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H I G H L I G H T S

• A novel in-situ thermo-electrochemical cell instrumentation method is developed.

• A range of reference electrode options is evaluated.

• Fibre optics are used to monitor temperature inside cylindrical cell's core.

• Instrumentation developed is used to measure performance of a commercial Li-ion cell.

• Cell instrumentation proposed is applicable to a wide range of cell formats.
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A B S T R A C T

The performance evaluation and optimisation of commercially available lithium-ion cells is typically based upon
their full cell potential and surface temperature measurements, despite these parameters not being fully re-
presentative of the electrochemical processes taking place in the core of the cell or at each electrode. Several
methods were devised to obtain the cell core temperature and electrode-specific potential profiles of cylindrical
Li-ion cells. Optical fibres with Bragg Gratings were found to produce reliable core temperature data, while their
small mechanical profile allowed for low-impact instrumentation method. A pure metallic lithium reference
electrode insertion method was identified, avoiding interference with other elements of the cell while ensuring
good contact, enabling in-situ observations of the per-electrode electrochemical responses. Our thermo-elec-
trochemical instrumentation technique has enabled us to collect unprecedented cell data, and has subsequently
been used in advanced studies exploring the real-world performance limits of commercial cells.

1. Introduction

Lithium-ion cells have established themselves as the dominant fa-
mily of cell chemistries for portable electronics [1], electric vehicles [2]
and battery grid storage [3]. However, despite substantial improve-
ments in energy density over the past quarter of a century, Li-ion cells
remain the performance-limiting factor in the aforementioned appli-
cations. High-energy Li-ion cells suffer from high internal resistance
[4], which can result in excessive temperature increases under high
load or charging currents, with the possibility of the cell undergoing
thermal runaway [5] and explosion. The high internal resistance also
increases the overpotential of the cell, which can drive the anode and
cathode potentials outside of their respective safe operating windows,
resulting in capacity loss due to lithium plating and electrolyte de-
composition. While these factors are well known, application of this
knowledge to real-world cell design can be challenging. This is because
commercial cells are hermetically sealed two-electrode systems with no
internal temperature sensors and therefore no way of monitoring the

core temperature or electrode-specific potentials. As such, this usually
results in the use of conservative safety limits based on full cell po-
tential and surface temperature, which do not allow the cell's actual
limits to be fully exploited. Therefore, a number of cell instrumentation
techniques were trialled on commercial 18650 cylindrical cells in an
attempt to obtain individual anode and cathode potentials and in-situ
core temperature profiles, with minimal impact on the electrochemical
characteristics of the cell.

Previous studies have investigated the incorporation of a reference
electrode into cylindrical cells [6–12]. While many of these have in-
volved the fabrication of cells from scratch in the laboratory [8–10],
some have involved adding reference electrodes to commercial cells
[6,7,11,12]. However, the invasive nature of the insertion techniques
risks either damaging the cell or changing its performance character-
istics. Drilling into the core of the cell [11] can cause a short circuit by
leaving metal burrs from the cell can in the core, or directly damaging
the electrode jellyroll if the drill bit is imperfectly aligned. Adding more
electrolyte to the cell [12] lowers its internal resistance [13], and thus
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alters its electrochemical performance limits and behaviour. If the
electrolyte in question does not match the original contents of the cell,
this can result in the formation of a different Solid Electrolyte Inter-
phase (SEI) vs. that formed in an unmodified cell [13], which can fur-
ther alter the electrochemical characteristics of the cell. Another study
submerged an opened cylindrical cell into a vessel of electrolyte next to
a reference electrode [7], which not only exacerbates the previous
issue, but also affects the accuracy of the measured potential profiles
due to the increased distance between the reference electrode and the
jellyroll. Therefore, building on from previous success with the in-
strumentation of commercial pouch cells [14], we attempted to apply
this minimally invasive electrochemical instrumentation technique to
the more challenging cylindrical cell format, and developed further
modification techniques that were tailored to this specific application.

Core temperature sensing in cylindrical cells has previously in-
volved the use of thermocouples [15–20], which measure only a single
temperature point and are incapable of multiplexing onto a single wire;
are subject to electrical interference; are a spark risk due to current
carrying wires; can adversely impact the cell performance unless
properly insulated; and require a cold junction element and extra ca-
libration since they measure relative changes in temperature. This study
pioneers the use of optical fibres utilising Fibre Bragg Grating (FBG) for
cell temperature measurements which, by virtue of having no current
carrying components, bypass the issues mentioned above. The use of
optical fibres paves the way for multipoint temperature measurements
using a single sensing element, as a number of FBGs can be placed on a
single thread, providing multiple temperature measurement points
using a single low-profile non-electrical sensor. Here, we will focus on
obtaining accurate temperature profiles of a cell core using a single FBG
on the optical fibre to prove that FBGs can be employed successfully in
this application.

In this work we describe the approach and methodology leading to a
fully thermo-electrochemically instrumented Li-ion cell. The in-
strumentation devised here offers an unprecedented view of the in-
ternal cell thermodynamics, enabling assessment of real thermal and
electrochemical performance limitations. An array of modification
techniques is illustrated in detail, offering a solution to the lack of
understanding of the in-situ operating parameters of Li-ion cells. This is
of importance to researchers and engineers working on current and new
cell generations, enabling significant performance improvements
without jeopardising safety.

2. Experimental

The cells considered in this study are high-energy commercial
18650s based on nickel cobalt aluminium (NCA) chemistry. Prior to
modification, all cells were discharged to their minimum operating
voltage of 2.5 V as specified by the manufacturer, and transferred to an
argon glove box with O2 and H2O concentrations below 0.1 ppm.
Reference electrodes and optical fibre sensors were prepared in ad-
vance, and the cells were modified according to one of the following
techniques as described below and shown in Figs. 1 and 2.

2.1. FBG core temperature sensor

The FBG sensors used in this study for temperature measurements
are based on raw silica fibres connected to a Yokogawa AQ6370 spec-
trum analyser, a three-port optical circulator (Thor Labs) and an optical
coupled laser source with a nominal broadband light spectrum of
1525–1590 nm as the data transmission method. When sensing tem-
perature using an optical fibre, ultraviolet light is used to etch an FBG
onto the fibre. The FBG consists of a periodic pattern of etching of a
given distance apart, i.e. a grating. Once etching is complete and the
optical fibre has been inserted into the cell, light from the broadband
light source is injected down the fibre via the three-port optical coupler.
The FBG is transparent to most of the broadband light, but reflects a

small portion of light back up the fibre; this frequency band is then
detected by the spectrum analyser. The reflected light combines to
produce the strongest signal at a wavelength that is equal to double the
distance between the gratings, known as the Bragg wavelength and
defined in Equation (1):

λBragg=2nΛ [1]

where λBragg is the Bragg wavelength, n is the refractive index and Λ is
the space between the Bragg gratings. Changes in temperature or me-
chanical strain on the fibre cause the distance between the gratings to
alter, resulting in a change in the FBG's refractive index, which in turn
causes a change in the Bragg wavelength of light reflected back up the
optical fibre. Since λBragg is dependent on Λ, multiple FBGs with unique
spacings between their gratings can be used on a single fibre. It can be
seen from Equation (1) that there is a linear relationship between the
Bragg wavelength of the FBG and its temperature or mechanical strain.
However, differentiating between these two parameters can be chal-
lenging. This can be resolved in two ways. One approach is to exclude
the unwanted strain or temperature effect by eliminating the response
in the sensing element itself, e.g. by adding strain relief. An alternative
solution is to incorporate a second FBG sensor in near proximity that is
isolated from the disturbance in question, then subtract the difference
in wave shift from the first FBG sensor [21]. The FBGs used in this study
have a manufacturer-specified temperature conversion factor of 11
p.m./°C.

The FBG sensors evaluated in this work were Single Mode SMF-28
9/125 μm fibres sealed with cladding and a polyimide recoat during
manufacture, which provided temperature stability in the range of
-270 °C to 300 °C. However, optical fibres in their bare form would also
be exposed to corrosive chemicals present in Li-ion cells, leading to
fibre degradation. Therefore, the fibres were sealed in an outer skin of
1.6 mm diameter fluorinated ethylene propylene (FEP) sleeving to
prevent the fibre from being affected by the electrolyte solution present

Fig. 1. Optical fibre assembly detail.

E. McTurk et al. Journal of Power Sources 379 (2018) 309–316

310



inside the Li-ion cell whilst still being able to fit inside the 2mm dia-
meter core of the jellyroll. A length of FEP was previously immersed in
electrolyte solution for two weeks to assess its chemical resistance – no
degradation was observed. Since the thermal expansion of the FEP film
would impose strain on the fibre, the fibre was inserted into a 0.5 mm
diameter tube of aluminium (Albion Alloys) used as strain relief prior to
being given an FEP outer skin. Fig. 1 shows the complete diagram of the
custom fibre assembly as incorporated into a cylindrical cell.

Each prepared FBG sensor was incorporated into the cathode cap
from an 18650 cell via a hole drilled in the middle of the cap using a
pillar drill, thus allowing the optical fibre to exit the cell. The opening
was subsequently sealed using a silicon sealant. During the cell mod-
ification, the cell's original cathode cap was removed using a ceramic
pipe cutter. The cathode current collector was cut from the cap and
slung over the side of the cell. After placing the fibre sensor in the cell's
mandrel core, the modified cathode cap was placed in position and
sealed with Kapton tape and epoxy resin. Post-modification, the FBGs
were calibrated in-situ in a thermal chamber to remove any influence of
the residual mechanical strain on the fibre. Earlier design iterations also
featured a K-type twisted pair thermocouple co-inserted with the op-
tical fibre to support the initial temperature measurements. The results
obtained using the thermally instrumented cells are shown in Fig. 3.

2.2. Li-plated Cu wire reference electrode

Bare 0.5 mm copper wire was electroplated with lithium inside the
glove box following the technique outlined in Ref. [14].

The cathode cap of the cell was removed as previously described,
and the stainless steel mandrel core of the cell was then removed using
insulated tweezers. The Li-coated Cu wire was then placed in the
mandrel core and bent at ninety degrees to allow it to exit the cell
between the cathode cap and the cell can. The segment of copper wire
protruding from the cell was not electroplated with lithium, thus al-
lowing it to be used as a reference sense connector when connecting the
cell to a potentiostat. The cathode cap was then replaced and adhered
to the can with PTFE tape and epoxy resin.

2.3. 2-in-1 thermo-electrochemical sensor

A hybrid sensor based on the above two instrumentation procedures
was developed. This consisted of an FBG optical sensor, insulated as per
Section 2.1, inserted into a 2mm diameter Li-electroplated copper tube.
No additional separator material was required for the reference elec-
trode because the inner winding of the jellyroll consisted of separator,
thus ensuring that the reference electrode would not short circuit
against the cathode or anode. It should be noted that the insertion of the
2-in-1 thermo-electrochemical sensor into the cell did not displace any
electrolyte solution because the jellyroll is wetted with electrolyte, but
not flooded, and the Li-plated copper tube fills a void vacated by the

original steel tube in the core of the cell. The internal cathode current
collector was slung over the side of the cell can and the cathode cap was
no longer used as a terminal. The section of copper tube that touched
the cathode can upon exiting the cell was insulated with PTFE tape,
leaving the protruding end of copper bare so that it may be connected
to the reference sense cable on the potentiostat.

2.4. Li disc reference electrode

A 12mm diameter disc of Li foil, and a 15mm diameter disc of cell
separator recovered from an identical cell to the ones considered in this
study, were cut using hole punches. The cathode cap of the cell was
removed as before, and the internal cathode current collector cut at the
cap end and slung over the side of the cell. The separator and Li disc
were then placed on top of the jellyroll, with the cathode cap forming
the reference electrode terminal when it was placed back on the cell
and sealed as previously described.

2.5. Pt wire reference electrode

Platinum wire was also considered as a reference electrode in this
study due to the exceptional stability of the metal [22], which prevents
any other metals from oxidising it during an electrochemical reaction.
Platinum wire wrapped in separator was placed on top of the jellyroll,
and exited the cell in a similar manner to the Li-plated Cu wire. The cell
was then sealed with PTFE tape and epoxy resin.

2.6. Li tongue reference electrode

A piece of lithium foil measuring approximately 0.7 cm×3 cm was
wrapped in separator in a dry room with a dew point below -40 °C. A
copper wire current collector was attached to the open end of the li-
thium strip. The entire assembly was then wrapped in Kapton tape, with
the exception of a small window of separator measuring approximately
0.7 cm×0.7 cm to allow ionic contact with the top of the jellyroll. A
spacer made from a roll of Kapton tape was placed on top of the
wrapped foil, on the opposite side to the exposed window. The re-
ference electrode was then transferred into the glove box and placed on
top of the jellyroll of an opened cell. The length of insulated lithium was
sufficient to sling outside of the cell. The cathode cap was replaced, and
the cap and reference were sealed with Kapton tape and epoxy resin.

Modified cells were then cycled at 1C inside a thermal chamber at
25 °C using a Biologic VMP3 potentiostat. Cell stability and perfor-
mance were subsequently compared vs. unmodified cells.

3. Results and discussion

The 2-in-1 thermo-electrochemical sensor was the first instrument
to be considered in this study. As shown in Fig. 3, the FBG sensor

Fig. 2. Illustration of the instrumentation techniques used in this study, namely the 2-in-1 thermo-electrochemical sensor (a), Li disc (b), Pt wire (c) and Li tongue (d).
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provided a cell core temperature profile that was in excellent agreement
with readings from the K-type thermocouple that was co-inserted into
the cell. Furthermore, the sealed optical fibre was not affected by the
electrolyte and was able to be reused in other cells. As can be seen in
Fig. 4(a) and (b), the data obtained showed that the cell core tem-
perature was as much as 5 °C higher than the surface of the can at the
end of a 1C discharge from 100% to 0% State of Charge (SoC). The same
temperature differential is observed at the end of a 1.5C rapid charge
from 0% SoC to Vmax, i.e. the maximum voltage stated on the cell
specification sheet. This C-rate is five times the recommended charging
current stated by the manufacturer. This highlights the importance of
understanding the temperature distribution throughout the cell during
cycling, since any thermal limits based on the surface temperature
could allow the core to exceed thermal safety limits, compromising the
stability of the electrode material and leading to thermal runaway.

Following on from the successful use of a similar reference electrode
insertion procedure on commercial pouch cells [14], it was expected
that the modification technique would be readily transferrable to other
cell formats. However, as shown in Fig. 4(c), the electrode-specific
potential profiles show a marked drift over successive cycles. This issue
stems in part from the location of the reference electrode in relation to
the jellyroll. Only the anode faces inwards into the cell core, and the
cell only contains enough electrolyte to wet the electrodes, without
flooding the cell. As such, the reference electrode does not have reliable
ionic contact with both the anode and cathode, which results in in-
accurate potential readings. This theory was explored by using a pre-
viously reported technique [7] whereby the can is opened at the
cathode end and submerged into a beaker of electrolyte with an ad-
jacent lithium reference electrode. However, multiple attempts to use
this method resulted in the submerged end of the cell can being elec-
troplated with dendritic metallic growths and the submerged current
collector being heavily corroded during cycling.

Fig. 4(d) also shows that the anode and cathode potentials recorded
by a reference electrode abruptly dropped by 2 V despite the full cell
potential remaining stable. This highlighted an issue with the quality of
the seal formed on the insulated outer parts of the copper tube, which
were insufficient to stop electrolyte from seeping underneath, estab-
lishing ionic contact with copper and thus interfering with the potential

measurements. Further studies with the Li-plated Cu wire method did
not rectify either issue, and thus prompted a change in design strategy
for the reference electrode.

The Li disc procedure was developed to address the issue of ionic
contact with both electrodes in the cells and remove the need for se-
lective insulation of segments of reference electrode terminal. However,
as shown in Fig. 5, the electrode-specific potential profiles still drifted,
with some reference electrodes completely failing after a handful of
cycles. Post-mortem analysis indicated that the separator had become
gelled and translucent. It transpired that the PTFE tape insulation was
allowing ingress of epoxy resin, which was reacting with the separator
and destroying the reference electrode. The PTFE tape was subse-
quently replaced with Kapton tape, since this is commonly used inside
commercial cells to hold separators in place and insulate current col-
lectors. Although this rectified the issue of epoxy resin ingress, the
anode and cathode potential profiles still drifted. It was suspected that
the cathode cap, made of stainless steel, may have become wetted with
electrolyte and started to interfere with the electrode measurements in
a similar manner to the Cu wire previously, since the cap formed the
reference electrode terminal in the design. Therefore, a more stable
reference electrode metal that acted as its own terminal was sourced to
obtain the most reliable reference readings possible.

Fig. 5(b) shows the electrode-specific potential profiles obtained
when using a platinum wire reference electrode. Despite platinum's
thermodynamic stability [22], and the use of one continuous piece of
metal as both the reference electrode and terminal, the voltage profiles
still drifted. While some degree of change in electrode potential profiles
may be expected in fresh cells due to the SEI formation process, such
marked and continuous drift was not observed in the previous study
concerning pouch cells. This prompted an investigation into the influ-
ence of contact pressure on measured potentials, using the Li tongue
modification method.

As shown in Fig. 6(a), the Li tongue modification procedure re-
moved the potential drift issue encountered with previous reference
electrode designs. The Kapton tape spacer introduced ensured con-
sistent and reliable ionic contact with the jellyroll, and the fact that
lithium was the only metal component of the reference electrode pre-
sent inside the cell guaranteed no foreign metal contamination [22].

Fig. 3. Temperature profiles obtained using thermocouple (a) and fibre optic sensor (b) instrumented cell.
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The Kapton insulation surrounding nearly the entirety of the reference
electrode also prevented the stainless steel can from shorting with the
electrode and influencing the measured potentials, providing stable
readings for over 50 cycles. No change in post-modification mass was

observed after cycling, thus showing that the modified cells were her-
metically sealed and no electrolyte had evaporated. As shown in
Fig. 6(b), the Li tongue reference electrode can be used in parallel with
the FBG sensor to obtain real-time thermo-electrochemical data from

Fig. 4. Comparison of can and core temperatures recorded using a 2-in-1 thermo-electrochemical sensor (a), obtained during the rapid charging procedure for which the current and
corresponding full cell voltage response are shown in (b). An example of reference electrode drift (c) and sudden failure (d) is shown.
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the jellyroll and cell core during cycling. Finally, as illustrated in
Fig. 6(c), EIS data from Li tongue cells shows that the modification
procedure has no impact on the impedance of the cells, thus indicating
no electrolyte leakage or other negative impacts of the modification
procedure. Therefore, the procedure provides highly representative

data on cell performance vs. an unmodified cell. As the Li tongue re-
ference electrode was proven to be the best approach in recording
electrode-specific potentials, it was subsequently used for the evalua-
tion of real performance limits of 18650 commercial cells, to be pub-
lished in a separate study, showing the use of the instrumentation

Fig. 5. Anode, cathode and full cell potential profiles of a cell with Li disc (a) and Pt (b) reference electrode. The noise in the electrode-specific potential profiles (a) as the reference
electrode and separator was attacked by epoxy resin is highlighted.
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methods developed in this work in a real-world application.

4. Conclusions

Six instrumentation techniques were devised to determine the core
temperature and electrode-specific potential profiles of commercial li-
thium-ion cylindrical cells. The FBG optical fibre technique has proven
to be a discreet and reliable method of measuring cell core tempera-
tures, and one that can easily be scaled to include multiple temperature
measurement points along the axis of the cell. The observed

temperature differential between the core and can temperature, even
during relatively mild cycling conditions, provides an insight into a
possible cause of uneven aging and degradation of the jellyroll across its
diameter and axis, and also underlines the need to consider maximum
core temperatures when specifying thermal limits based on can tem-
perature alone. The insertion of reference electrodes into cylindrical
cells highlighted the influence of ionic contact with the anode, cathode
and reference electrode terminal, as well as contact pressure with the
jellyroll, in obtaining stable and repeatable electrode potential profiles.
The Li tongue reference electrode method managed to overcome these

Fig. 6. The anode, cathode and full cell potential profiles for a cell fitted with the Li tongue reference electrode. No potential drift is observed (a). The ability of the Li tongue reference
electrode and FBG temperature sensor to work in parallel is illustrated in (b). A Nyquist plot comparing the impedance of the cell pre- and post-modification is shown in (c).
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obstacles and provide drift-free data for the experiments considered in
this study. The thermo-electrochemical instruments developed in this
study are transferrable across cylindrical and other cell formats, pro-
viding a powerful tool enabling us to unlock the full performance
capability of the cell chemistries of today and tomorrow.
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