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A B S T R A C T

Lithium-ion is increasingly the technology of choice for battery-powered systems. Current cell performance
monitoring, which relies on measurements of full cell voltage and sporadic surface temperature, does not pro-
vide a reliable information on the true internal battery state. Here, we address this issue by transforming off the
shelf cells into smart systems by embedding flexible distributed sensors for long-term in-situ and operando
thermodynamic data collection. Our approach, which enables the monitoring of the true battery state, does not
impact its performance. In particular, our results show that this unprecedented methodology can be used to
optimise the performance and map the safety limits of lithium-ion cells. We find that the cell core temperature is
consistently and significantly higher than the surface temperature, and reveal a breach of safety limits during a
rapid discharge test. We also demonstrate an application of a current considerably higher than the manu-
facturers’ specification, enabling a significant decrease in charging time, without compromising the cell’s
thermal stability. Consequently, this work on cell instrumentation methodology has the potential to facilitate
significant advances in battery technology.

1. Introduction

The development of a civilisation is tied to its growing energy
consumption [1], and current mobility requirements combined with a
drive towards cleaner energy sources has boosted the demand for
portable power sources. Over the last decades, a range of technologies
were developed, however, due to its significant technological ad-
vantages including; large capacity, no self-discharge and a high output
voltage [2–6], lithium-ion has emerged as the technology of choice for
portable electronics, off-grid storage and electric vehicles. Li-ion cells
have revolutionised 21 st century society by enabling mobile commu-
nications, portable electronics and implanted medical devices. How-
ever, the drive to push the performance of such cells, e.g. through a
reduction of the charging time or an increase capacity, is often limited
by safety concerns. Indeed, safety issues intrinsic to this technology
[7–9] have led to catastrophic failures of portable devices such as
mobile phones, electronic cigarettes as well as electric vehicles.

The prevailing approach for preventing unexpected events occur-
ring within battery system is by employing a battery management
system (BMS). The purpose of the BMS is to control the flow of energy

to and from the battery system, monitor for errors and apply real-time
corrective actions if necessary. The typical methodology of character-
izing a battery system is by using two factors - the state of charge (SoC)
and state of health (SoH). SoH is a particular measure of the perfor-
mance characteristics such as peak-current delivery, cycle-time and
capacity degradation, while the SoC quantifies the present capacity of a
cell. To manage, diagnose and predict batteries SoH and SoC, the BMS
utilises a small array of sensors, alongside computational algorithms.
Typically, such sensors are attached to the surface of a selected number
of cells [10] monitoring voltage and temperature. However, thermal
management systems, environmental disturbances and unforeseen
events within the module can cause sensors to produce false or highly
inaccurate data [11]. Consequently, our knowledge of the cells’ true
internal state in real-life is very limited, resulting in an inability to
detect hot-spots formation which can reduce the cell performance or
even result in catastrophic failure events [12], rapid aging or thermal
expansion. Besides, it was shown that temperature is a major factor
affecting cells performance [13–16], leading to SoH degradation, per-
formance issues and safety concerns [17]. Ergo, the strategy of single
point surface measurements is not sufficient to provide an accurate SoH
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indication or reliable cell diagnosis.
Such challenges can be addresses through the development of in-situ

distributed and operando temperature measurements of cells. Even
though some attempts were made in this direction, very limited in-
formation is available regarding such approaches, their implementation
and their long-term stability. Importantly, the various attempts to de-
velop in-situ distributed measurement of temperature [15,16,18], fail to
provide information regarding the impact of such measurement upon
the electrochemical system.

In particular, in-situ approaches using thermocouples have been
explored [10,14,19–25], however such systems are limited to mea-
suring relative temperature changes and require a cold junction ele-
ment and analogue conditioning circuits to compensate for their poor
sensitivity. Furthermore, it is not possible to multiplex thermocouples
to a single wire, thus limiting their miniaturization, adding further
points of failure and increasing the complexity, mass and cost of the
system. Further in-situ studies [16,18] were performed with optical
fibre sensors. However, such sensors are affected by mechanical stress,
thus limiting the accessible locations within the cell and the confidence
with which the temperature could be observed. Besides, their im-
plementation is complex and require high capital cost. Furthermore,
fibre technology is extremely sensitive to bending and vibration causing
significant long-term reliability issues, severely limiting real-life appli-
cation.

In the following paper we show major developments in this respect,
enabling unprecedented high-precision distributed in operando mon-
itoring of pouch and cylindrical format cells over a long period of time.
This long-term stability was achieved by modifying the discrete ther-
mistor elements to render them immune to the Li-ion cells’ harsh en-
vironmental conditions before their integration into the smart cells. Our
approach, which enables the monitoring of the true battery state, paves
the way for a deeper knowledge of battery performance. In particular,
we highlight an early safety limit breach in the case of rapid discharge
and show that the charging time of certain cells can be significantly
reduced without compromising the safety limits.

We also show that our approach has no significant influence on the
performance of the cells. We have conducted a series of tests, including
time domain oriented cycling ageing, frequency domain related
Electrochemical Impedance Spectroscopy, X-Ray in-situ inspection and
post-mortem tear down using pouch and cylindrical cells over a period
of up to 3 months, to understand the characteristic consequences of
embedding foreign elements into a cell. In summary, our approach
provides information not yet available to researchers and cell manu-
facturers permitting improvements in performance and safety for ex-
isting technology as well as facilitating future innovation in cell design
and management.

2. Experimental

In an attempt to demonstrate the universality of our approach, we
have evaluated two distinct types of cells; pouch cells and automotive
grade cylindrical cells, commonly used in Electric Vehicles [EVs] pro-
duction. Commercial cylindrical cells show a high specific energy of
around 3000mAh within a volume of 16.54 cm3 and are a highly
standardised mechanical format. While pouch formations are more
flexible in form factor, enabling varied applications, they require sig-
nificant thermal and mechanical support from the battery module
structure. These two types of cells are typically used in the Tesla EVs
and Nissan Leaf respectively and therefore represent good case studies
for this work.

2.1. Sensors fabrication

For temperature sensing raw NTC thermistor elements (Murata©)
were selected due to a high precision, near linear beta curve, wide
availability and a temperature range of -20 ℃ to 120 ℃ [26]. A 25 μm

flexible Kapton© tape was used as a substrate for the thermistor ele-
ments - selected for its mechanical, chemical and thermal conductivity
properties additionally, the material is readily available in a standard
manufacturing setup. The raw thermistor elements were bonded onto
the substrate using standard re-flow soldering technology.

In order to enable long-term in-situ measurements and extend the
lifetime of the devices within the instrumented Li-ion cells, before
embedding them (the thermistor elements and Kapton substrate) were
protected by a conformal 1 μm coating of Parylene deposited using a
PDS 2010 Labcoter® 2 (Specialty Coating Systems), offering significantly
extended lifetime of the devices within harsh Li-ion cell environment.
Parylene C, a polymer with excellent mechanical and chemical stability,
is widely used for its barrier properties due to a pinhole free and highly
conformal coating. Parylene C was evaluated in a range of harsh en-
vironments and even though delamination and limited protection were
reported with structured layers, its barrier properties are excellent in
case the integrity of the film is not compromised [27,28]. This was
confirmed in this study by forming a uniform non-porous layer, pro-
tecting the sensor from electrical, chemical and mechanical interac-
tions. Our results show that this approach enabled stable measurements
and after over 3 months did not have an effect on the cells’ or the
thermistors’ performances.

2.2. Instrumentation

Thermistors have several engineering design challenges that need to
be addressed, including a non-linear response. Each thermistor node is
arranged in series with a 0.1% precision resistor and a 0.1% voltage
excitation source, effectively forming a voltage divider circuit. The
voltage is measured between the two resistive elements - this config-
uration has the advantage of a minimum self-heating, an inherent re-
sistance to voltage converter and signal linearisation. The voltage
measurement is converted to temperature using the Steinhart-Hart
equation (1) in software. A 14-bit data logging device (PicoLog) was
used to interface with the sensor array.

=

−

T B
In ( )R

R x e

Thermistor
B

T0 0 (1)

Where: B is the beta coefficient of thermistor element, R0 is nominal re-
sistance at room temperature, T0 = temperature at R0 and RThermistor is the
measured resistance of the element

Calibration of the sensors built this way is of high importance in
order to avoid measurement errors which would otherwise lead to
distorted data, false results and repeatability issues. Therefore, we have
performed a thorough calibration using a thermal chamber and a high
accuracy platinum resistance temperature detector (RTD) PT100
(Pico®) with a UKCAS accredit test certificate. The thermistor devices in
question have an operating range of -20 °C to 120 °C and the manu-
facturer stated beta coefficients are evaluated over several discrete
temperature spans. Each element on the substrate requires an in-
dividual calibration curve plotting over the operating span of the
sensor. We have also confirmed that the Parylene coating did not affect
the sensitivity, thermal response and characteristic curve of sensor
elements by testing a batch of sensors via an accredited test house
(Taylor Instrument services) for validation versus raw thermistor ele-
ments with no conformal coating - no response aberration was ob-
served. Finally, we have performed another calibration post embedding
within the cells.

2.3. Sensor to cell implementation

The pouch cells evaluated for the in-situ sensors application were
15-layer pouches built in house with a nominal capacity of 5.5 Ah,
consisting of a lithium cobalt oxide (LCoO2) cathode, graphite anode
and a LiPF6 electrolyte solution. Before the stack was sealed it was pried
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open and the sensor slipped between the middle layers. A double layer
of hot melt adhesive (polymer tape) was added to both sides of the
sensor to form a complete seal. This procedure ensures no electrolyte
leakage is possible, which was further confirmed by weighing of the
instrumented cells before and after testing, as well as via cell cycling
and impedance measurements.

The cylindrical cells evaluated for in-situ sensors applications were
commercial 3 Ah high-energy cells consisting of a lithium nickel cobalt
aluminium oxide (NCA) cathode, graphite anode and a LiPF6 electrolyte
solution. The cells were discharged to the minimum voltage of 2.5 V
before being transferred into an argon glove box with atmospheric O2

and H2O concentrations of< 1 ppm. The cells were modified by re-
moving the cathode cap and inserting the sensor directly into the
mandrel core. The cap was the re-attached and sealed using a two-
component epoxy to ensure gas tightness. Modifying the cell to the
degree described here would not be necessary in an industrial appli-
cation as a custom design could be implemented in the fabrication
process.

2.4. Cell cycling

In order to mimic the behaviour of a typical cell during its opera-
tion, we have performed test cycles consisting of constant-current (CC)
followed by constant-voltage (CV) charge and constant-current (CC)
discharge, which is a standard for the lithium-ion chemistry.
Furthermore, advanced pulsed or variable-current cycling techniques
were explored in this study as they are key to developing rapid-(dis)
charging profiles [29,16]. Finally, the stability of a long-term smart
cells operation was evaluated through extended cycling. The pouch
cells under investigation were placed under pressure during formation
and cycling – consequently simulating real-life conditions of large scale
battery systems. Approximately 2850 N/ m2 were applied to each cell.

Evaluated cells were cycled between 2.5 V (0% SoC) and 4.2 V
(100% SoC), utilising their full capacity range. The cycling rates for the
CC/CV charge were 550mA (C/10) for the 5.5 Ah pouch cells and 1 A
(C/3) charge 3 A (1 C) discharge for the 3 Ah cylindrical 18,650 cells.
For rapid discharge characterisation a 60 s period drawing 10 A (3.3C)
was repeatedly applied until a minimum terminal voltage of 2.5 V was
reached.

The cell characterisation cyclers used for this experimentation were
VMP3 multi-channel potentiostats (Bio-Logic Science Instruments®).
Calibration of all sensing equipment was conducted where possible near
the time of the experiment. All experiments were conducted in an en-
vironmental chamber maintaining an ambient temperature of 25 °C
(+/− 0.1 °C). Additionally, all testing equipment was warmed up for
4 h before experimentation to reduce the effects of analogue measure-
ment error due to temperature variations. For interrogating the ther-
mistor elements implemented within the cells a 14-bit analogue to di-
gital converter PicoLog (Pico®) was used.

3. Results and discussion

We present our results in three parts. We first describe the data
obtained via the sensing methodology applied. Then we discuss the
stability of the smart cells. Finally, we evaluate the resistance of the
sensor elements to the internal cell environment.

3.1. The in-situ distributed sensor provides new insights into cell
performance and safety

In this section, we show how our data can be used to improve the
performance of the cells. The data in Fig. 1 show the internal core and
surface temperature during the charge/discharge phase of the cell. The
temperature spikes observed during cell-cycling correlate tightly with
the constant current/constant voltage phases. Even though no lag is
observed between the core and the skin temperature, it is clear that in

all cases presented the core temperature is significantly higher than the
skin temperature.

The case of a rapid pulse discharge, which mimics what a cell can
experience e.g. when an EV accelerates repeatedly, is represented in
Fig. 1(A). The high temperature observed results from Joule heating
due to the high internal resistances of high-energy Li-ion cells [30,31]
and exothermic electrode material changes [7]. It is observed that the
in-situ data temperature is showing a significant difference compared to
the skin of the battery. In particular, it shows that the maximum core
temperature reaches 81 °C, which is> 20 °C above the electrolyte sta-
bility limit. Additionally, a clear thermal gradient is also apparent
within the cell core between the top and bottom zones, respectively the
cathode (positive) and anode (negative) current collector connections.
The gradient is possible due to the anisotropic heat conduction inside
the cell and the current collector being the preferential heat transfer
path. This subsequently results in local heat zones and heat induced
mechanical stress from the temperature gradient [18,32]. The graph
shows in fact that the safety limits of the cell operation is breached
halfway throughout the discharge, significantly earlier than the ex-
ternal temperature sensor would suggest. When the safety temperature
limits are breached, the reaction rates for the decomposition of the
electrolyte and electrode materials increases, which can lead to the
materials breakdown and gas formation, resulting in pressure build-up
in the cell [8]. This creates a very high risk of the cell undergoing
thermal runaway [7] and explosion or a sharp cycle life shortening
[15,33]. Such internal damage is much more challenging to detect for a
standard BMS and can lead to a catastrophic event if experienced re-
peatedly [7]. The ability to closely observe the cell’s internal tem-
peratures is paramount in solving these issues.

The second case presented show how our approach can drive the
performance improvement of current cells. Fast charging of batteries is
highly desirable however; it is often limited by safety concerns.
Through the real-time measurement of the internal (core) temperature,
we demonstrate that cells can be charged significantly faster than the
manufacturer’s recommendation without exceeding the thermal safety
limits. Fig. 1B shows that, even though the cell is being charged at 2.2 C
rather than following the manufacturers rating of C/3, the internal
temperature remains below the recommended safety limits, dictated by
the stability of the electrolyte [7,16]. This clearly shows that, under the
manufacturer’s guidelines, these cells are not currently operating near
their maximum performance. Therefore, our method of monitoring of
internal operando temperatures can open up opportunities for innova-
tion in cells performance. The results obtained in this study confirm our
previous work, where, using optical sensor monitoring, we have de-
monstrated that a 0-to-80% charge can be achieved in only 30min
through the implementation of a rapid-charging profile instead of 2 h
and 40min (as per manufacturer guideline), a five-fold reduction in
charging time [16]. Therefore, the approach proposed in this work,
using a distributed array of thermistors that addresses the issues typi-
cally encountered when using optical sensor [16,18], such as cross-
sensitivity and low flexibility, represents a viable solution for battery
management as they can be designed for any cell format, ensuring no
hot-spots omission.

Lastly, Fig. 2 shows a full distributed view of a sensing array data
collected from the core of a cylindrical 18,650 cell. The data clearly
portrays a near uniformity of temperature within the core, but a sig-
nificant differential between the core and skin temperature is apparent
and expected. The core temperature uniformity is possible due to the
mandrel (cell component used in manufacturing of cells), enabling as a
low resistance thermal path and thus uniformity within the core is
present. However, this observation will vary between different cell
constructions as previous studies [18] using distributed core measure-
ments identified a clear temperature differential within the core. Fur-
thermore, the temperature sensors responded with no visible lag and
have a temperature sensitivity of 0.1 °C, concluding that the readings
obtained are highly accurate and stable.
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3.2. Stability of the smart cell systems

Here we evaluate the stability of the sensor for long-term, operando
measurement in the harsh environment of the cells. We also show that
the integration of the distributed sensor does not affect the performance
of the cells. In particular, we evaluate the sensors readings stability and
the cell capacity retention, a commonly agreed indicator of the Li-ion
cells’ SoH. Typically, cells are considered at their end-of-life when the
capacity falls below 80% of the rated value [34].

3.2.1. Stability of the sensors
It is important that the sensors do not suffer any negative impact

due to their operation within the corrosive environment of the cells.
Exposure to the organic solvents and HF present in the electrolyte leads
to rapid corrosion of any uncoated tracks and sensing elements. The
stability of the distributed sensor was evaluated by comparing the
readings of pristine, uncoated sensor and sensors coated with a 1 μm
thick Parylene C layer. Fig. 3(A) shows the temperature data of a coated
and uncoated sensors, positioned in a cylindrical cell in the same lo-
cation. A 10 h measurement is sufficient to show major discrepancies
between uncoated sensor (broken line) and the coated sensor (solid
line). The erratic behaviour of the uncoated sensors, noted after
100min only, is due to the corrosion of the sensor as confirmed by the
broken sensor analysis - shown in the supplementary materials. The
coated sensors were also evaluated for long-term stability and were
successfully embedded in cells for 3 months under normal conditions,
suggesting that such sensors can be used during the lifetime of cells in
regular deployment. Cycled sensors are also analysed post-mortem in a
later section, where no visible degradation is noted.

3.2.2. Time domain analysis – cyclic aging
Next, it is important to show that the integration of the sensor does

not have any negative impact on the cell stability. To do so, we have

Fig. 1. Lithium-ion cell in-situ and skin temperature changes
under a high current load. Heavy pulse discharge (A) is mi-
micking irregular electric vehicle acceleration until the bat-
teries are fully drained, while a high charge current (B) is
relevant to rapid charging profiles development. Panel (C)
shows a top-view X-ray image of an instrumented cell. Clear
and increasing difference between the internal and external
cell temperatures can be observed.

Fig. 2. Distributed sensor array in cylindrical cells. In this case, 5 sensors are
distributed along the length of the cell, thus ensuring no hot-spot omissions.
(A), and the corresponding cell potential (B), collected from an 18650 cell (C).

J. Fleming et al. Journal of Energy Storage 22 (2019) 36–43

39



performed cyclic aging on the cells according to the manufacturer
guidelines at a rate of 565mA (C/10) for pouch and at 1 A (C/3) charge
and 3 A (1C) discharge for the cylindrical 18,650 s. The systems under
investigation show no significant differences between modified and
unmodified cells capacity, as shown in Fig. 3(B). The data shown re-
presents capacity values extracted from 100 cycle data set – cycling
profiles are available in the supplementary material. The data presented
clearly shows that the cells have not suffered any electrolyte loss or cell
material damage that could have been incurred during cell manu-
facturing and sensors insertion.

3.2.3. Frequency domain analysis - Impedance behaviour
Another important parameter indicative of the cells’ internal health

is the electrochemical impedance response. The instrumented cells were
analysed and compared against pristine cells using Electrochemical
Impedance Spectroscopy [35] (EIS), a highly sensitive dielectric spec-
troscopy method used to observe the impedance response of a system
over a range of alternating current (AC) signal frequencies, allowing for
energy storage and dissipation properties comparison. The method is
capable of detecting issues such as minor electrolyte loss or a localized
electrode damage that would not have been detected in the time do-
main analysis conducted in the previous section. Fig. 4 represents the
evaluated cells characteristic impedance responses via Nyquist plots
and shows that the applied modifications have a negligible effect on the
overall system performance.

The EIS profile of pouch cells in Fig. 4(A–B) shows no significant
difference between normal and smart cells, although some shift in mid-
frequency region can be observed, indicative of the charge transfer
resistance increase. This shift can be explained with the surface im-
pedance increase due to the sensor covering some of the active elec-
trode area within the cell. This effect can be minimised by further op-
timising the sensors layout and substrate footprint reduction. The above
corroborates the results obtained for cell cycling data (see Fig. 3B)
confirming the negligible effect of the sensors insertion and operation
on the overall cells performances.

In case of cylindrical cells’ impedance behaviour in Fig. 4(C–D),
minor changes can be noticed in the mid- and low-frequency region,
which corresponds to the charge transfer and lithium diffusion phe-
nomena respectively. These changes are a result of to the pressure relief
caused by opening of the cells. Cylindrical cells are not normally de-
gassed after formation [36], which results in increased internal pres-
sure. Opening the cell releases this over-pressure and subsequently
unblocks pores in the electrode active material enabling easier access to
their surface. While of positive effect - reducing the diffusion and

charge transfer resistances - such changes have negligible impact on the
cell as shown in Fig. 3(B) and our previous work [16]. This phenomena
can be avoided altogether in a manufacturing environment by embed-
ding the sensing device during cell assembly instead of post-production.
Consequently, no such effect is observable in case of pouch cells EIS
responses, as the sensors were inserted during the cell production.

3.3. Smart cell construction, sensors and electrodes inspection

As the thermal responses of the cells are most often non-uniform
[37], precise placement of the sensing element is imperative for accu-
rate monitoring of their behaviour. We have used X-ray Computed
Tomography (X-TEK XTH 320 LC, Metris) to identify the most appro-
priate sensor location within the cells and to evaluate the effect of the
sensors integration on the cells.

In case of the soft pouch cell, the thermistor elements were located
at the center of the electrode stack, where significant thermal difference
is expected compared to the surface. The horizontal lines observed are
shadowing effects caused by higher X-ray beam attenuation of the
thermistor elements and are not actual physical defects.

For cylindrical cells, the location was chosen to coincide with the
core, where access is readily available and, most importantly, hot-spot
formation is highly likely due to the centralized cylindrical cell geo-
metry. Besides, in this location the sensor is less likely to damage
electrode material or interfere with internal battery processes. Fig. 5H
shows in-situ X-Ray images of the sensors inserted within a cylindrical
cell. It is noted that the cathode cap adjustment and the indirect sensor
insertion path would not be required in a manufacturing environment
as a custom made cap could be pre-made with a sensor entry point.

In order to evaluate the integrity of the sealing methods and any
potential loss of electrolyte solution, the cells were weighed using a
laboratory scale accurate to 1mg. Before and after cycling for pouch
cells and before and after modification for cylindrical cells. No differ-
ences in mass were observed, which – together with stable impedance
and cycling results - proves that the sealing method of hot-melt polymer
tape for pouch cells is an effective solution, and did not result in elec-
trolyte loss at insertion or during the cell operation.

For cylindrical cells, as the electrolyte is completely soaked into the
separator and active materials acting as a sponge, no loss is expected
during the modification. The mass before and after modification was
measured to be 45.8 g and 46 g respectively, which then remained
stable confirming successful sealing of the cell. The increased weight is
in agreement with the added mass from modification. Furthermore, as
shown by the time and frequency domain analysis conducted in this

Fig. 3. Instrumented cells - sensors comparison
(A) and cycling capacity data (B). Cells were
cycled using their standard cycling profiles be-
tween 2.5 V and 4.2 V. Panel (A) shows how
uncoated sensors (broken red line) fail almost
instantly in the harsh cell environment, while
the applied Parylene coating (solid green line)
resolves this issue, ensuring sensor longevity.
Panel (B) indicates that good capacity retention
is present, on par with the non-modified cells,
proving the negligible modification impact
point over 100 full cycles (For interpretation of
the references to colour in this figure legend,
the reader is referred to the web version of this
article).
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study, the modification procedure had no noticeable effect upon the cell
performance.

We then evaluated the influence of the long-term operation of the
coated sensors within the harsh cells environment by observing used
sensors under a microscope. Fig. 6(A–E) show coated sensors removed
from the cells after 1 month of cycling under normal conditions. It is
apparent that the thermistor elements and copper tracks are intact.
Fig. 6(F) shows a detail of the negative electrode material that was in
close proximity to the sensor. Our concern in this area was a potential
for lithium plating and capacity loss because the electrode area covered
by the sensor could have increased surface impedance and limited ac-
cess. The sensor inherent mechanical design indicates that a slight
bump can be present where the thermistor elements are located. It is
important to evaluate this parameters, because such bumps, if

geometrically significant, can lead to electrolyte welling and sub-
sequent lithium plating, or in extreme cases mechanical damage. This
can be especially pronounces when under pressure that cells experience
when assembled into a real-life large scale battery system. However, it
was found to be of negligible effect on the cells performance, despite
the added pressure, as shown in the previous impedance and cycling
ageing undertaken in this study. The result are overall very promising
for the sensing methodology shown here, which, with further reduction
of the sensing array surface area and mechanical height of the elements,
can be seamlessly integrated into the manufacturing process, leading to
a range of smart cell devices.

Fig. 4. EIS study of the cylindrical and pouch cells pre- and post-modification. It is visible that sensors insertion causes negligible changes to the cells’ EIS responses.
Pouch cell responses are shown in panel A and B, 100% and 0% SoC respectively, while cylindrical cell behaviour is represented in panel C (100% SoC) and D (0%
SoC).

Fig. 5. Smart cells construction. (A) and (E) show unmodified cells, (B) and (F) represent sensor inserted during manufacturing, (C) and (G) are images of complete
instrumented cells and (D) and (H) show in-situ X-ray images of the cells post-modification.
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4. Conclusions

The objective of this study was to develop and evaluate a novel in-
situ sensing methodology for Li-ion energy storage. We propose a
widely applicable smart cell concept enabling unprecedented high-
precision in-situ and operando thermal monitoring of pouch and cy-
lindrical format batteries. High-fidelity thermal responses from inside
the cell were successfully monitored under various cycling conditions,
most notably demonstrating a significant divergence between the core
and skin cell temperatures, impacting the perceived cell safety.
Importantly, our smart cells successfully detected rapid temperature
changes with no response lag. Moreover, we have demonstrated that
the cell charging time can be significantly reduced without compro-
mising the thermal safety limit. We have also shown that under parti-
cular scenarios safety limits can be breached earlier than the external
sensors would indicate, leading to a false sense of security or faster
degradation. The sensor topology, polymer encapsulation and the cell
modifications to adapt the sensing methodology were proven to be
durable, enabling long term in operando monitoring while having no
adverse effect on the cells performance.

To thoroughly evaluate the smart cells design, we used several in-
depth characterisation methods - X-ray imaging was used to confirm the
central location of the sensors, essential for hot-spots detection; elec-
trochemical impedance spectroscopy and repetitive cycling over a
sustained period of time was deployed to assess the cell’s electro-
chemical performance as on-par with unmodified commercial cells.
Finally, a full cell tear-down and sensor inspection followed confirming
the sensors resistance to the cell’s harsh internal environment, key to
long-term operation of the smart cells.

This work shows that our proposed in-situ sensing approach has the
potential to drive improvement in both performance and operational
safety mapping. The thermal data gathered with the use of the smart
cells represents a vital source of key information, critical for the battery
management systems to maintain a most optimal performance and an
up-to-date understanding of the cells State of Health during deployment
in real-life scenarios. Finally, it is foreseen that the sensing metho-
dology developed here will support the design, research and rapid
prototyping of new cells and smart battery modules, enabling con-
siderably greater performance to be safely harnessed from these in-
creasingly prevalent Li-ion energy storage systems.
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