses expected in the component of interest. For this purpose, numerical methods, such 

as finite element or finite-difference based formalisms, are used. Based on the “Principle 

of Transferability of Eigenstrain” (Jun et al., 2011) [12], 𝜀𝜀𝑖𝑖𝑖𝑖∗ (𝑧𝑧) obtained from the proof 

sample is expected to enable the computation of accurate residual stress fields for 

different component geometries (Figure 1 (b), (c), (d)), regardless of location (center or 

edge) or shape (flat or round) of the peened domains. 

 
 

Fig. 1 Schematic diagram of a proof specimen (a) for eigenstrain analysis after shot-peening. Once the 
eigenstrains, 𝜺𝜺𝒊𝒊𝒊𝒊∗ (𝒛𝒛) , in (a) are computed from measured elastic strains, 𝒆𝒆𝒊𝒊𝒊𝒊∗ , the residual stresses in 
components with identical material properties, peened with identical parameters but with different 
geometries, (b) ~ (d), can be computed. 
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For verification and validation of this formalism, two basic questions need to be addressed. 

First, is the eigenstrain profile computed from the residual stress distribution of the proof sample 

unique and correct? Second, given the exact eigenstrain distribution in the proof sample, can we 

calculate accurate stress profiles in other samples regardless of geometry? Luzin [21] has 

published a rigorous theoretical analysis of the first problem, where he showed that unique and 

tractable solutions can only be obtained for simple geometries such as plates, spheres and 

cylinders, when the eigenstrain distributions, also, have simple functional forms. Consequently, 

we limited our investigation to one such geometry and re-formulated the second question: we can 

measure the exact thermal strain distributions (eigenstrains) within the components of an axially 

piecewise homogeneous composite cylinder caused by a temperature increase, Δ𝑇𝑇, without 

external constraint. Can we, then, determine the residual stresses within the composite using the 

eigenstrain method when the composite sample boundaries are constrained during the heating 

step? This formulation fits the four steps of the traditional eigenstrain analysis listed above, and 

satisfies the uniqueness conditions discussed by Luzin, if:  

1- All cylinders have the same diameter. 

2- There is no axial temperature gradient within the sample. 

3- All cylinder materials have cubic symmetry and, thus, have isotropic linear thermal 

expansion coefficients. 

4- There is no plastic flow, creep, or phase transformations in any of the cylinders in 

response to heating in the constrained state. 

Figure 2 shows the actual implementation of our design. We manufactured a composite 

cylinder, ½” (12.7 mm) in diameter, where a 1.25” (31.8 mm) long, 6061 aluminum cylinder was 

sandwiched between two, 2” (50.8 mm) long, 1018 low carbon steel cylinders. The other ends of 

the steel cylinders were fitted into 6061 Al spacers which served as axial alignment fixtures and 

heater blocks; these could be heated independently through 500W Watlow clamp heaters, each 

connected to an independent channel of a Lakeshore 336 multi-channel temperature controller. 

Two machinable-ceramic (MACOR) cylinders, also nominally ½” (12.7 mm) in diameter, 

isolated the Al heater sleeves from the (cooled) grips of the horizontal Instron hydraulic load 

frame, which was mounted on the SMARTS engineering neutron diffractometer at the Lujan 

Center of Los Alamos National Laboratory.  
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Fig. 2 (a) Schematic of the experimental geometry both proof (top) and composite cylinders are shown. 
Volumes interrogated by neutrons are shaded by blue rectangles. Thermocouple locations, TC1~TC7 are 
also marked. Bottom picture (b) shows the composite sample loaded in the load frame. 
 
 
Table 1 Mechanical and thermal properties of the components along the loading axis. The mechanical 
parameters of steel, and aluminum were obtained from the Metals Handbook2 [30, 31]. The MACOR data 
were supplied by the manufacturer (Corning Inc.). These values are also available in MatWeb [32].  

 

 
Young’s 
modulus 
E / GPa 

Poisson’
s ratio 

ν 

Shear 
modulus, 
G / GPa 

Yield 
stress 

σy / MPa 

Room-
temperature 
CTE / 10–6 

Thermal 
conductivity 
κ / W mK–1 

Carbon Steel 
1018 [30] 200 0.29 78 ~ 370 

(tensile) 12.5 52 

Aluminum 
Alloy 6061 

[31] 
69 0.33 26 ~ 270 

(tensile) 23.6 167 

MACOR 
Ceramic [32] 67 0.29 26 

~ 345 
(compress

ive) 
9.3 1.46 

Virtual Grips 
(Model only) 20 0.33 NA NA NA NA 

 

                                                        
2 We also measured mechanical parameters at room temperature, and CTE values, in the RT-100 ˚C range for the 
steel and Al cylinders. All values agree within experimental error. 
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The axial temperature distribution in the composite was monitored with seven type-K 

thermocouples. Each Al spacer had an independent control thermocouple. For CTE and 

compliance measurements, two proof samples were used: these were 5.25” (133.4 mm) long, 

single piece, 6061 aluminum (Al) and 1018 steel cylinders, ½” (12.7 mm) in diameter. 

Mechanical and thermal properties of the parts along the loading axis are listed in the Table 1.  

 
Neutron Diffraction Measurements 

 
In situ neutron diffraction measurements were performed on the Spectrometer for Materials 

Research at Temperature and Stress (SMARTS) beam line at Los Alamos Neutron Science 

Center (LANSCE) to determine lattice strains during thermal and/or mechanical loading 

experiments. The experimental geometry is shown in Figure 3. The cylinder loading axis (‘x1’) is 

oriented at 45° to the incident neutron beam, so that Bank 1 (East) and Bank 2 (West) detectors 

record diffraction signals from atomic planes normal to the x2 and x1, directions of the cylindrical 

samples, respectively. We note that, due to the cylindrical symmetry of the samples the 

orthogonal coordinates defining the base plane of the cylinder, x2 and x3, are indistinguishable.  

The beam size was confined by setting the incident beam slit dimensions to 2 × 8 mm2, and 

placing 2 mm acceptance-length radial collimators in front of both detectors. These settings 

defined an illuminated volume in the shape of an elongated cuboid, with edge dimensions of 

approximately 2.8 × 2.8 × 8 mm3 along the x1, x2 and x3 directions respectively. During 

measurements careful sample positioning, utilizing step-scanning of the sample while monitoring 

the relevant diffraction peaks, ensured that the entire illuminated volume (information volume) 

was completely contained within either steel or Al cylinders, as needed (Noyan et al., 2010) [33]. 

During neutron measurements all samples, composite or proof, were first placed in the load 

frame at room temperature (20˚C), and then loaded in compression to –15 MPa (in load control) 

to eliminate any play in the load train3. The samples were then aligned with respect to the 

neutron beam. For the proof specimens, 5.25”-long (133.4 mm) single piece Al and steel 

cylinders, modulus verification measurements were performed by mechanical loading at room 

temperature. The CTE values were determined from the variation of the lattice parameter with 
                                                        
3 During the loading operation, the composite sample was contained in an axially split Al tube, ½” (12.6 mm) inner 
diameter and 4” (101.6 mm) in length, to keep all three cylinders in alignment. After the ends of the outer steel 
cylinders were captured in the Al spacers, the sample was loaded in compression and the alignment tube was 
removed. After this point the sample was kept together by the applied compressive load and friction at the cylinder 
surfaces. 
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temperature while the samples were under load control at –15 MPa.  

 
Fig. 3 Schematic (top view) of the neutron diffraction experiment. The load frame is installed on a 
precision table (rectangle with dashed lines), and can be moved along the x1, x2 and x3 coordinates to 
position any volume within the (loaded) specimen in the neutron information volume.  

 
For strain measurements at temperature, the following steps were carried out for all samples. 

First, the sample was slowly heated to the set-point temperature (60 or 100˚C). After the sample 

temperature stabilized, position-dependent diffraction measurements were performed to measure 

the lattice strain distribution along the cylinder axis. In case of CTE measurements, the proof 

specimens were heated while the system was under load control at –15 MPa and lattice strains 

were measured at five equidistant locations over the central 3” of each specimen.  

During constrained thermal expansion measurements, the composite sample was first loaded 

in compression to –15 MPa at room temperature, and then the load frame was switched to 

displacement control and the crosshead position was fixed for the duration of the experiment. 

During heating to the set-point temperature, the reaction stress values imposed by the load frame 

to keep the crosshead position invariant were recorded. Once all temperatures, as read from the 
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thermocouple reader, stabilized to ±1˚C, lattice strains at 15 positions, 7 in the Al cylinder and 4 

in each steel cylinder, were measured. These locations are marked with blue rectangles in Fig.2. 

The measurement locations bracketing the steel-aluminum interfaces required careful alignment 

to ensure that the diffracting volume (gage volume) was completely contained in only one kind 

of material4. 

Figure 4 shows the variation of temperatures determined from the thermocouples as a 

function of position (Fig. 4 (a)) and time (Fig. 4 (b)). The thermocouple locations correspond to 

those indicated in Fig. 2. These figures show that, even though the set-points of the heaters were 

identical, small, non-symmetric, temperature gradients existed over the composite sample. The 

asymmetry was more pronounced on the right side relative to Fig. 2. We attribute this asymmetry 

to the slightly different thermal resistance of the aluminum-steel interface on that side (Lee et al., 

2014) [34]. We observed that the magnitude of the temperature gradient increased with 

increasing temperature, reaching approximately 8˚C between thermocouples 5 and 7 when both 

controllers were set for 100˚C. Computations indicated that the effect of such a gradient was 

minimal, so the measurements were carried out with this thermal gradient in the sample, instead 

of manipulating the individual controllers to achieve a flat temperature profile and wasting beam 

time in the process. 

 

   
Fig. 4 (a) Axial variation of temperature in the composite sample at three set-points. The time 
stability of temperature profiles in the samples during the measurement sequence is shown in (b). 
Thermocouple locations correspond to those shown in Fig. 2. 

 
                                                        
4 This was ensured by monitoring the diffraction spectra as the beam position was stepped over the interface. The 
chosen locations, bracketing the respective interfaces at ±3 mm, yielded only Al or Fe spectra to avoid partially-
buried gage-volumes; these cause large errors in the measured strain values (Spooner & Wang, 1997) [35]. 
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Figure 5 shows representative diffraction patterns from the Al and steel cylinders. All 

patterns were analyzed using the public-domain GSAS Rietveld refinement package (Von Dreele 

et al., 1982) [36] implemented through the SMARTSware-program (Clausen, 2004) [37] which 

permitted consecutive refinement and lattice parameter export. Lattice parameters in axial (𝑎𝑎1) 

and transverse (𝑎𝑎2) directions were obtained at all locations. For the counting times utilized, the 

average fitting uncertainty of Fe and Al patterns were 20-25 με and 30-40 με, corresponding to 

stress uncertainties of ± 4-5 MPa and ± 2-3 MPa, respectively.  

 

  

  
 
Fig. 5 Typical spallation neutron spectra in detector banks 1 and 2 from the steel (a, b) and aluminum 
cylinders (c, d) of the composite specimen. The indexed Bragg peaks were used for the GSAS analysis. 
For all figures the residual between the experimental data and the GSAS model is also included. The data 
indicate the presence of texture for both materials. Texture is more pronounced for the Al cylinder.  
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Analysis Procedure 
 

Basic Strain Analysis 

 

In our experiments the total normal lattice strains, 𝜀𝜀𝑖𝑖𝑖𝑖, were obtained from measured axial and 

transverse lattice parameters 𝑎𝑎1, 𝑎𝑎2, using: 

 

𝜀𝜀𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖−𝑎𝑎0,𝑖𝑖

𝑎𝑎0,𝑖𝑖
                                                                                 (1) 

  

Here 𝑎𝑎0,𝑖𝑖 is the “unstressed lattice spacing” of the material for the axial, 𝑥𝑥1, and transverse, 𝑥𝑥2 , 

directions, respectively. For each location, the lattice parameters, 𝑎𝑎0,1, 𝑎𝑎0,2, obtained from room 

temperature data at –15 MPa compressive load at that particular location were utilized as the 

reference lattice parameter. This approach sets the “zero strain” state of the material as the first 

set of data points, and removes contributions from any pre-existing residual stress fields and/or 

intergranular strains from the subsequent analysis (Mei et al., 2013) [38]. Since the orthogonal 

transverse axes in our sample geometry,  𝑥𝑥2, 𝑥𝑥3,  are indistinguishable, we did not measure the 

lattice spacing, 𝑎𝑎3, and compute the normal strain 𝜀𝜀33, but assumed that  the transverse strains 

were equal,  𝜀𝜀22=𝜀𝜀33. This assumption is based on our measurements in other cylindrical 

specimens under uniaxial loading (Brügger et al., 2017) [39]. In addition, the validity of this 

assumption was verified in our current FEM models. 

 

The strains 𝜀𝜀𝑖𝑖𝑖𝑖  measured during the thermo-mechanical steps of the experiment can have 

contributions from: 1) any expansion or contraction of the crystalline lattice caused by changes 

in temperature, 𝜀𝜀𝑖𝑖𝑖𝑖𝑡𝑡ℎ; and 2) the elastic lattice strain terms, 𝑒𝑒𝑖𝑖𝑖𝑖, that form in response to any 

constraints which prevent the material from achieving its equilibrium lattice spacing at the 

specific temperature5: 

                                                        
5 For brevity this discussion assumes a uniformly heated crystalline material with isotropic thermal and mechanical 
properties, in which all eigenstrain terms, except thermal strains, are zero. 
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𝜀𝜀𝑖𝑖𝑖𝑖 = 𝜀𝜀𝑖𝑖𝑖𝑖𝑡𝑡ℎ + 𝑒𝑒𝑖𝑖𝑖𝑖                                                                                             (2) 

 

The (unconstrained) thermal strain (eigenstrain) is obtained by integration of the coefficient of 

thermal expansion of the material, 𝛼𝛼(𝑇𝑇), over the corresponding temperature range:  

 

 𝜀𝜀𝑖𝑖𝑖𝑖𝑡𝑡ℎ = ∫ 𝛼𝛼(𝑇𝑇)𝑑𝑑𝑇𝑇𝑇𝑇2
𝑇𝑇1

              (3-a) 

 

If the CTE can be considered constant over this temperature range,  

𝜀𝜀𝑖𝑖𝑖𝑖𝑡𝑡ℎ = 𝛼𝛼 Δ𝑇𝑇               (3-b) 

For our system, where all materials have cubic crystal symmetry, the elastic constraint strain 

terms along the axial and transverse directions at a given point are given by: 

      𝑒𝑒𝑖𝑖𝑖𝑖  = 𝜀𝜀𝑖𝑖𝑖𝑖 − 𝜀𝜀11𝑡𝑡ℎ             (4) 

Using the symmetry of the system we obtain: 

𝑒𝑒11  = 𝜀𝜀11 − 𝜀𝜀11𝑡𝑡ℎ                                                                                       (4-a) 

𝑒𝑒22 = 𝑒𝑒33 = 𝜀𝜀22 − 𝜀𝜀11𝑡𝑡ℎ                       (4-b) 

To aid the elastic analysis we define a “boundary constraint factor”, 𝐵𝐵𝑐𝑐: 

𝐵𝐵𝑐𝑐 = 𝜈𝜈𝑒𝑒11+𝑒𝑒22 
(1+𝜈𝜈)

= 𝜈𝜈𝜀𝜀11+𝜀𝜀22 
(1+𝜈𝜈)

− 𝛼𝛼 Δ𝑇𝑇       (5) 

If the uniaxial macroscopic boundary constraint applied by the load frame to the sample along its 

axis is also valid in a particular local domain, the corresponding axial and radial constraint terms 

will be related through Poisson’s ratio, 𝜐𝜐 : 𝑒𝑒22  = −  𝜐𝜐𝑒𝑒11 , and the term, 𝐵𝐵𝑐𝑐 , will be zero.    

Once the expected thermal strain has been computed from tabulated or experimentally 

determined CTE values, Equations (4) and (5) provide simple checks of the strain state of the 

domain in which the axial and transverse lattice strains have been measured. Three cases of 

interest can be identified6: 

1- If the measured strains, 𝜀𝜀𝑖𝑖𝑖𝑖, are equal to the thermal strain computed from Eqtn. (3-a), 

then the system is exhibiting unconstrained thermal expansion, and the lattice strains 

                                                        
6 We note that, in the case of an isothermal uniaxial compression test, the temperature change Δ𝑇𝑇 is zero, and 
the boundary constraint term, 𝐵𝐵𝑐𝑐, obtained from Eqtn. (5) would also be zero as long as there are no additional 
constraints imposed by buried interfaces. 
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have only thermal eigenstrain terms (𝑒𝑒11 = 0). In this case, 𝐵𝐵𝑐𝑐 ≡ 0.  

2- If the elastic strains due to constraint, 𝑒𝑒𝑖𝑖𝑖𝑖, are finite, and 𝐵𝐵𝑐𝑐 = 0, the constraint imposed 

on the thermal expansion of the local region is along the axial direction only.  

3- If both the elastic strain terms due to constraint, 𝑒𝑒𝑖𝑖𝑖𝑖, and the boundary constraint term, 𝐵𝐵𝑐𝑐, 

are finite, constrained thermal expansion is occurring in the local volume. However, the 

local constraint is not equivalent to the far-field uniaxial constraint. In such a case the 

simple analytical formulation discussed above is no longer applicable and finite element 

analysis must be used to investigate the strain/stress state within the system. 

 

Finite Element Modelling 
 

Numerical analysis, using the ABAQUS 6.14 finite element program, was used to model the 

expected thermo-elastic response of the samples. An extended model was constructed which 

included, in addition to the specimen, idealized representations of parts of the load train of the 

mechanical tester. This was necessary to properly account for the compliance of the system: even 

though the mechanical tester was used under displacement control to eliminate any sample 

displacement along the axial, ( )x , direction, the actual point at which the displacement was 

monitored was within the actuator assembly of the tester. Thus, the displacement which was 

constrained included contributions from multiple elements of the load train (Figure 6 (a)).  

To include this constraint profile in our finite element model, we constructed two virtual grips 

bracketing the sample (each with one end fixed) which combined these contributions (Fig. 6 (b)). 

The modulus for these virtual grips, 𝐸𝐸𝑉𝑉𝑉𝑉 , was experimentally determined through isothermal 

compression tests with each type of sample. For the Young’s modulus we obtained, 𝐸𝐸𝑉𝑉𝑉𝑉 =

20 GPa, which is significantly more compliant than any load train component. This is caused by 

the relatively compliant configuration of the load frame; a c-clamp type setup with a strong-back 

that carries the load in bending and not in tension/compression as in a typical symmetric two-

column load frame. 

All material properties used in the finite element model are listed in Table 1. The 3D stress 

element, C3D20 (20-node quadratic brick) was used for all components. Several mesh sizes were 

tested to eliminate mesh-size dependency of simulation results. A fine mesh size, 0.1 mm, was 

used within ~ ±6.5 mm of the interfaces to capture the details of any large strain gradients due to 
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radial and axial constraint. The mesh size within the central 18 mm of the Al cylinder was 1.2 

mm.  The thermal expansion was input by a pre-defined field module. This approach was 

adequate since no heat transfer simulations were necessary. Given the small temperature 

variation measured within each part (Fig. 4 (a)), only a single, uniform, (average) temperature 

was used in the model. This assumption did not result in any significant error in the 

computations. 

 

 
Fig. 6 Schematic (side-view)  diagrams of (a) original assembly and (b) simplified finite element model.  

 

Experimental and Modelling Results 
 

Formalism Verification and Uncertainty Analysis 
 

The room-temperature elastic moduli, 𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎𝑎𝑎 𝜕𝜕𝜀𝜀⁄ , of the steel and aluminum cylinders were 

determined by correlating neutron strains with applied (compressive) loads, and by traditional 

uniaxial compression tests. The results were consistent and showed excellent agreement with 

tabulated values (Table 1), with 𝐸𝐸Fe = 204 ±  15 GPa and 𝐸𝐸Al = 70 ±  5 GPa. Experimentally 

determined Poisson’s ratios also agreed with literature values within experimental error.  

 
Figure 7 (a) is a composite plot, obtained by combining five plots, each depicting the 

variation of the measured axial and transverse thermal lattice strains, 𝜀𝜀11, 𝜀𝜀22, along the axis of 

the 5.25” long (133.4 mm) solid steel cylinder (the proof sample), at a given set-point 
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temperature under –15 MPa constant load. The center of the cylinder for each set point is marked 

on the abscissa. The average sample temperature for each set-point, obtained from the average of 

all sample thermocouple readouts, is shown on the right ordinate. At room temperature the 

thermal strains calculated from Equation (1) at all five locations are identically equal to zero 

since the lattice spacings at each location measured at this temperature were used as the 

unstressed lattice parameter, 𝑎𝑎0,𝑖𝑖. No statistically significant strain gradients are observed within 

the proof sample at any temperature. The overall standard deviation of all thermal strains in this 

plot is ± 30 µε. 

 

Figure 7 (b) shows the variation of the average axial and transverse thermal lattice strains, 

𝜀𝜀11, 𝜀𝜀22, with average sample temperature. Within statistical error, a linear variation is adequate 

to describe the trend. The slope of the regression line fit to the data, 12.5 ±  0.5 µε/°C , agrees 

with in-house dilatometry measurements (12.3 ±  0.3 µε/°C).  

 

The composite Figure 7 (c) depicts the variation of the axial and transverse interaction 

strains, 𝑒𝑒11, 𝑒𝑒22, at each measurement location within the proof cylinder, computed from the data 

presented in Fig. 7 (a) using Eqtn. (4), and the CTE value determined from Fig. 7 (b) for all 

sample temperatures. All interaction strain values, 𝑒𝑒𝑖𝑖𝑖𝑖, are clustered around zero strain, and 

exhibit no gradients with axial position at any temperature. The statistical scatter in the data, 

3 ±  23 µε in 𝑒𝑒11 and −8 ±  34 µε in 𝑒𝑒22, describe the accuracy and precision of the 

computations: since the sample is unconstrained, 𝑒𝑒𝑖𝑖𝑖𝑖 are expected to be zero.  

 

The composite Figure 7 (d) depicts the variation of the boundary constraint term, 𝐵𝐵𝐶𝐶, at the 

measurement positions within the proof sample for all sample temperatures. The plotted values 

were computed from the data presented in Fig. 7 (a) using Eqtn. (5). These values show more 

scatter. However, we do not observe trends or gradients with axial position. The average 

boundary coefficient for all data in this plot is − 6 ±  27 µε. Since the sample is unconstrained, 

𝐵𝐵𝐶𝐶 terms are expected to be identically equal to zero.  

 

In summary, the preliminary tests on both steel and Al proof specimens demonstrated that 

position-resolved values of thermal lattice strains, 𝜀𝜀11 , 𝜀𝜀22 , elastic interaction strains, 𝑒𝑒11 , 𝑒𝑒22 , 
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and boundary coefficient values, 𝐵𝐵𝐶𝐶 , obtained from neutron diffraction measurements, matched 

the predictions of the simple thermo-elastic analysis of the system formulated by Equations (2-

5). The same formalism was, then, used for the composite specimen, where material parameters 

changed discontinuously across two interfaces. 

 

 

  

  
 
Fig. 7 (a) Spatial distribution of thermal lattice strains, 𝜺𝜺𝟏𝟏𝟏𝟏 , 𝜺𝜺𝟐𝟐𝟐𝟐 , within the central 50.8 mm of the steel 
proof specimen measured by neutron diffraction at five temperatures. The abscissa arrows indicate the 
center of the sample, 𝑪𝑪𝑻𝑻, at each average sample temperature. The variation of average thermal lattice 
strains with average sample temperature is shown in plot (b). The slope of the regression line is the 
coefficient of thermal expansion. (c) Spatial distribution of interaction strains, 𝒆𝒆𝟏𝟏𝟏𝟏 , 𝒆𝒆𝟐𝟐𝟐𝟐 , within the central 
50.8 mm of the steel proof specimen at five temperatures. The dashed line shows the regression line fitted 
to the average interaction strain, 𝒆𝒆𝒂𝒂𝒂𝒂𝒂𝒂  at each temperature. The boundary coefficient, 𝑩𝑩𝑪𝑪 , values 
computed from these data are plotted in (d), where the dashed line shows the regression line fitted to the 
average boundary coefficient value at each temperature. All error bars span ± 1 standard deviation. 
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.  
 
 
Thermo-elastic Strain State of Composite Specimen 

 

Figure 8 (a) shows the composite plot of lattice strains, 𝜀𝜀11, 𝜀𝜀22, measured by neutron 

diffraction from the steel-Al-steel composite cylinder which was heated to three set-point 

temperatures, RT, 60 and 100°C, under displacement control. These set points corresponded to 

average sample temperatures of 21, 53 and 85°C, respectively. The center of the specimen is 

marked for each temperature by ‘CT’, where ‘T’ is the average temperature of the sample 

obtained from the seven embedded thermocouples. We observe that the lattice expands in both 

radial and axial directions in response to heating. However, due to the constraint provided by the 

load train boundaries, the total lattice strain is no longer isotropic.  

Figure 8 (b) depicts the composite plot of interaction strain components, 𝑒𝑒11, 𝑒𝑒22, computed 

from the data shown in Fig. 8 (a) using Equation (4). Large, compressive, interaction strains in 

the axial direction result due to the displacement control of the load-train boundaries. The 

interaction strains in the transverse direction, 𝑒𝑒22, are tensile due to Poisson expansion, and are 

lower in magnitude. We note that, in the unconstrained case, both 𝑒𝑒11 and 𝑒𝑒22were zero within 

experimental error (Fig. 7 (c)). 

Figure 8 (c) depicts a composite plot of the variation of the boundary constraint term, 𝐵𝐵𝐵𝐵, 

with position at the three temperatures. The term is identically zero at room temperature. At the 

higher temperatures the data is noisy due to the propagation of errors in the (measured) axial and 

transverse strain terms. Despite the noise, however, it is possible to see that the variation of 𝐵𝐵𝐵𝐵 is 

not monotonic within error, which was the case for this term when computed for unconstrained 

thermal expansion (Fig. 7 (d)). Instead, we observe definite trends within each cylinder with 

several extrema, which are clearly out of error bounds. For example, we can identify three 

minima: points 𝑃𝑃1, 𝑃𝑃2 and 𝑃𝑃3 , for the profile at 85°C, where 𝑃𝑃1 , 𝑃𝑃3 are in the left and right steel 

cylinders, respectively, bounding the interface. Point 𝑃𝑃2, with 𝐵𝐵𝐵𝐵 equal to zero (within 

experimental error), is located close to the middle of the Al cylinder, indicating uniaxial 

constraint at this position. 
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In summary, Figures 8 (a, b, c) show that a heterogeneous lattice strain state arises when the 

composite cylinder sample is heated uniformly under displacement control. This heterogeneity is 

due to the superposition of position-dependent elastic interaction strains on the thermal lattice 

strains. In addition, we observe finite values of the boundary constraint term, 𝐵𝐵𝐵𝐵, at multiple 

locations. Consequently, at certain locations within the composite sample the local constraint is 

not equivalent to the far-field uniaxial constraint imposed by displacement control of the 

mechanical tester. We used finite element analysis to investigate the strain/stress state within the 

system to explore further these results. 
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Fig. 8 (a) Spatial distribution of thermal lattice strains, 𝜺𝜺𝟏𝟏𝟏𝟏 , 𝜺𝜺𝟐𝟐𝟐𝟐 , within the central 68 mm of the 
composite specimen measured by neutron diffraction at three temperatures. The abscissa arrows indicate 
the center of the sample at each sample temperature, T. For each location, the corresponding interaction 
strains, 𝒆𝒆𝟏𝟏𝟏𝟏 , 𝒆𝒆𝟐𝟐𝟐𝟐 , (computed from Eqtn. (3)), and the boundary constraint term, 𝑩𝑩𝑪𝑪 ,are plotted in (b), and 
(c) respectively. All error bars span ± 1 standard deviation. 

Finite Element Modelling Results 
 

The elastic interaction strains obtained from the composite specimen might contain 

contributions from: 1) the position-control constraint exerted by the load frame; and 2) the large 

mismatch in the coefficients of thermal expansion of the Al and steel cylinders which are in full 

mechanical contact across their cross-sections. Analysis of this second contribution using an 

analytical approach is non-trivial since one needs to formulate constitutive equations describing 

both interfaces. 

While analysis of this problem using finite element modelling is easier, one still needs to 

specify the mechanical parameters and topologies associated with each boundary. Rather than 

assuming an arbitrary interface which yields modelling results that “fit” the experimental 

conditions, we assumed perfectly smooth cylinder surfaces in our models and computed the 

strain/stress distributions within these models for two types of interfaces. 

First we specified fully-coupled cylinder interfaces with tie-constraints. For this case the 

transverse strains in the material volumes immediately adjoining the interfaces are forced to be 

compatible. For the second case the interfaces were assumed to be fully-uncoupled, such that the 

cylinders on both sides of the interfaces could radially expand without mutual hindrance. This 

corresponds to a friction-free state. For brevity we will report results for both cases from our 

model of the composite cylinder after it had been heated from room temperature to the higher 

measurement temperature (21 to 85˚C) in the position-control mode. We note that all FEM 

simulations yielded equal transverse strain terms, 𝜀𝜀22 = 𝜀𝜀33,  𝑒𝑒22 = 𝑒𝑒33, for  all locations. 

Figures 9 (a, b) depict the variation of the total strains, 𝜀𝜀11, 𝜀𝜀22, along the composite 

cylinder axis when the steel-aluminum interfaces were specified as tie-constrained in the radial 

direction (Fig. 9 (a)) or completely unconnected (Fig. 9 (b)) in the finite element model. In the 

latter case, both the transverse and axial strain profiles at both interfaces can be approximated by 

Heaviside functions, indicating the negligible influence of the steel-aluminum interfaces on the 

distribution of applied strains. In contrast, the corresponding strain distributions for the fully-
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coupled interface exhibit multiple extrema and inflection points in both the aluminum and steel 

cylinders. These effects are much more pronounced in the axial strain distribution. In the 

transverse direction the tie-constraint across the interface causes a smooth, continuous variation 

of the transverse strain across the interface. 

 

Figures 9 (c, d) depict the variation of interaction strains, 𝑒𝑒11, 𝑒𝑒22, computed from the strain 

values shown in Fig. 9 (a, b) using Equation (4). Large, compressive, interaction strains in the 

axial direction, and tensile interaction strains of lower magnitude in the transverse direction, are 

observed for both completely-coupled and fully-uncoupled interface configurations. For the non-

coupled interface, the variations of 𝑒𝑒11, 𝑒𝑒22 across the interfaces can be represented by step 

functions (Fig. 9 (d)). When we specify fully-coupled interfaces between materials of different 

physical parameters, the variation of the interaction strains with axial position becomes non-

monotonic for both longitudinal and transverse directions (Fig. 9 (c)). 

 

  



21 
 

  
 
Fig. 9 (a-d) Variation of total axial and transverse strains (a, b), elastic interaction strains (c, d) with axial 
position obtained from the finite element model of the composite cylinder heated to 85˚C under 
displacement control for coupled (left) and friction-free (right) aluminum-steel interfaces, respectively. 
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Fig. 9 (e-f) Variation of, boundary constraint coefficients (e, f), and axial and transverse stresses (g, h) 
with axial position obtained from the finite element model of the composite cylinder heated to 85˚C under 
displacement control for coupled (left) and friction-free (right) aluminum-steel interfaces, respectively. 

 

Figures 9 (e, f) depict the longitudinal variation of the boundary constraint term, 𝐵𝐵𝐵𝐵, with 

position, computed from the data shown in Fig. 9 (a, b) using Equation (5) and the relevant 

constants shown in Table 1. The terms obtained from the model with uncoupled aluminum-steel 

interfaces are zero at all points along the axis (Fig. 9 (f)). This indicates that all of the reaction 

strains arising in response to constrained thermal expansion were linked by equations of isotropic 

elasticity; there were no contributions from the constraint of dissimilar materials in contact.  

The variation of 𝐵𝐵𝐵𝐵 with axial position for the fully-coupled steel-aluminum interfaces (Fig. 

9 (e)) show extrema bracketing the interfaces. For this case 𝐵𝐵𝐵𝐵 reaches zero only within the 

central segment of the Al cylinder. This observation indicates that the constraint effects of both 

coupled interfaces have decayed to negligible levels in this central region.  

Finally, in Figures 9 (g, h) the variation of axial and transverse stresses, 𝜕𝜕11,𝜕𝜕22, obtained 

from the finite element model are plotted. We observe that, for the friction-free case (Fig. 9 (h)), 

there is no transverse stress term. The axial stress term, 𝜕𝜕11, approximately -56 MPa, is 

independent of position. For the model with fully-coupled interfaces (Fig. 9 (g)), the radial 

boundary constraint causes finite stress values around the interfaces. These terms decay to zero 

in all cylinders with distance from the interfaces. The corresponding axial stress term, 𝜕𝜕11, tends 

to the far-field stress, -56 MPa, away from the interfaces, but oscillates around this value near 

them. 
 

Comparison of Strain States from Modelling and Measurement 
 

Since diffraction data directly yield particular strain tensor components through Eqtn. (1), we 

first compared the strain components predicted by the finite element model (Fig. 9) with the 

values obtained from neutron diffraction measurements at 85°C. (Fig. 8). In Figure 10 the 

experimentally determined parameters are plotted with the FEM results for ease of comparison. 

Figure 10 (a) shows that, for the neutron-diffraction accessible regions of the composite 
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cylinder7, the measured transverse strain components, 22ε , are quite close to the FEM results for 

both fully-coupled and friction-free interfaces. On the other hand the axial strains, 11ε , at the 

same locations (measured simultaneously using a different bank of detectors) are, within error, 

different from the predictions of these models. These differences decrease with distance from the 

interfaces. The slight asymmetry in strain results is due to a slightly lower temperature 

distribution (Figure 10 (d)). In the steel cylinders, axial and transverse lattice strains, 𝜀𝜀11, 22ε , 

show acceptable agreement with the model predictions close to the interface. Away from the 

interfaces the transverse strains, 𝜀𝜀22, are slightly higher (~5 %) than the model predictions. The 

differences are slightly larger than measurement error. These differences might be caused by the 

radial expansion constraint at the steel-aluminum spacer interfaces. 

 

                                                        
7 We note that the steel and aluminum material volumes immediately bordering both interfaces-and containing the 
steep interaction strain gradients- could not be interrogated using neutron diffraction due to possible positioning 
errors and the attendant “unfilled gage volume” issues [35]. 
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The axial and transverse interaction strains, 𝑒𝑒11, 𝑒𝑒22, computed using Eqtn. (4) from the 

measured lattice strain components plotted in Fig. 10 (a) are depicted in Figure 10 (b). In the 

aluminum cylinder, the axial interaction strains, 𝑒𝑒11, exhibit symmetric maxima,  approximately -

580 µε, close to the interfaces and decay smoothly to an asymptotic value, approximately -800 

µε, towards the center of the cylinder. This asymptotic value matches, within error, the 

predictions of the FEM simulations. However, we observe significant differences, around 300 

and 100 µε respectively, between the measured and modelling values closer to the interfaces. In 

comparison, the experimental 𝑒𝑒11values for the proof cylinder showed no trends (Figure 7 (c)), 

and their average value was 3 ± 23 µε. 

 

The experimental values of the transverse interaction strains, 𝑒𝑒22, are also symmetric around 

the center of the aluminum cylinder. For this component, however, the maximum deviation 

Fig. 10 Experimental and finite-element model 
values for the lattice strains (a), the elastic 
interaction strains (b), and boundary interaction 
coefficients (c) as a function of position along 
the axis of the composite cylinder heated from 
RT to 85˚C in the load frame under 
displacement control. In these figures, the seven 
points centered on x=0 are in the Al cylinder. 
The thermal strain distributions assumed in the 
model and computed from the thermocouples on 
the sample are shown in (d). All error bars span 
± 1 standard deviation. 
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between the experimental and modelled values, approximately 150 µε, are at axial positions -5 

and +5 mm, respectively. The deviation decreases closer to the interfaces. In addition, there is 

good agreement between experimental and modelled 𝑒𝑒22values at the center of the cylinder. We 

note that, for the proof cylinder, the radial interaction terms also did not show any axial 

dependency. The average experimental 𝑒𝑒22 for this case was -8 ± 34 µε.  

 

The interaction terms, 𝑒𝑒11, 𝑒𝑒22, together, agree with the model predictions only at the center 

of the Al cylinder. At other locations such (simultaneous) agreement is not observed. We used the 

boundary interaction coefficient, Bc (Eqtn. (5)), which is a function of both 𝑒𝑒11 and 𝑒𝑒22 , to 

determine the axial positions where the experimental and modelled strain tensors agree. Figure 

10 (c) depicts the variation of Bc along the cylinder axis. The distribution of the experimental 𝐵𝐵𝐵𝐵 

parameter with position is symmetric, within measurement error, around the specimen center. For 

axial positions between x= -12 and +12 mm, both finite element models (with free or fully-

coupled interfaces) predicted  𝐵𝐵𝐵𝐵 = 0. However, within this range the experimental boundary 

coefficient was zero only at the sample center (x=0), indicating that approximately the 10% 

volume of the aluminum cylinder at the center was under the expected uniaxial constraint. For all 

other locations sampled by neutron diffraction the experimental 𝐵𝐵𝐵𝐵 values are observed finite 

and greater than zero.  

 

In summary, while the total lattice strains, 2211, εε , and interaction strains, 𝑒𝑒11, 𝑒𝑒22, show 

various regions of agreement with the FEM predictions within the Al cylinder (Figures 10 (a, b)), 

the boundary coefficient, 𝐵𝐵𝐵𝐵, values show large, systematic, deviations from the model values 

for most of the cylinder. Given the derivation of Eqtn. (5), this observation simply indicates that 

these regions (with non-zero 𝐵𝐵𝐵𝐵) are not experiencing the expected uniaxial constraint by the 

load frame in response to thermal expansion. The actual strain distribution will depend on the 

effective geometries of the interfaces and the local load distribution. Since we have experimental 

strain data only along longitudinal and one transverse directions, we cannot determine the full 

strain tensor at these locations and determine the exact nature of the constraint. 

 

Comparison of Stress States from Modelling and Measurement 
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The eigenstrain method directly provides the position-resolved stress distribution in the 

composite cylinder by using numerical modelling which takes the thermal expansion eigenstrains 

and the boundary conditions imposed by the load frame in displacement control as its input. With 

neutron data stresses at each measurement location corresponding to the measured strains must 

be computed from the interaction strain data, 𝑒𝑒11, 𝑒𝑒22, obtained from neutron diffraction (Fig. 10 

(b)) using the isotropic form of Hooke’s law: 
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If we utilize the ideal macroscopic (cylindrical) symmetry of the system8, the transverse 

interaction strains, 𝑒𝑒22, 𝑒𝑒33 can be considered equal. Consequently, the trace of the interaction 

strain tensor, 𝑒𝑒𝑘𝑘𝑘𝑘, becomes 𝑒𝑒𝑘𝑘𝑘𝑘 = 𝑒𝑒11 + 2𝑒𝑒22, resulting in equal transverse stress terms,  𝜕𝜕22= 

𝜕𝜕33. 

Figure 11 (a) shows the variation of axial and transverse stresses along the cylinder axis 

computed from Equation (6) using the neutron diffraction data, and obtained from the eigenstrain 

method. Both fully-coupled and friction-free interface results are included. The bold dashed-line 

marks the far-field stress, imposed by the load frame on the sample grips to maintain constant 

displacement in response to the thermal expansion of the composite cylinder sample upon being 

heated from room temperature to 85˚C.  

The axial stress, 𝜕𝜕11, obtained from the eigenstrain method assuming friction-free steel-

aluminum interfaces (the thin dashed line at -56 MPa) shows excellent agreement with the far-

field stress applied by the load frame (thick dashed line at -58 MPa) in the entire sample volume. 

The axial stress values obtained from neutron diffraction analysis and the eigenstrain method 

with fully-coupled cylinder interfaces oscillate around the applied far-field stress near the 

aluminum-steel interfaces, and tend towards the far-field stress from the load frame at positions 

distant from the interfaces. The oscillations cancel out, within error, if the stress values are 

integrated over the sampled composite volume; this computation yields 104911 ±−=σ  and 

9822 ±=σ  MPa, which approximate the expected far-field values, -58 MPa and 0 MPa, 

                                                        
8 Based on the axial distribution of the boundary interaction coefficients, 𝐵𝐵𝐵𝐵(𝑥𝑥), (Figure 10 (c)) this might be a weak 
assumption. 
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respectively. However, the forms of the axial and transverse stress distributions do not match the 

eigenstrain predictions.  

This point is better illustrated in Figure 11 (b), where the traces of the stress tensors, 𝜕𝜕𝑘𝑘𝑘𝑘, for 

the experimental results and the two eigenstrain simulations are shown. We observe that the 

experimental data do not lie between the model predictions of the two extreme cases (fully-

coupled and friction-free) assumed for the cylinder interfaces, and have a significantly different 

distribution.   
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Fig. 11 Variation of axial and transverse stresses, 𝜕𝜕11,𝜕𝜕22 , along the cylinder axis computed from 
Equation (6), and obtained from finite element modelling assuming fully-coupled and friction-free 
aluminum steel interfaces. The solid line marks the far-field stress, imposed by the load frame (a). The 
variations of the corresponding stress tensor traces, 𝜕𝜕𝑘𝑘𝑘𝑘, are plotted in (b). In these plots the Al/Fe 
interfaces are at ±15.9 mm. All error bars span ± 1 standard deviation. 
 

 

Discussion and Conclusions 
 

Our results support Luzin’s conclusion [21] that the eigenstrain approach can provide unique 

and tractable only for simple geometries (such as cylinders) when the eigenstrain distributions, 

also, have simple functional forms. The computed and modelled thermal eigenstrains showed 

excellent agreement with lattice strains obtained from the neutron diffraction results for the 

(homogeneous) proof specimens of steel and aluminum. In these specimens, the eigenstrain 

distribution was homogeneous and continuous within the specimen volume. The validated 

eigenstrains were used to determine the thermoeleastic response of a composite cylinder, 

consisting of an aluminum cylinder sandwiched between two steel cylinders of the same 

diameter, which was heated in situ on a neutron-diffractometer under displacement control (fixed 

grip positions). In this case, some measured lattice strains showed significant deviations from the 
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finite element modelling results near the material interfaces even though the exact 

(calculated/measured) eigenstrains were specified for each particular cylinder within the models. 

We attribute the discrepancies to the specification of the interfaces: since we did not know the 

exact geometry and friction coefficients of these interfaces, we assumed that the interfaces were 

either ideally friction-free, or fully-coupled. When we compared the FEM results from both 

simulations to the measured axial and transverse lattice strains in the aluminum cylinder, we 

observed that, while there were regions where either axial or transverse strains agreed quite well 

with FEM results, there was only one region, right at the center of the specimen, where the ideal 

strain state predicted by both models agreed with the measured strain state; the strain state 

distributions within the aluminum cylinder closer to the interfaces were not captured by either 

model. The experimental results also showed that the measured interaction profiles did not fall, 

as we expected, between the results of our numerical models with friction-free and fully-coupled 

interfaces. This issue is under further investigation and will be reported in a future publication.  

 

We observed worse agreement between the axial and transverse stress values computed from 

the experimentally determined strain components and the values predicted by the FEM models. 

While both stress components agreed with the model predictions at the middle of the aluminum 

cylinder, and far away from the interfaces in both steel specimens, the experimental values 

differed in form and magnitude in most regions. Such discrepancies might be due to our 

assumption of perfect radial symmetry in calculating the stress values from experimental strain 

components. While the overall sample/load-train geometry is macroscopically radially 

symmetric, the relatively compliant configuration of the load frame, coupled with specimen 

machining tolerances which define the actual contact geometries of the steel-aluminum 

interfaces, might result in deviations from perfect radial symmetry, giving rise to the observed 

deviations. On the other hand, during routine implementations of the eigenstrain method, 

macroscopic symmetry specifications are used in the FEM models in addition to the eigenstrain 

values from proof specimens. This illustrates the “inverse-problem” nature of the eigenstrain 

method. To obtain a unique and correct solution, one needs to specify many parameters within 

the specimen, at both macro and micro scales, in addition to eigenstrains. If this is not properly 

done, the results might be erroneous. On the other hand, the experimental determination and 

verification of these parameters will offset the efficiency claimed for the eigenstrain method, 



30 
 

since the major advantage claimed for this approach is the ability to calculate the entire residual 

stress field within an actual engineering component from a limited set of (experimental) residual 

stress data. 

 

The current results also intimate that, virtual interfaces9 within a quasi-homogeneous solid, 

formed through a heterogeneous distribution of eigenstrains, can introduce elastic strain 

gradients within the material which cannot be predicted a priori in a quantitative manner. For 

example, the plastic strain distribution within a sphere plastically deformed between parallel 

platens will show regions with very different plastic strains in close proximity; the form and 

extent of these domains depend on the hardness and smoothness of the platens, the presence and 

characteristics of any lubricating film between the platen surfaces and the sphere, and the rate of 

deformation;  a rigorous analytical description of the eigenstrain distribution is not possible 

without full experimental analysis of the exact geometry. In this case, the local plastic strain 

distribution is not a continuous monotonic function of the overall plastic strain computed from 

the irreversible change in sphere diameter (Noyan, 1988) [39]. The situation in this case is 

analogous to the mechanically constrained interfaces in the composite cylinder sample used in 

our current study. In both cases, the exact local elastic strain distribution, arising in response to 

the heterogeneous eigenstrain deformation, cannot be correctly predicted only from studies of 

samples with uniform deformation profiles.  

 

 

Summary  
 

The effects of internal boundaries on the accuracy of residual stress values obtained from the 

eigenstrain method have been explored experimentally and through finite-element modeling of a 

composite specimen consisting of an aluminum cylinder sandwiched between steel cylinders of 

the same diameter. The specimen was uniformly heated while it was constrained in situ on a load 

frame mounted on the SMARTS engineering neutron diffractometer. We observed that the simple 

eigenstrain method predicted sharp transitions in strain at the boundaries of the aluminum and 
                                                        
9 A virtual interface in a quasi-homogeneous solid such as a polycrystalline sample larger than the representative 
volume, delineates regions of different hardness, yield stress, grain size, texture, etc. formed through heterogeneous 
plastic flow caused by boundary conditions. An example can be seen in reference [40]. 
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steel elements within the composite sample which were not replicated in the experimental 

results. To properly account for frictional effects at interfaces, specification of precise interface 

parameters, such as friction coefficients and surface roughness, are needed. It might not always 

be possible to obtain such parameters. 

 

Our results show that: 

1. The eigenstrain method of residual stress determination cannot be applied in a simple, 

straightforward, manner to samples with real or virtual interfaces where abrupt eigenstrain 

gradients can form. While it might be possible to use complicated models with “fitting 

parameters” which yield better agreement between measured and modelled lattice strains, the 

results cannot be extrapolated to other geometries with confidence. 

2. The general eigenstrain method should be used with care in systems which have abrupt 

changes in cross-section, buried interfaces, or other features, which cause local constraint effects.  

 

In summary, further characterization, validation and verification studies are needed before 

this new technique can be generally applied with confidence to mission-critical systems. 
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