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Modelling and Control of Gene Regulatory
Networks for Perturbation Mitigation

Mathias Foo , Jongrae Kim , and Declan G. Bates

Abstract—Synthetic Biologists are increasingly interested in the idea of using synthetic feedback control circuits for the mitigation of

perturbations to gene regulatory networks that may arise due to disease and/or environmental disturbances. Models employing

Michaelis-Menten kinetics with Hill-type nonlinearities are typically used to represent the dynamics of gene regulatory networks. Here,

we identify some fundamental problems with such models from the point of view of control system design, and argue that an alternative

formalism, based on so-called S-System models, is more suitable. Using tools from system identification, we show how to build

S-System models that capture the key dynamics of an example gene regulatory network, and design a genetic feedback controller

with the objective of rejecting an external perturbation. Using a sine sweeping method, we show how the S-System model can be

approximated by a linear transfer function and, based on this transfer function, we design our controller. Simulation results using the full

nonlinear S-System model of the network show that the synthetic control circuit is able to mitigate the effect of external perturbations.

Our study is the first to highlight the usefulness of the S-System modelling formalism for the design of synthetic control circuits for gene

regulatory networks.

Index Terms—System identification, gene regulatory networks, feedback control systems, S-System model

Ç

1 INTRODUCTION

IN complex engineering networks such as transportation
systems, power grids, irrigation networks, etc, the pres-

ence of external perturbations can have serious adverse
effects on the functioning of the overall system. These unde-
sirable effects include gridlock in the movement of vehicles,
major power outages in residential and industrial areas,
and unreliable water supply to farming areas. In view of
this, the problem of developing a comprehensive theory of
network control, particularly in the presence of perturba-
tions, has recently been the subject of intensive studies that
have provided many useful tools for the control of complex
networks (see, e.g., [1], [2], [3], [4], [5]).

Due to advances in this area, synthetic biologists have
recently began to investigate the application of the afore-
mentioned tools to the control of biological networks and
systems. Some notable examples can be found in [6], [7], [8],
[9], [10], where strategies based on feedback control theory
have been used to analyse the controllability, observability
and stability of biological networks such that appropriate
sets of control design rules can be developed.

In this paper, we focus our attention on the control of
gene regulatory networks. The ability to control the dynam-
ics of gene regulatory networks using feedback, especially

in the presence of perturbations, has many potential appli-
cations in the field of synthetic biology, where synthetic cir-
cuits can be developed to implement the proposed
controllers and hence curb the effect of external perturba-
tions due to disease or environmental changes. We investi-
gate what types of network models are most appropriate to
describe gene regulatory networks for the purposes of feed-
back controller design, and show how system identification
techniques can be used to build such models based on avail-
able gene expression data. Using the identified models, we
design a feedback controller that can be implemented genet-
ically in order to mitigate the effect of perturbations that
enter the network.

The paper is organised as follows. In Section 2, we present
an example gene regulatory network for which we need to
build a model for the purposes of control system design. In
Section 3, we evaluate different types of possible models for
gene regulatory networks from the perspective of controller
design. Based on this analysis, in Section 4 we propose a sys-
tem identification approach for building models of gene reg-
ulatory networks based on the so-called S-Systemmodelling
formalism. The corresponding controller design procedure
for perturbation mitigation is described and closed-loop
simulation results are provided in Section 5. Conclusions are
given in Section 6. An early version of this work was
presented in [11].

2 EXAMPLE GENE REGULATORY NETWORK

The DREAM in silico gene regulatory network challenge
was established to serve as a benchmark to assess different
proposed approaches to infer gene regulatory networks
from given experimental data [12], [13], [14]. Typically,
time-series data for each gene (or node) in the network are
provided and the aim is to infer the underlying network,
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i.e., identify interconnecting edges, the direction of informa-
tion flow, etc. The provided gene regulatory networks are
typically subsets of actual transcriptional networks in model
organisms such as E. coli and S. cerevisiae, and hence are rep-
resentative of real biological systems.

In this paper, we choose the DREAM3 Size 10 data set
(hereafter we use the termDREAM3 to denote this network),
which consists of mRNA temporal data on a network com-
posed of 10 interconnecting genes that is a subset of a S. cere-
visiae gene regulatory network. As the dataset does not
include separate protein data, in the following, we make the
following two assumptions: (i) the temporal evolution of the
protein is similar to the mRNA and (ii) the protein is linearly
translated from mRNA. Following these two assumptions,
we can lump the protein dynamics into the transcription
rate of the mRNA at steady state, and this results in a com-
plete network that can be described solely using mRNA
levels. In this DREAM3 data set, information regarding the
interconnectivity between each gene is provided, while the
regulation type (i.e., activatory or inhibitory) is unknown.
The depiction of these interactions is shown in Fig. 1A. To
facilitate the controller design procedure, a model describ-
ing the dynamics of the DREAM3 network is required, and
in the following section, we discuss the selection of an
appropriate modelling formalism for the DREAM3 gene
regulatory network.

3 MODEL FORMALISMS FOR CONTROLLER DESIGN

3.1 Michaelis-Menten and Hill-Type Models

Model structures employing Michaelis-Menten and Hill-
type nonlinearities are commonly used to describe the
dynamics of gene regulatory networks. If the regulation
type and the cooperative binding are known, the modeller
can either specify

Fa ¼ k0N
h
P

KM þNh
P

; (1)

for an activation type of regulation or

Fi ¼ k0

KM þNh
P

; (2)

for an inhibition type of regulation. In both Eqns. (1) and (2),
NP is the transcription factor, k0 andKM are associated with
the Michaelis-Menten constants and h is the Hill coefficient.

In the context of network inference, this type of model
structure can be used only if the type of regulation (activa-
tory or inhibitory) between each gene in the network is
known. In the event that the type of regulation is unknown,
then this model structure is not suitable as the structure of
an activation or an inhibition type of regulation is different
and arbitrarily assigning them in the model building stage
could thus lead to poor model accuracy.

A more fundamental problem in the context of synthetic
biology is that models of this type are often not suitable for
subsequent use in the design of synthetic controllers. For
example, let us consider Eqn. (1) and assume that our con-
trol action (i.e., output of the controller) is given by NP . If
NP � KM , then Fa � k0N

h
P=N

h
P ¼ k0, which renders the

control action ineffective. It is thus imperative that the value
of KM should be sufficiently large to ensure proper control,
but as we will show below, obtaining a reliable estimate of
KM from time series data is often problematic.

To illustrate the problem, we consider a model of a sim-
ple gene regulatory network taken from [15], consisting of
seven interconnecting genes, as shown in Fig. 2, based on a
subset of an E. coli gene regulatory network. Assume that

Fig. 1. (A) DREAM3 gene regulatory network. Purple circles represent genes and red rectangles represent external inputs. The arrow denotes the
direction of the regulation. (B) Using system identification, the types of regulation in the network are identified. Arrow head indicates activation and
Bar head indicates inhibition. (C) Proposed control design configuration for rejecting the effect of perturbation. The pathway highlighted in yellow indi-
cates the series of regulations involved from the control action, U3 to the output gene,N1.

Fig. 2. Model of a gene regulatory network taken from [15] whose dynamics
are represented using Michaelis-Menten kinetics and Hill-type nonlinearities.
For this illustration, the controller, K is a simple proportional-integral (PI)
controller with the controller gains, Kp ¼ 0:01 and KI ¼ 0:02. The pathway
highlighted in yellow indicates the series of regulations involved from the con-
trol action,U to the output gene,N3.
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an external perturbation enters the network through gene 1,
its effect on gene 3 is measured, and fed back to a controller
that regulates gene 6 through the input U . Using the stan-
dard modelling framework employing Michaelis-Menten
kinetics and Hill-type nonlinearities, the associated Ordi-
nary Differential Equations (ODEs) describing Fig. 2 are
given as follows:

dN1

dt
¼ k0;1

ðKM;1 þDhÞ þ g1N1

dN2

dt
¼ k0;2

ðKM;2 þNh
1 Þ

þ k0;3N
h
3

ðKM;3 þNh
3 Þ

þ k0;4N
h
7

ðKM;4 þNh
7 Þ

þ g2N2

dN3

dt
¼ k0;5N

h
1

ðKM;5 þNh
1 Þ

þ k0;6

KM;6 þNh
2

þ k0;7N
h
5

ðKM;7 þNh
5 Þ

þ k0;8N
h
7

ðKM;8 þNh
7 Þ

þ g3N3

dN4

dt
¼ k0;9

ðKM;9 þNh
1 Þ

þ g4N4

dN5

dt
¼ k0;10

ðKM;10 þNh
2 Þ

þ g5N5

dN6

dt
¼ k0;11U

h

ðKM;11 þ UhÞ þ g6N6

dN7

dt
¼ k0;12N

h
4

KM;12 þNh
4

þ k0;13N
h
6

KM;13 þNh
6

þ g7N7;

(3)

where k0;j, KM;j with j ¼ 1; 2 . . . and h are the parameters
associated with the Michaelis-Menten coefficients and Hill-
type nonlinearities, and g is associated with the degradation
term. Without loss of generality, for the purposes of illustra-
tion, we choose h ¼ 1. The rest of the parameters describing
Eqn. (3) are shown in Table 1. These parameters are esti-
mated from available experimental data in [15], where one
data set is used for parameter estimation and an indepen-
dent data set is used for model validation. The parameters
are estimated using the prediction error method with qua-
dratic criterion, i.e.,

Q̂ ¼ argmin
Q

1

L

XT¼7

i¼1

XL
t¼1

½NiðtÞ � N̂iðt;QÞ�2; (4)

where T is the number of genes, L is the length of the data,
Q ¼ fk0;j; KM; gjg with j denotes the appropriate index
describing the parameters in Eqn. (3). Ni and N̂i represent
the real experimental data and simulated data from Eqn. (3)
respectively. Eqn. (4) is solved using MATLAB function
fminsearch, which uses the Nelder-Mead simplex algorithm.
For the controller, we choose a standard proportional-
integral (PI) controller with the proportional gain,KP ¼ 0:01
and the integral gainKI ¼ 0:02, where these parameters can
be selected using standard rules, such as the Ziegler-Nichols
tuning rules (see, e.g., [16]).

In our simulation, shown by the solid blue line in Fig. 3,
when the perturbation enters the network at time 0s it
causes the expression level of N3 to drop from its intended
reference value of 0.718 (Fig. 3A). Upon sensing this drop in
the expression level, the controller asserts appropriate con-
trol action, U (Fig. 3C) in its attempt to bring the expression
level of N3 back to 0.718. However, as shown in Fig. 3A, a
full recovery of the output to its intended reference value is
not achievable. This is because in the controller’s attempt to
perform the needed recovery, the exerted control action U
becomes larger than KM;11, thus the term k0;11U=ðKM;11 þ
UÞ � k0;11 ¼ 0:6541, which is shown in Fig. 3D. This implies
no appropriate control action can be given to the network to
counter the effect of the perturbation, resulting in a large
error between the output and reference value (Fig. 3B). In
reality, however, this may not necessarily be the case - the
apparent limitation is due to the estimated value of KM;11

from the available experimental data. If the value ofKM;11 is
sufficiently larger than U , the ‘saturation’ issue is avoided.
In addition, a closer look at the series of regulation along
the pathway highlighted in yellow shown in Fig. 2 indicates
that the values ofKM;8 andKM;13 also need to be sufficiently
large in order to achieve a proper control action and recover
the levels ofN3.

The problems identified above are due to the values of
KM;11, KM;8 and KM;13 that are estimated from the available
experimental data. These estimated values are relatively
small when compared to the necessary control action,

TABLE 1
Parameters for the NetworkModel Shown in Fig. 2 Using

Michaelis-Mentenwith theHill-TypeNonlinearitiesModel Structure

Gene Parameter Values

N1 k0;1 = 0.0362,KM;1 = 0.1259, g1 = -0.4060,

N2

k0;2 = 1.0106,KM;2 = 1.7937, k0;3 = 0.3550,
KM;3 = 1.2069, k0;4 = 0.7472,KM;4 = 1.2858,
g2 = -2.1362

N3

k0;5 = 2.4007,KM;5 = 0.8218, k0;6 = 0.8511,
KM;6 = 1.7099, k0;7 = 2.8247,KM;7 = 1.6656,
k0;8 = 0.6081,KM;8 = 0.0202, g3 = -3.8740,

N4 k0;9 = 0.0903,KM;9 = 0.0699, g4 = -0.7256

N5 k0;10 = 0.5264,KM;10 = 0.9600, g5 = -0.7466

N6 k0;11 = 0.6541,KM;11 = 1.0891, g6 = -0.4525

N7

k0;12 = 0.0090,KM;12 = 0.5191, k0;13 = 1.1236
KM;13 = 0.4986, g33 = -0.9473

Fig. 3. Feedback control response when perturbation enters the gene
regulatory network shown in Fig. 2. (A) Comparison with the output and
reference values. (B) Error signal between the reference and output val-
ues. (C) Control action, U. (D) The time series of k0;11U=ðKM;11 þ UÞ.
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leading to saturated responses and large errors. Thus, a nat-
ural question arises as to whether or not these values
(shown in Table 1) represent reliable estimates of these
parameters. For the network shown in Fig. 2, the estimated
values of KM;11, KM;8 and KM;13 shown in Table 1 are the
result of using 1 as the initial values for the parameters in
the optimisation problem defined in Eqn (4). If a different
set of initial values is used for the optimisation, do we
obtain similar parameter values to those shown in Table 1
particularly for KM;11, KM;8 and KM;13? To investigate this,
we repeated the parameter estimation using 0.01, 0.1, 10
and 100 as initial values for the optimisation, and the results
are shown in Figs. 4A, C and E.

The plots show that the estimated parameter values are
very different to the ones shown in Table 1. Using terminol-
ogy from the field of system identification, there is no consis-
tent estimate of the model parameters, as given different
initial values for the optimisation, the optimiser can find
different sets of parameters (see Table 2) that are equally
well able to reproduce the experimental data, as shown in
Figs. 4A, C and E.

From Table 2, we note that there is one set of parameters
that includes large values of KM;11, KM;8 and KM;13. Using
these larger values of KM;11 = 120.4219, KM;8 = 145.0575 and
KM;13 = 99.4842, we repeat the simulation of the feedback con-
troller shown in Fig. 2. As shown by the solid red line in
Fig. 3A, the same controller is now able to exert a proper con-
trol action to mitigate the effect of the perturbation, as the

value of KM;11 is now larger than the control action, U
(Fig. 3C) and no issueswith saturation are observed (Fig. 3D).

The results shown here suggest that for this typical
experimental data set and network structure, the estimated
values of the model parameters, in particular KM;11, KM;8

andKM;13, are not consistent. This clearly poses a significant
problem when designing a controller to mitigate the effects
of perturbations on this network, since different estimated
values of KM;11, KM;8 and KM;13 lead to very different
closed-loop behaviour of the control system. In light of this,
coupled with the previously mentioned need for a priori
knowledge of regulation type to use the Michaelis-Menten
with Hill-type nonlinearities model structure, an alternative
modelling formalism is clearly required in order to allow
for the rational design of feedback controllers. The alternate
model formalism needs to have a general structure that can
accommodate both activatory and inhibitory regulations,
and more importantly, the estimated model parameters
from experimental data should be consistent, so that it can
be reliably used for controller design.

3.2 S-System Models

The so-called S-System modelling formalism has been pro-
posed as an alternative approach to describe the dynamics of
gene regulatory networks. The S-System modelling frame-
work was originally developed from the field of biochemical
system theory (see, e.g., [17], [18]), and when it has been

Fig. 4. Comparison of model and experimental data for different sets of
estimated parameter given different initial values for optimisation. The
initial values used for optimisation are 0.01, 0.1, 1, 10, and 100. Only
genes in the highlighted pathway in Fig. 2 are shown. The experimental
data shown here is an independent data set that is not used for parame-
ter estimation. Left panel: Subfigures (A), (C), and (E) show the plots
using Michaelis-Menten with Hill-type nonlinearities model structure for
genes 3, 6, and 7, respectively. Here, the estimated values of KM are
close to the initial set of parameters used for optimisation. Right panel:
Subfigures (B), (D), and (F) show the plots using S-System model struc-
ture for genes 3, 6, and 7, respectively. The notation p0 denotes the
parameter set obtained when initial value of 1 is used for the optimisation
(shown in Table 1). The notation p : 0:1; 1; 10 ! p0 indicates the esti-
mated parameters using initial values of 0.1, 1 and 10 are similar to p0.

TABLE 2
Estimated Parameters Given Different Initial Values

for Optimisation as Shown in Fig. 4A, C, and E

Initial
Value

Gene Parameter Values

0.01 N3 k0;5 = 1.6657,KM;5 = 0.7744, k0;6 = 1.2067,
KM;6 = 2.1379, k0;7 = 1.0197,KM;7 = 0.4737,
k0;8 = 0.8413,KM;8 = 1.4508, g3 = -2.9516,

N6 k0;11 = 0.3914,KM;11 = 0.0118, g6 = -0.5621
N7 k0;12 = 0.0093,KM;12 = 0.5206, k0;13 = 0.8078

KM;13 = 0.0540, g33 = -1.1136

0.1 N3 k0;5 = 1.8356,KM;5 = 0.7843, k0;6 = 1.1053,
KM;6 = 1.5175, k0;7 = 1.7524,KM;7 = 2.1010,
k0;8 = 0.8168,KM;8 = 0.1019, g3 = -3.5506,

N6 k0;11 = 0.4247,KM;11 = 0.1192, g6 = -0.5462
N7 k0;12 = 0.0091,KM;12 = 0.5330, k0;13 = 0.8627

KM;13 = 0.1068, g33 = -1.0819

1 N3 k0;5 = 2.4007,KM;5 = 0.8218, k0;6 = 0.8511,
KM;6 = 1.7099, k0;7 = 2.8247,KM;7 = 1.6656,
k0;8 = 0.6081,KM;8 = 0.0202, g3 = -3.8740,

N6 k0;11 = 0.6541,KM;11 = 1.0891, g6 = -0.4525
N7 k0;12 = 0.0090,KM;12 = 0.5191, k0;13 = 1.1236

KM;13 = 0.4986, g33 = -0.9473

10 N3 k0;5 = 2.5208,KM;5 = 0.9741, k0;6 = 1.7396,
KM;6 = 0.7365, k0;7 = 1.7937,KM;7 = 2.5356,
k0;8 = 0.1980,KM;8 = 15.2691, g3 = -4.0848,

N6 k0;11 = 1.0025,KM;11 = 9.0799, g6 = -0.1412
N7 k0;12 = 0.0049,KM;12 = 0.6385, k0;13 = 1.5460

KM;13 = 10.0345, g33 = -0.1460

100 N3 k0;5 = 1.0820,KM;5 = 0.7472, k0;6 = 1.4625,
KM;6 = 1.4727, k0;7 = 0.2059,KM;7 = 1.5799,
k0;8 = 0.8413,KM;8 = 145.0575, g3 = -1.9053,

N6 k0;11 = 1.0059,KM;11 = 120.4219, g6 = -0.0090
N7 k0;12 = 0.0104,KM;12 = 0.6691, k0;13 = 1.5496

KM;13 = 99.4842, g33 = -0.0211
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used to describe the dynamics of gene regulation (see, e.g.,
[19], [20]), it has been shown to be as accurate as Michaelis-
Menten with Hill-type nonlinearity models (see [21]). In par-
ticular, the authors in [21] rigorously analysed the ‘validity’
range of the concentrations produced by both S-System and
Michaelis-Menten models to determine which model differs
most from the ‘true’ concentration obtained via experiment.
It was found that, not only were S-Systemmodels as accurate
as Michaelis-Menten type models within the same concen-
tration range, but the S-System models were more accurate
over awider range of concentrations. Based on this and other
analyses, the authors suggested that the S-Systemmodel for-
malism better represents the actual biochemical system.

The S-System models we consider in this work have the
following form

dNi

dt
¼ ai

YM1

j¼1

N
pi;j
j þ bi

YM2

j¼1

N
qi;j
j þ

XM3

j¼1

ci;jUj; (5)

where i denotes the number of biochemical component,
ai > 0, bi < 0 and ci;j 2 ð�1;þ1Þ are constants, Ni repre-
sents the biochemical component, M1 and M2 are the total
number of components involved in the interaction, Uj is the
external input and M3 is the number of input. The power
exponent terms, pi;j and qi;j are associated with the produc-
tion and degradation terms respectively. For simplicity, we
assume qi;j ¼ 1 throughout this paper, so that a positive
value for the parameter pi;j represents activationwhile a neg-
ative value represents inhibition. Thus, the S-System model
has a general structure that can accommodate either an acti-
vation or inhibition type of regulation via the sign of pi;j, and
no prior knowledge of the type of regulation at each node in
the network is required in themodel building process.

The S-System model describing the gene regulatory net-
work shown in Fig. 2 is given as follows

dN1

dt
¼ b1N1 þ c1Dþ d1

dN2

dt
¼ a2N

p2;1
1 N

p2;2
3 N

p2;3
7 þ b2N2

dN3

dt
¼ a3N

p3;1
1 N

p3;2
2 N

p3;3
5 N

p3;4
7 þ b3N3

dN4

dt
¼ a4N

p4;1
1 þ b4N4

dN5

dt
¼ a5N

p5;1
2 þ b5N5

dN6

dt
¼ b6N6 þ c6U

dN7

dt
¼ a7N

p7;1
4 N

p7;2
6 þ b7N7;

(6)

Note that for dN1=dt, a constant value denoted by d1 is
added to the model to ensure the overall mRNA level stays
positive since D is negatively correlated with N1 and b1 is
negative due to the degradation term. Like before, we use
one set of experimental data for parameter estimation and
an independent set of data for model validation. The param-
eters are estimated using the prediction error method with
quadratic criterion (Eqn. (4)) with Q ¼ fai; bi; ci; d1; pi;jg
where i and j denote the appropriate indices in Eqn. (6).
The estimated parameters, using 1 as the initial value for all
parameters in the optimisation, are given in Table 3.

We repeat the feedback control design using the same
configuration shown in Fig. 2. The feedback control
response when a perturbation enters the gene regulatory
network is shown in Fig. 5. When the S-System model is
used, the controller is able to produce an appropriate con-
trol action to attenuate the effect of the disturbance. There is
no saturation issue observed, unlike in the scenario where
the Michaelis-Menten with Hill-type nonlinearities model
structure is used.

We proceed further to check whether the estimated
parameters for the S-System model are consistent or not. As
before, we choose the initial parameter values for the opti-
misation to be 0.01, 0.1, 10 and 100. The resulting estimated
parameters are given in Table 4. The results shown in
Figs. 4B, D and F indicate that, using this model structure,
the estimated parameters are now consistent. Denoting p0
as the estimated parameter set obtained when 1 is used as
the initial value for optimisation, we observe that when ini-
tial values of 0.1 and 10 are used, the estimated parameters
are close to p0 (see Table 4). When initial values of 0.01 and

TABLE 3
Parameters for the Network Model Shown in Fig. 2

Using the S-System Model Structure

Gene Parameter Values

N1 b1 = -0.3789, c1 = -0.2488, d1 = 0.2724,

N2 a2 = 0.4729, p2;1 = -0.0490, p2;2 = 0.0015,
p2;3 = 0.0360, b2 = -1.2252

N3 a3 = 5.6808, p3;1 = 0.2232, p3;2 = -0.0568,
p3;3 = 0.0210, p3;4 = 0.3906, b3 = -6.4230,

N4 a4 = 0.0695, p4;1 = -0.8931, b4 = -0.6381

N5 a5 = 0.2552, p5;1 = -0.1822, b5 = -0.5814

N6 b6 = -1.8949, c6 = 1.3030

N7 a7 = 0.5916, p7;1 = 0.0001, p7;2 = 0.4048
b7 = -0.7338

Fig. 5. Feedback control response when a perturbation enters the gene
regulatory network that is modelled using the S-System formalism.
(A) Output and reference values. (B) Error signal between the reference
and output values. (C) Control action, U. (D) The time series of c6U.
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100 are used, the estimated parameters are not close to p0,
but in this case the model responses do not reproduce the
experimental data.

Taken altogether, these results suggest that we are able to
obtain consistent estimates of the model parameters from
experimental data when using the S-System model struc-
ture, making this modelling formalism much more suitable
for use in the design of feedback controllers for perturbation
mitigation.

4 IDENTIFICATION OF AN DREAM3 NETWORK

USING S-SYSTEM MODEL

In the previous section, we have illustrated why the
S-System model formalism is a more appropriate way to
model gene regulatory networks for the purposes of control
system design. We now proceed to use the S-System model
structure to identify, model, and design a biologically
implementable perturbation mitigation controller for the
DREAM3 network. Fig. 1A shows the interconnection
between the genes in the DREAM3 gene regulatory net-
work. In contrast to the network shown in Fig. 2, here no
information is provided regarding the type of regulation
between the interconnecting genes, and therefore we use
system identification techniques (see, e.g., [22]) to infer the
type of regulation within the network. Note that, since no
information regarding the type of regulation between the
interconnecting genes is available, the Michaelis-Menten
with Hill-type nonlinearities model structure cannot be
used in this case.

System identification techniques have been used to
build models of gene regulatory networks in several previ-
ous studies, including [23], [24], [25], where linear black box
network models were considered and the directions and
the types of regulation were identified based on available
data on gene expression profiles. In this paper, we consider
a nonlinear grey box S-System model, given that we have
prior knowledge about the network interconnections, and
focus our attention on the identification of the type of regu-
lation between the interconnecting genes. We use one data
set for parameter estimation and another independent data
set for model validation. Note that both the estimation and
validation data sets used are the provided temporal pro-
files from the DREAM3 gene regulatory network challenge.
The S-System model for the DREAM3 gene regulatory net-
work following Fig. 1A is given by

dN1

dt
¼ a1N

p1;1
2 N

p1;2
4 N

p1;3
5 þ b1N1

dN2

dt
¼ b2N2 þ c2U1

dN3

dt
¼ a3N

p3;1
1 N

p3;2
5 þ b3N3

dN4

dt
¼ a4N

p4;1
9 þ b4N4

dN5

dt
¼ a5N

p5;1
7 þ b5N5

dN6

dt
¼ a6N

p6;1
4 þ b6N6

dN7

dt
¼ a7N

p7;1
8 þ b7N7

dN8

dt
¼ b8N8 þ c8U2

dN9

dt
¼ b9N9 þ c9U3 þ d9

dN10

dt
¼ a10N

p10;1
7 þ b10N10:

(7)

Again note that for dN9=dt, a constant value denoted by
d9 is added to the model to ensure that the overall mRNA
level stays positive since U3 is negatively correlated with N9

and b9 is negative due to the degradation term. The parame-
ters are estimated using Eqn. (4) with Q ¼ fai; bi; ci; d9; pi;jg
and T ¼ 10.

Using 1 as the initial value for all parameter in the opti-
misation, the estimated parameters of Eqn. (7) are given in
Table 5. Fig. 6 shows the comparison between the S-System
model and the real data on the validation data set. The ini-
tial conditions for solving the ODEs are the first data points
of each gene taken from the experimental data set.

From the estimated parameters shown in Table 5, we are
able to determine the type of regulation in the network,
where a positive value of the power term denotes activation
while a negative value of the power term denotes inhibition.
Reassuringly, all the a priori known degradation terms were
identified to have negative values, in accordance with cur-
rent biological data on the network.

The comparison between the S-System model and the
real data on the validation data set shows good agreement,
suggesting a good level of accuracy of the model. To quan-
tify this, we calculate the Mean Square Error (MSE) for each

TABLE 4
Estimated Parameters Given Different Initial Values
for the Optimisation as Shown in Figs. 4B, D, and F

Initial
Value

Gene Parameter Values

0.01 N3 a3 = 0.0008, p3;1 = 0.0137, p3;2 = -0.0098,
p3;3 = 0.0101, p3;4 = 0.0111, b3 = -0.0129,

N6 b6 = -0.0102, c6 = 0.0099
N7 a7 = 0.5620, p7;1 = 0.0002, p7;2 = 0.0107

b7 = -0.7522

0.1 N3 a3 = 2.0744, p3;1 = 0.1772, p3;2 = -0.0950,
p3;3 = 0.0278, p3;4 = 0.3888, b3 = -2.5312,

N6 b6 = -1.8702, c6 = 1.3104
N7 a7 = 0.2737, p7;1 = 0.0003, p7;2 = 0.2681

b7 = -0.3564

1 N3 a3 = 5.6808, p3;1 = 0.2232, p3;2 = -0.0568,
p3;3 = 0.0210, p3;4 = 0.3906, b3 = -6.4230,

N6 b6 = -1.8949, c6 = 1.3030
N7 a7 = 0.5916, p7;1 = 0.0001, p7;2 = 0.4048

b7 = -0.7338

10 N3 a3 = 5.1614, p3;1 = 0.1791, p3;2 = -0.0745,
p3;3 = 0.0259, p3;4 = 0.3456, b3 = -6.3618,

N6 b6 = -1.9653, c6 = 1.3513
N7 a7 = 0.5153, p7;1 = 0.0003, p7;2 = 0.3256

b7 = -0.6566

100 N3 a3 = 8.1321, p3;1 = 0.2214, p3;2 = -0.0610,
p3;3 = 0.0249, p3;4 = 117.9354, b3 = -0.2774,

N6 b6 = -119.4802, c6 = 82.1233
N7 a7 = 0.8009, p7;1 = 0.0004, p7;2 = 106.1156

b7 = -0.1311
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gene between the S-System model and the real data. The
MSE is computed using,

MSE ¼ 1

L

XL
t¼1

½NiðtÞ � N̂iðt; uÞ�2; (8)

where L is the length of the data, Ni and N̂i respectively
represent the experimental and the simulated data and
i ¼ 1; 2; . . . ; 10. Table 6 shows the computed MSE for both
the estimation and validation data sets.

The total MSE, MSET , is obtained by summing all the
individual MSE from each genes. In general, the MSE
values are small and similar between the two data sets.
With the regulation types in the DREAM3 network as
identified, the network interactions are as shown in
Fig. 1B.

4.1 Modelling of DREAM3 with Michaelis-Menten
with Hill-Type Nonlinearties

Now that the regulation types between each node (activa-
tion or inhibition) have been identified, we can also use
Michaelis-Menten with Hill-type nonlinearities to model
the DREAM3 network, as follows:

dN1

dt
¼ k0;1N

h
2

KM;1 þNh
2

þ k0;2N
h
4

KM;2 þNh
4

þ k0;3

KM;3 þNh
5

þ g1N1

dN2

dt
¼ k0;4U

h
1

KM;4 þ Uh
1

þ g2N2

dN3

dt
¼ k0;5

KM;5 þNh
1

þ k0;6N
h
5

KM;6 þNh
5

þ g3N3

dN4

dt
¼ k0;7

KM;7 þNh
9

þ g4N4

dN5

dt
¼ k0;8N

h
7

KM;8 þNh
7

þ g5N5

dN6

dt
¼ k0;9N

h
4

KM;9 þNh
4

þ g6N6

dN7

dt
¼ k0;10N

h
8

KM;10 þNh
8

þ g7N7

dN8

dt
¼ k0;11U

h
2

KM;11 þ Uh
2

þ g8N8

dN9

dt
¼ k0;12

KM;12 þ Uh
3

þ g9N9

dN10

dt
¼ k0;13

KM;13 þNh
7

þ g10N10:

(9)

We want to investigate whether the Michaelis-Menten
with Hill-type nonlinearities model would encounter the
same problem of inconsistent parameter estimates as
highlighted in Section 3.1. For the purposes of illustration,
we focus only on the highlighted pathway that involves the
series of regulation from the control action to the output
gene (see Fig. 1C) and as before set h ¼ 1.

We repeat the parameter estimation exercise (i.e., using
Eqn. (4)) where we choose 0.01, 0.1, 10 and 100 as the initial
values for the optimisation for both Michaelis-Menten with
Hill-type nonlinearities and S-System model structures,
focusing only on genes 1, 4 and 9. The results are shown in
Fig. 7 and the estimated model parameters are given in
Tables 7 and 8.

Fig. 6. Comparison between S-System model and DREAM3 data on the
validation data set that is not used for parameter estimation.

TABLE 5
Estimated Parameters for the DREAM3 S-System Model

Gene Parameter Values

N1
a1 = 0.2757, p1;1 = 0.3502, p1;2 = 0.0559,
p1;3 = -0.2789, b1 = -0.4023

N2 b2 = -0.1875, c2 = 0.0946

N3
a3 = 0.1478, p3;1 = -0.0021, p3;2 = 0.1393,
b3 = -0.1481

N4 a4 = 0.0023, p4;1 = -5.1622, b4 = -0.3555

N5 a5 = 0.1199, p5;1 = 0.0760, b5 = -0.2057

N6 a6 = 0.2567, p6;1 = -0.0120, b6 = -0.3035

N7 a7 = 0.0607, p7;1 = 0.1104, b7 = -0.1237

N8 b8 = -0.0298, c8 = 0.0108

N9 b9 = -0.1793, c9 = -0.0268, d9 = 0.1733

N10 a10 = 0.0139, p10;1 = -1.5609, b10 = -0.0480

TABLE 6
MSE for Both Estimation and Validation Data Sets

Gene
MSE

(Estimation)
MSE

(Validation)

N1 0.0029 0.0054
N2 0.0013 0.0021
N3 0.0014 0.0031
N4 0.0009 0.0010
N5 0.0010 0.0037
N6 0.0017 0.0036
N7 0.0019 0.0016
N8 0.0012 0.0088
N9 0.0033 0.0050
N10 0.0017 0.0128
MSET 0.0171 0.0470
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As shown in Fig. 7, the estimated parameters using the
Michaelis-Menten with Hill-type nonlinearities model are
not consistent, as different sets of parameter are able to
reproduce the dynamics of the experimental data equally
well. For the S-System model, however, we obtain consis-
tent estimates of the model parameters for genes 1 and 9
when the initial values used for optimisation are 0.01, 0.1
and 1, while for initial values of 10 and 100, the resulting
parameters cannot reproduce the experimental data. For
gene 4, we obtain consistent estimates of the model parame-
ters when the initial values used for optimisation are 1, 10
and 100, while for initial values of 0.01 and 0.1 there is again
poor agreement between model responses and experimen-
tal data.

4.2 Discussion on the Parameter Estimates of the
Model Structures

Through our analysis of different modelling formalisms for
the gene regulatory networks considered here, we have illus-
trated the inconsistent estimates of the model parameters
obtainedwhen usingMichaelis-MentenwithHill-type nonli-
nearities model. This means that these model parameters are
not identifiable from the available experimental data. One
reason for this could be that these experimental data do not
excite the relevant dynamics (in particular the saturation
region) thus making the data not informative enough to
obtain a consistent estimate. This inconsistent estimate is
related to the notion of ‘practical parameter identifiability’
(see, e.g., [26], [27]) where the available experimental data is

unable to excite the relevant dynamics to provide consistent
estimate for a given model structure, as observed here. The
problem of inconsistent parameter estimates is also observed

Fig. 7. Comparison of model and experimental data for different sets of
estimated parameter given different initial values for optimisation. The
initial values used for optimisation are 0.01, 0.1, 1, 10, and 100. Only
genes in the highlighted pathway shown in Fig. 1C are shown. The
experimental data shown here is an independent data set that is not
used for parameter estimation. Left panel: Subfigures (A), (C), and (E)
show the plots using Michaelis-Menten with Hill-type nonlinearities
model structure for genes 1, 4, and 9, respectively. Here, the estimated
values of KM are close to the initial values for optimisation. Right panel:
Subfigures (B), (D), and (F) show the plots using S-System model
structure for genes 1, 4, and 9, respectively. The notations p0 and
p : 0:01; 0:1; 1; 10; 100 ! p0 follow the same interpretation given in previ-
ous section.

TABLE 7
Estimated Parameters Given Different Initial Values
for the Optimisation as Shown in Figs. 7A, C, and E

Initial
Value

Gene Parameter Values

0.01 N1 k0;1 = 0.6428,KM;1 = 1.6590, k0;2 = 0.1856,
KM;2 = 0.0127, k0;3 = 0.2160,KM;3 = 2.7946,
g1 = -0.6389,

N4 k0;7 = 0.0002,KM;7 = 0.0124, g4 = -0.1675
N9 k0;12 = 0.0038,KM;12 = 0.0725, g9 = -0.000001

0.1 N1 k0;1 = 0.7106,KM;1 = 1.6914, k0;2 = 0.2425,
KM;2 = 0.1409, k0;3 = 0.2087,KM;3 = 1.9633,
g1 = -0.5968,

N4 k0;7 = 0.0003,KM;7 = 0.1005, g4 = -0.1671
N9 k0;12 = 0.0231,KM;12 = 0.7250, g9 = -0.0001

1 N1 k0;1 = 0.6868,KM;1 = 1.5259, k0;2 = 0.4995,
KM;2 = 1.0623, k0;3 = 0.1982,KM;3 = 2.7770,
g1 = -0.4799,

N4 k0;7 = 0.0004,KM;7 = 1.5874, g4 = -0.1657
N9 k0;12 = 1.4335,KM;12 = 8.3217, g9 = -0.1852

10 N1 k0;1 = 0.7539,KM;1 = 0.9300, k0;2 = 0.5454,
KM;2 = 9.3423, k0;3 = 0.2165,KM;3 = 2.1919,
g1 = -0.6471,

N4 k0;7 = 0.0005,KM;7 = 9.2461, g4 = -0.1643
N9 k0;12 = 1.5362,KM;12 = 20.3145, g9 = -0.0707

100 N1 k0;1 = 0.7995,KM;1 = 1.1288, k0;2 = 0.5369,
KM;2 = 83.2009, k0;3 = 0.2240,KM;3 = 1.6028,
g1 = -0.6607,

N4 k0;7 = 0.0004,KM;7 = 99.3634, g4 = -0.1643
N9 k0;12 = 9.3453,KM;12 = 105.3270, g9 = -0.0897

TABLE 8
Estimated Parameters Given Different Initial Values
for the Optimisation as Shown in Figs. 7B, D, and F

Initial
Value

Gene Parameter Values

0.01 N1 a1 = 0.2585, p1;1 = 0.3542, p1;2 = 0.0392,
p1;3 = -0.2917, b1 = -0.4143,

N4 a4 = 0.0001, p4;1 = -0.0055, b4 = -0.1656
N9 b9 = -0.1043, c9 = -0.0132, d9 = 0.1051

0.1 N1 a1 = 0.2589, p1;1 = 0.4126, p1;2 = 0.0590,
p1;3 = -0.2674, b1 = -0.3307,

N4 a4 = 0.0002, p4;1 = -0.0864, b4 = -0.1657
N9 b9 = -0.1043, c9 = -0.0132, d9 = 0.1067

1 N1 a1 = 0.2757, p1;1 = 0.3502, p1;2 = 0.0559,
p1;3 = -0.2789, b1 = -0.4023,

N4 a4 = 0.0023, p4;1 = -5.1622, b4 = -0.3555
N9 b9 = -0.1793, c9 = -0.0268, d9 = 0.1733

10 N1 a1 = 0.3429, p1;1 = 0.4194, p1;2 = 9.9089,
p1;3 = -0.3139, b1 = -0.1267,

N4 a4 = 0.0025, p4;1 = -5.6379, b4 = -0.4444
N9 b9 = -13.9910, c9 = -2.6026, d9 = 12.3031

100 N1 a1 = 0.3180, p1;1 = 0.3997, p1;2 = 112.6809,
p1;3 = -0.2893, b1 = -0.1622,

N4 a4 = 0.0035, p4;1 = -5.1136, b4 = -0.4614
N9 b9 = -140.4127, c9 = -25.0935, d9 = 123.3048
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in [28], where the authors attempt to build a comprehensive
network model for the plant circadian system, and the inter-
actions between genes are modelled using the Michaelis-
Menten with Hill-type nonlinearities model structure. The
model parameters are estimated from experimental data,
which are the temporal profiles of the circadian genes and
proteins and a total of eight different parameter sets are
found to be able to reproduce the experimental data. The
estimated values of the Michaelis-Menten coefficients (KM )
from these eight sets of parameters cover a large range of
possible values (from 0.01 to 490).

Although its relevance from the point of view of control
system design has not to-date been considered, the problem
of obtaining consistent estimates of parameters in the
Michaelis-Menten model structure has been previously
investigated (see the review paper [29] and references
therein). In [30] and [31], different methods for fitting the
Michaelis-Menten equation were analysed, and both studies
concluded that different fitting methods will give different
estimates of the parameters unless the experimental data is
free from error (which in biological reality it never is). Dif-
ferent approaches to estimate the Michaelis-Menten coeffi-
cients have also been studied in [32], [33] and [34], and
those studies concluded that it is difficult to obtain a consis-
tent estimate of the Michaelis-Menten coefficients unless
particular design considerations are taken into account.

On the other hand, for the parameters of the S-System
model, our two illustrative examples indicate that these
parameters are locally identifiable [35], as we are able to
obtain consistent parameter estimate when different initial
values are used for the optimisation. The identifiability of
model parameters using a power law type of model struc-
ture (that includes the S-System model) has been investi-
gated in [36]. Their analyses show that while in general it is
practically challenging to obtain consistent estimate for all
the parameters in the model, one can obtain consistent esti-
mates of the model parameters under certain conditions.
Recent work by [37] also shows that with an appropriate
choice of optimiser, one can obtain consistent parameter
estimates using the S-System model structure.

5 DESIGN OF A FEEDBACK CONTROLLER FOR

PERTURBATION MITIGATION

Here, we show how the S-System model of the considered
gene regulatory network can be used to design a controller
for perturbation mitigation. To achieve an implementable
design, a genetic-based controller is required, and there are

frameworks available for such designs (see, e.g., [38], [39]).
In this paper, we employ a frequency domain control design
methodology, motivated by the design framework pro-
posed in [39]. In order to design controllers in the frequency
domain, a linear model is required. As the S-System is a
nonlinear model, we linearise it to obtain a transfer function
model using the sine sweeping method (see, e.g., [22], [40]).

5.1 Sine Sweeping Method

In the sine sweeping method, sinusoidal input signals over
the frequency range of interest are given as the inputs to the
system. The output responses within the frequency range
are then analysed in terms of their magnitude and phase rel-
ative to the input signal. By collecting these magnitude and
phase values, the frequency response and transfer function
model of the system can be easily obtained. Here, we sum-
marise the procedure for obtaining a transfer function
model using the sine sweeping method method and refer
readers to [22], [40] for complete details.

Consider a sinusoidal input uðtÞ ¼ A sin ðv0tÞ, where A is
the amplitude and v0 is the frequency. For any linear time
invariant system, the output would be also sinusoidal with
the same frequency but with scaled amplitude and a phase
shift. In practice, the output response is subject to transient
effects, as well as the effects of nonlinearities and disturban-
ces dðtÞ, yielding,
yðtÞ ¼ B sin ðv0tþ fÞ þ dðtÞ þ transientþ nonlinearities; (10)

where B ¼ AjGðjv0Þj, f ¼ ffGðjv0Þ ¼ tan �1 ImjGðjv0Þj
RejGðjv0Þj

and

Gðjv0Þ is the transfer function relating the input and output

with j denotes the imaginary number.

The effects of transients and nonlinearities can be
removed by neglecting the initial part of the data and
assuming that the linear dynamics make the dominant con-
tribution to the overall response. To reduce the effect of dðtÞ
on yðtÞ, one can use a correlation method [22], where the
idea is to correlate y with a sine and cosine of the same fre-
quency and average it over the length of the data NL (see
Fig. 8).

From Fig. 8, we obtain,

ISðNLÞ ¼ 1

NL

XNL

t¼1

yðtÞ sin ðv0tÞ

ICðNLÞ ¼ 1

NL

XNL

t¼1

yðtÞ cos ðv0tÞ:
(11)

Substituting Eqn. (10) into (11), and after some algebraic
manipulation, we arrive at

ISðNLÞ ¼ A

2
jGðjv0Þj cosf�A

2
jGðjv0Þj 1

NL

XNL

t¼1

cos ð2v0t

þ fÞ þ 1

NL

XNL

t¼1

dðtÞ sin ðv0tÞ

ICðNLÞ ¼ A

2
jGðjv0Þj sinf�A

2
jGðjv0Þj 1

NL

XNL

t¼1

sin ð2v0t

þ fÞ þ 1

NL

XNL

t¼1

dðtÞ cos ðv0tÞ:

(12)

Fig. 8. Correlation method.
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From Eqn. (12), the second term for both ISðNLÞ and
ICðNLÞ will go to zero as NL ! 1. Assuming dðtÞ is a sta-
tionary stochastic process with zero mean value and covari-
ance function RdðlÞ such that

P1
l¼0 ljRdðlÞj < 1, the third

term for both ISðNLÞ and ICðNLÞ will be zero as NL ! 1,
since the variance of the third term decays at a rate of 1=NL

(see [22] for details). From the remaining terms of Eqn. (12),
the magnitude, jGðjv0Þj and the phase, ffGðjv0Þ can be esti-
mated using the following equations, i.e.,

jGðjv0Þj ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2SðNLÞ þ I2CðNLÞ

q
A

ffGðjv0Þ ¼ tan �1 ICðNLÞ
ISðNLÞ :

(13)

For the DREAM3 network, we assume that the input to
the network is through U3 and the output of interest is the
expression of gene N1. We apply sinusoidal signals of the
form 3 sin ðvtÞ þ 3 with the frequency v ranging from 0.001
rad/s to 1.000 rad/s. Despite using a nonlinear model, we
note that the output sinusoidal responses have the same fre-
quency as the input and no subharmonics are apparent,
indicating a dominant linearity of the model. By computing
the magnitude and phase values using Eqn. (13), the Bode
plot of the DREAM3 network from input U3 to output N1 is
obtained and shown in Fig. 9.

From the Bode plot, we note the following: (i) At low fre-
quency, the magnitude of the system is about -22.5dB. (ii)
The corner frequency is 0.11 rad/s. (iii) At the corner fre-
quency, the slope is close to -40dB/dec and the phase is
approximately -90�, suggesting a second order system with
repeating poles. Thus, the transfer function relating input
U3 to output N1 can be approximated by

N1ðsÞ
U3ðsÞ ¼

0:075

ð1þ s
0:11Þ2

¼ 0:0009

s2 þ 0:22sþ 0:012
: (14)

From the sine sweeping method, the linear transfer func-
tion of the gene regulatory from U3 to N1 is given by
Eqn. (14). We compare the accuracy of the linear model
with the nonlinear S-System model through a step response
comparison, as shown in Fig. 10. Since the base signal level

used in the sine sweeping method is 3, the input is stepped
from 3 to 4.

From Fig. 10, we observe similar performance between
the two models in terms of their transient responses, i.e.,
similar rise time and settling time. On the other hand, the
steady state levels between the two models are different
with the linear model having a higher steady state level
compared to the nonlinear model. Nevertheless, the differ-
ence between these two steady state level is relatively small,
indicating acceptable accuracy of the linear model in
approximating the nonlinear S-System model relating input
U3 to output N1.

With this transfer function identified, we can proceed
with the design of the controller using a frequency domain
approach.

5.2 Design of a Genetic Phase Lag Controller

Here, we illustrate the design of the genetic phase lag con-
troller. A phase lag controller is chosen, as this type of con-
troller is typically used to improve disturbance rejection
and reduce steady state errors. The phase lag controller has
the following form

KðsÞ ¼ K1

sþ aP
þK2

¼
K2 sþ aP þ K1

K2

� �
sþ aP

;

(15)

where the zero of the controller z ¼ �ðaP þ ðK1=K2ÞÞ and
the pole of the controller p ¼ �aP , with the gain of the con-
troller being K2. As both the gain and phase margins of the
system obtained from the Bode plot are infinite, our primary
focus is on improving the transient dynamics of the distur-
bance rejection and reducing the steady state error.

The transfer function given in Eqn. (14) is a type 0 sys-
tem, and with the use of a phase lag controller, there is no
integrator in the open loop gain to eliminate the steady state
error. As such, when choosing the pole of the phase lag con-
troller, we try to place the pole, aP as close as possible to the
origin. Likewise, the static error constant, Kp ¼ 0:0027K2

Fig. 9. Bode plot of DREAM3 network from input U3 to outputN1.
Fig. 10. Step response comparison between the linear model obtained
through sine sweeping method and the full nonlinear S-System model.
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should be chosen as large as possible to reduce the steady
state error. The choice of the design parameters are con-
strained by the achievable biological values and following
the range of allowable values given in [39]; the following
allowable parameter ranges are adhered to: 0:0002 	
aP 	 0:0040,K1 < 2:3 andK2 < 1:8.

5.3 Simulation Results

While the design of the controller is carried out using the
linear model, for implementation, we carried out our simu-
lation using the nonlinear S-System network model. In most
gene regulatory network perturbation mitigation problems,
we are interested in maintaining the steady state level of a
particular gene of interest in the presence of a perturbation.
Biologically, this can be interpreted as maintaining the level
of expression of a gene of interest to ensure optimal biologi-
cal function. Thus, in this simulation example, we are inter-
ested in maintaining the steady state level of N1 at its
desired reference value in the presence of a perturbation.
Here, we assume that the perturbation enters the network
through U1 and our control action is provided by U3 as
depicted in Fig. 1C.

In the absence of a perturbation, the steady state level of
N1 is 0.486, thus, our control objective is to maintain the
steady state level of N1 close to 0.486 in the presence of a
perturbation. In our simulation, a perturbation in the form
of a step response with amplitude of 2 enters the network at
time 4000s. As can be seen in Fig. 11A, without control, the
steady state level of N1 increase to 0.63 and is unable to
return to its desired value.

In the design of the phase lag controller, the following
values are chosen. To have the pole close to the origin, we
choose aP ¼ 0:0002. To have the static error constant as
large as possible, we choose K2 ¼ 1:7. For K1, we initially
consider two cases, i.e., K1 ¼ 0:04 (controller’s zero close to
origin) and K1 ¼ 2 (controller’s zero far from the origin).
The simulation results are shown in Fig. 11B. For a small
value of K1, we see that the performance of the system is
slow and at time 6000s, there is still a noticeable steady state
error, i.e., 0.044. On the other hand, for a large value of K1,

we see a significant improvement in the performance,
where we get a faster response and an almost zero steady
state error, i.e., 0.0008.

The Bode plots of the system with and without control
are shown in Fig. 12. For a small value of K1, we note that
the phase margin of the system is 97�. On the other hand,
for a large value of K1, despite the good performance, we
note that the phase margin of the system reduces from 97�

to 10�, which is less than typically specified values. Thus, a
compromise between the transient performance and overall
stability robustness needs to be performed when designing
the controller, and this trade-off can be effectively managed
through the choice of the controller parameter K1. Accord-
ing to standard specifications, the phase margin is typically
required to be between 45� to 60� (see, e.g., [16]) to achieve
satisfactory performance. To find the ‘optimal’ value of K1

that can achieve fast response, small steady state error and
achieve a phase margin in the aforementioned range, we
proceed as follows.

The transfer functions of the process and the lag compen-
sator are given by Eqns. (14) and (15) respectively. Rewrit-
ing them here together with the substitution of aP ¼ 0:0002
and K2 ¼ 1:7, as well as defining GOLðsÞ as the open loop
gain transfer function, we have the following expression.

GOLðsÞ ¼
"

0:075

ð s
0:11 þ 1Þ2

#" 
1:7ðsþ 0:0002þ K1

1:7Þ
sþ 0:0002

!#
: (16)

Replacing s ¼ jv, and after some algebraic manipulation
we have

GOLðjvÞ ¼ QðT1jvþ 1Þ
ðT2jvþ 1Þ2ðT3jvþ 1Þ ; (17)

where Q ¼ ð0:1275þ 375K1Þ, T1 ¼ 1=ð0:0002þ K1
1:7Þ, T2 ¼ 1=

0:11 and T3 ¼ 1=0:0002.
The magnitude and phase of GOLðjvÞ can be computed

as follows,

Fig. 11. (A)N1 set-point regulation (without control). (B)N1 set-point reg-
ulation (with control). Black solid line: Set-point. Red dotted line: N1

response to smallK1. Blue dashed line: N1 response to large K1. Green
dash-dotted line: N1 response to optimisedK1.

Fig. 12. (A) & (B) Gain and phase plots of system with control. Red dot-
ted line: Small K1, Blue dashed line: Large K1. Green dash-dotted line:
OptimisedK1. (C) & (D) Gain and phase plots of system without control.
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jGOLðjvÞj ¼ 20log 10Qþ 20log 10jT1jvþ 1j
� 40log 10jT2jvþ 1j þ 20log 10jT3jvþ 1j

ffGOLðjvÞ ¼ tan �1ðT1vÞ � 2 tan �1ðT2vÞ
þ tan �1ðT3vÞ;

(18)

and we are now left with the task to find K1 and v to
achieve our desired phase margin.

From the Bode plot in Fig. 12A, we observe that to
achieve the desired phase margin would require the gain
cross over frequency of GOLðjvÞ to be around the frequency
0.05 rad/s. With v ¼ 0:05, solving K1 such that jGOLðjvÞj =
0 and 45� 	 ffGOLðjvÞ þ 180 	 60� are satisfied, we obtain
the optimalK1 = 0.8.

As shown by the green dash-dotted line in Fig. 11B, with
K1 ¼ 0:8, the magnitude plot has shifted to the left. This left
shift in magnitude changes the gain cross over frequency
from 0.1 rad/s to the one we specified, i.e., 0.05 rad/s. On
the other hand, the phase plot is similar to the case when
using large K1. Nevertheless, more importantly, the Bode
plot shown in Fig. 12A and B shows that the new phase
margin is 47.4� when using K1 ¼ 0:8, which is within the
preferred range and a significant improvement compared to
using largeK1.

6 CONCLUSIONS

Although several modelling formalisms are now available
for the representation of gene regulatory networks, the
question of their suitability for the design of synthetic feed-
back control systems has so far received little attention in
the literature. In this paper, we show that standard model-
ling approaches employing Michaelis-Menten models with
Hill-type nonlinearities are not appropriate for use in the
design of synthetic controllers, for two reasons. First, such
models require the type of regulation between interacting
genes in the network to be known a priori, which is highly
unlikely to be the case in general. Even more problemati-
cally, the values of the particular parameters in such models
on which the controller design depends cannot in general
be reliably identified from standard time-series data.

As an alternative approach, we propose the use of the
S-System modelling formalism. While the use of the
S-System modelling formalism for describing the dynamics
of gene regulatory networks is well established, its useful-
ness for the purposes of control design has not so far been
investigated. Here, we showed that using this modelling for-
malism combinedwith standard system identification proce-
dures allows us to establish the type of regulation between
each gene, obtain consistent estimates of model parameters,
and hence derive a model that is suitable for the design of a
synthetic genetic feedback controller. Given that the design
of the considered genetic feedback controller is carried out in
frequency domain, we showed that the nonlinear S-System
model can be approximated by a second order linear transfer
function using the sine sweeping method. Based on this
transfer function model, we designed a genetic phase lag
feedback controller, whose structure and parameter values
can be readily implemented biologically. Simulation results
show satisfactory performance of the controller in mitigating
external network perturbations. The proposed modelling

and control system design approach considered here has
been tailored to the problem of mitigating external perturba-
tions in gene regulatory network. However, the proposed
approach can be readily extended to address other control
problems (e.g., reference tracking) and should have wide
potential application to network control problems through-
out the field of synthetic biology.
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