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A review of Wire Arc Additive Manufacturing (WAAM) and advances 

in WAAM of aluminium 

Although Wire arc additive manufacturing (WAAM) has proven its capability of 

fulfilling demands of production of medium-to-large scale components for 

automotive and allied sectors made up of aluminium, at present WAAM cannot be 

applied as a fully-fledged manufacturing process because of practical challenges 

such as under-matched mechanical properties, presence of large residual stresses 

and mandatory post-deposition operation for the formed component. This paper is 

the review of WAAM technology including a brief of WAAM history, status, 

advantages and constraints of WAAM field. A focus is provided including the 

efforts directed toward the reduction of porosity, tensile properties, microstructural 

investigations and other valuable advancements in the field of WAAM of 

aluminium. 

Keywords: aluminium; cold metal transfer (CMT); history; interlayer rolling; 

microstructure; porosity; Wire arc additive manufacturing (WAAM) 
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1. Introduction 1 

1.1 Additive manufacturing (AM) 2 

Many researchers (1–3) have predicted the profound role that Additive manufacturing 3 

(AM) will have in the manufacturing industry of the future. AM is becoming highly 4 

popular due to its numerous benefits that are not only limited to its ability to handle a 5 

wide variety of material types varying from metals, polymers, and ceramics; but also 6 

because of its ability to produce novel, complex and near net shape parts that eliminate 7 

the need for additional tooling and re-fixturing. AM assures single-part assembly or 8 

bespoke (4) manufacturing because of the processes capability to reduce overall 9 

manufacturing cost by having a focused manufacturing process that reduces task time, 10 

material wastage and thus better buy-to-fly ratio (BTF), while enhancing the feedback 11 

flexibility to turn feedstock into a structure. 12 

1.2 Wire Arc Additive Manufacturing (WAAM) 13 

British Standard Institute (BSI), International Organization of Standardization (ISO) 14 

and American Society for Testing and Materials (ASTM) have jointly defined AM, and 15 

the ASTM International Committee F42 has classified AM techniques into the seven 16 

different categories. Amongst these, only four methods can produce metallic parts in 17 

which only one method can create an additively manufactured shaped component in 18 

conjunction with metallic filler addition (see Figure 1). The combination of filler wires 19 

being fed into a liquid metal pool created using an electric arc as the heat source that 20 

forms an object can be identified as a conventional welding process, such as gas metal 21 

arc welding (MIG/MAG) (see Figure 2). A technique of manufacturing of entire 22 

component from the deposition of weld metal has been in practice since 1920 which is 23 

now been exercised as a Wire arc additive manufacturing (WAAM) technique. The 24 
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technique has revealed many advantages such as better BTF ratio compared to 1 

conventional manufacturing processes, theoretically no dimensional limits for the 2 

component manufacturing and economical technique compared to powder-based 3 

processes when high cost material is considered. 4 

1.3 Aluminium 5 

The unique property combination of good corrosion resistance, high strength-to-weight 6 

ratio and ability to get alloyed with numerous metals and non-metals makes aluminium 7 

arguably the most attractive and economical metal that finds widespread applications 8 

ranging from transportation, electrical, machinery, consumer durables, building and 9 

construction, containers and packaging to name but a few. Regardless of the widespread 10 

applications, the welding of aluminium has always been troublesome due to numerous 11 

aspects associated with basic material characteristics such as high coefficient of thermal 12 

expansion, double solidification shrinkage compared to ferrous metals, formation of a 13 

highly retentive oxide film and porosity formation. Solidification cracking adds 14 

complexity in welding of aluminium which is greatly related with the alloy composition 15 

that indirectly refers the amount of eutectic present at the solidification. Particularly 16 

with Al-Cu, Al-Si, Al-Mg, Al-Li and Al-Mg-Si alloys, along with increment in the alloy 17 

concentration, crack sensitivity increases until a peak is reached. Beyond this threshold, 18 

excess eutectic supports in backfilling of the crack thus reduces the crack sensitivity 19 

(Table 1). Alloys 2024 and 7075 are highly susceptible to the solidification cracking. 20 

Figure 3 illustrates an example of solidification cracking in aluminium welding. The 21 

volatile elements such as magnesium in 5xxx series (major alloying element) alloys 22 

volatilises during welding that affects adversely tensile properties of the weld joint.  23 
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The effect of raised temperature at heat affected zone (HAZ) is complex. 1 

Depending upon the distance from heat source and weld metal, HAZ undergoes 2 

recovery, recrystallisation, grain growth, precipitation dissolution and/or reprecipitation. 3 

When temperature of an area vicinity to weld metal crosses the solvus temperature of an 4 

alloy, localised solidification cracking may occur. The 6xxx and 7xxx series alloys 5 

experience dissolution of hardening precipitates (Mg2Si and MgZn2 respectively) while 6 

2xxx alloys prevail dissolution and reprecipitation (Al2Cu) reducing overall strength. 7 

The area where temperature does not exceed solvus line, partial dissolution and 8 

precipitate coarsening may occur. These complexities adversely affect the strength of 9 

weld assembly which roughly varies across the weld centreline as shown in Figure 4.  10 

2. Wire arc additive manufacturing (WAAM) 11 

2.1 History of WAAM 12 

Even though the acronym WAAM is being widely accepted as a part of AM 13 

terminology over the past 15 years, the actual concept of near net shape manufacturing 14 

by welding is almost 100 years old. With the advent of welding technology, many 15 

inventors have applied contemporary welding techniques to manufacture different 16 

shapes which was acknowledged by several names such as Shape welding (SW), Shape 17 

melting (SM), Rapid prototyping (RP), Solid freeform fabrication (SFF), Shape metal 18 

deposition (SMD) and 3D Welding. Considering the history on a broader scale, WAAM 19 

evolution can be subdivided into three periods, as shown in Figure 5. 20 

As early as 1920, Baker (5) filed a patent on the formation of ‘superposed 21 

deposit of metal’ using manipulated the helical path of a fusible electrode to form an 22 

ornament shown in Figure 6. After this innovative patent, another patent filed by 23 

Shockey (6) described the use of welding for cladding, whereby bead overlapping with 24 
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a  recommended overlap of one-third area of the previously deposited bead by 1 

consecutive bead led to the best results. Later, Ujiie (7) demonstrated the technique for 2 

the formation of a circular cross-sectional pressure vessel solely by progressive 3 

deposition of weld metal (see Figure 7). Ujiie also discussed the machining of the inner 4 

and outer layers of the formed part. In the following year, Ujiie (8) focused on a 5 

deposition rate and developed a three wire electrode gas metal arc welding (MIG/MAG) 6 

technique. In 1983, Kussmaul et al. (9) manufactured shape welded component by 7 

Submerged arc (SAW) tandem welding that yielded a 20kg/hr deposition rate. 8 

Interestingly, authors discussed tensile and impact behaviour of 10MnMoNi55 shape 9 

welded product and highlighted a need development of special filler materials for shape 10 

welding. The rapid adoption of shape melting was hampered when a shape melted 11 

pressure vessel witnessed a crack failure. Until then, the effect of residual stresses and 12 

metallurgical phases on mechanical properties of the shaped part were out of focus and 13 

hence later gathered considerable importance on overall quality and integrity of the 14 

formed part. 15 

The advancement of computer technology into the manufacturing sector 16 

reinvented and bolstered 3D welding. Dickens et al. (10) produced an unsupported wall 17 

of carbon steel by the layer-by-layer fashion using on-line point-to-point programming 18 

with the robotic GMAW process. An offline monitoring system, developed by Ribeiro 19 

and Norrish (11) allowed for the slicing of a computer-aided design (CAD) model to 20 

facilitate deposition of weld metal layer-by-layer in a prescribed format to create a 21 

desired final shape. In another allied study by Zhang et al. (12), accomplished slicing of 22 

the final component into many layers using the Initial graphics exchange specification 23 

(IGES) format. Complexity and intricacy of the WAAM technique with respect to 24 

operation, material handling, formulation and conceptualization followed a trend of 25 
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process simplification that allowed inventors to manufacture large shapes such as 1 

pressure vessels. After introduction of computer-controlled systems in to 2 

manufacturing, the technique had to follow a reinvention curve as the introductory 3 

technique was entirely different from traditional manual and machine-controlled 4 

processes. Though the advanced testing techniques are helping in producing safer 5 

structures, clearing the test criteria is an added complexity. The trend of WAAM 6 

development and complexity of the process is graphically presented in Figure 8. 7 

2.2 WAAM-to-date 8 

In the 1990s, Rolls Royce along with Cranfield University showed due interest in the 9 

manufacturing of aero engine components using the Shape metal deposition (SMD) 10 

technique with Ti-6Al-4V and Inconel 718 alloys. Following the interesting subject, in 11 

later years several theoretical and practical modelling approaches were undertaken to 12 

study the renewed field of WAAM. Some of the notable studied in recent past has been 13 

summarised in Table 2. To understand fundamentals of WAAM, behaviour of single 14 

bead multi-layer (open loop) structure is widely studied focusing on numerous aspects 15 

such as forming appearance, design, residual stress development and distribution, 16 

welding process variations, strategic tool path planning and many more. 17 

2.2.1 Forming appearance 18 

To understand the metal behaviour in layered deposition format and to avoid 19 

unwanted defects, parametric study is prime important that incorporates controlled 20 

metal deposition at the start and end of a bead as well as controlling bead overlapping. 21 

Presence of heat sinks at the start of the weld bead accounts for unrestrained flow of 22 

weld metal and wrinkle formation (13,14). To counter this effect and to have smooth 23 

part profile, emphasis was placed on developing start and stop strategies. Improved 24 
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deposition velocity and voltage compared to mean welding parameters with unchanged 1 

current at the arc strike and reduced deposition velocity at the arc end has produced an 2 

acceptable bead appearance for creation of an open as well as closed loop WAAM 3 

structures eliminating bulge at bead start and scallop at bead end (15) (see Figure 9 and 4 

Figure 10). One of the studies by Geng et al. (16), minimum angle and curvature radius 5 

viable with WAAM is 20º and 10mm respectively when layer width is 7.2mm. Though 6 

the study has highlighted an important limitation, the minima are subjected to vary with 7 

different bead dimensions and filler metal alloys. 8 

In one of the studies on multi-layer overlapping Ding et al. (17) re-established 9 

the critical distance between the centres of adjacent weld beads which is 0.738 times the 10 

bead width (w) against the traditional value 0.667w (i.e. overlapping of one third area). 11 

As this experimentation does not involve variety of metallic alloys, the result demands 12 

for reconfirmation of critical distance value for different materials subjected to the 13 

unique material characteristics such as molten metal flowability, wettability, viscosity 14 

and surface tension for example, 4xxx series alloys possess greater flowability than 15 

5xxx series. Also considering overall structural integrity of a formed component 16 

dilution, penetration and lack of fusion need to be addressed before conclusion. 17 

To avoid the characteristic defect of undulation of weld bead commonly known 18 

as humping that can affect WAAM productivity, the travels speed of torch has to be 19 

restricted to 0.6m/min as addressed by Adebayo et al. (18). Although the study provides 20 

practical applications, in depth understanding of the defect formation using scaled 21 

analysis as described by Wei (19), defined mathematical approach confirming Pradtl 22 

and Marangoni numbers (20) or Rayleigh’s theory of instability (21) for WAAM type 23 

deposition could have been valued knowledge. As predicted by Nguyen et al. (22), any 24 

technique capable of dissipating or reducing the momentum of the backward flow of 25 
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weld metal such as reactive shielding gases or specific torch angle suitable for WAAM 1 

type deposition can be interesting field of study. Also the correlation between surface 2 

tension, effect of volatile elements, power density and distribution, pitch formation and 3 

amplitude of humping is the necessary understanding that can help in avoiding humping 4 

in WAAM. 5 

2.2.2 Design and residual stress 6 

Analytical, statistical and computational study of residual stress distribution in WAAM 7 

component and a substrate is necessary to understand the WAAM system. An addition 8 

of metal in a layers adds-up noticeable amount of heat into each layer which induces 9 

thermal cycles responsible for expansion and contraction of deposited metal creating 10 

large thermal stresses into a WAAM component as well as in a substrate. Understanding 11 

of residual stress distribution and accordingly the generation of optimum tool path and 12 

build strategy through computer-aided simulation has been exercised (23–26) to 13 

minimise residual stresses in a formed component.  14 

Williams et al. (27) proposed the back-to-back building strategy creating two 15 

WAAM objects on both sides of the substrate that balances residual stresses and 16 

eliminates distortion. Also, symmetrical building is another approach that equally 17 

deposits weld metal and thus distributes welding heat on both sides of the predefined 18 

plane of the substrate. However, these approaches need computer simulation and 19 

practical results for validation. To produce complex shapes with cross-over, corners and 20 

junctions, researchers (25,28,29) proposed deposition sequence that can produce 21 

acceptable WAAM parts with reduced residual stresses, minimum defects and minimum 22 

tool movement (refer Figure 11), thus saving overall operational time. Experimentation 23 

by Kazanas et al. (30) resulted in possibility of formation of WAAM walls with varying 24 
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angles ranging from vertical to horizontal (see Figure 12). Thus, closed hollow 3D 1 

shapes can be manufactured using WAAM if appropriate parameters and torch angle is 2 

maintained. 3 

2.2.3 Interlayer rolling 4 

Typical problem of formation of coarse columnar centimetre scale β grains in a 5 

build direction (refer Figure 13), specifically associate with Ti-6Al-4V alloy in directed 6 

energy deposition format, was addressed by the many researchers (31–33). Szost et al. 7 

(32) argued that the epitaxial growth of β grains from a partially melted substrate in a 8 

specific opposite direction of heat flow occurs without nucleation barrier and 9 

undercooling only under specific conditions of matching chemistry of feed and base 10 

material, presence of strong thermal gradient and presence of completely liquefied filler 11 

metal. The interesting phenomena severely affects directional strength compared to the 12 

wrought product (33).  13 

This peculiar problem was well tackled by the introduction of strain at each 14 

layer by the application of specific load using rollers (31,34,35). The innovative 15 

technique was highly successful in producing roughly randomly oriented grain structure 16 

with grain size impressively reduced to 100µm (34) by instigation of dislocations at the 17 

wall surface which is acting as a substrate for the next depositing layer that disturbs the 18 

grain growth in specific <001> direction. The induced strain has impressive effect of 19 

reduction of recrystallisation temperature of β phase. With experimentation Martina et 20 

al. (35) stated that the recrystallisation is dependent upon amount of strain rather than 21 

the highest temperature reached during layer deposition. Thus, higher the loading 22 

pressure, more is the induced strain and dislocations which produces smaller prior β 23 

grains (see Figure 14). Also, the strain effect produced by flat rollers was found to have 24 

better microstructural properties compared to profiled rollers. In all the studies, 25 
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however, the authors failed to indicate the amount actual strain value that was 1 

introduced into a wall at each layer which is important parameter in developing an 2 

object with varying thicknesses and different alloys with diverse strength values. A 3 

detailed discussion on the response of aluminium alloys to the interlayer rolling is in 4 

section 3.2. 5 

2.2.4 Process variation 6 

Possibility of application of two welding arcs for improved deposition rate is always 7 

been an area of interest from industry sector. Researchers experimented deposition of 8 

WAAM structure with twin wire GMAW (36) and double electrode GMAW (DE-9 

GMAW) (37,38). In comparison between GMAW and DE-GMAW i.e. 10 

GMAW+GTAW (37), later process was found beneficial in terms of smaller volume 11 

and dimensions of molten weld pool, lower heat input and lesser average temperature of 12 

the solidified weld metal with same deposition rate. Microstructural study which was 13 

not part of the research, can be interesting because forced cooling effect produced by 14 

relatively less energy input for the same volume of filler metal melting may create 15 

highly directional cellular and columnar grains as predicted by constitutional 16 

supercooling (39). Comparison of microstructures and mechanical properties of low 17 

heat input processes namely cold metal transfer (CMT) and DE-GMAW can benefit 18 

advancement of WAAM. Although, simplicity in the formation of functionally graded 19 

parts in layer type deposition has been studied (36,40,41), the area is still unattended 20 

and needs in depth understanding of fundamental behaviour of filler metals of widely 21 

different compositions are mixed using single arc. Even though, the hybrid 22 

manufacturing, the concept that involves the addition of metal and subsequent removal 23 

of part of it to achieve desired final shape and surface finish, possesses attractive cost 24 
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advantages and enables interesting real time repairing during manufacturing, the 1 

concept is still underdeveloped. Designing of a tool with respect to product shape and 2 

respective movement is challenging part of hybrid manufacturing where the shape and 3 

size of an intended object is not constant. 4 

2.3 WAAM advantages and challenges 5 

The feedstock material for WAAM i.e. wire shape costs 2-15£/kg for steels and 97-6 

240£/kg for titanium alloys whereas same materials cost 60-93£/kg and 264-685£/kg 7 

respectively when powder is considered (2). A wide difference in the cost of raw 8 

material makes wire-based technique 2 to 50 times cost efficient than powder-based 9 

techniques. Production of titanium component through WAAM can be 7% to 69% 10 

cheaper than conventional routes (42). However, such an impressive cost advantage is 11 

highly doubted when low cost materials such as steel and aluminium are considered. 12 

For intricate aero engine parts, BTF ratio of 30 is not unusual when manufactured from 13 

stock. Conversely, when the same parts were manufactured using WAAM, impressive 14 

material saving was observed (27), with BTF ratio of 1.2 for high-cost titanium alloy.  15 

Deposition rate approaching 10 kg/h for steels (27,34) is achievable with 16 

WAAM which is approximately 16 times higher than powder-based processes that 17 

possess maximum deposition rate of 600g/h (43). The reason being wide difference in 18 

the shape of a single bead. Powder-based processes reveal bead thickness ranging from 19 

few microns to maximum 1mm (44) whereas WAAM processes demonstrate bead 20 

height 1-2mm (45,46) which is likely to increase proportionately with deposition rate. 21 

Although, higher deposition rate is one of the attractive features of WAAM, unlike low 22 

deposition rate process, control over the large liquid weld metal is critical. The 23 

solidification of large weld pool in WAAM can be correlated with the conventional 24 
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casting process experiencing difference in solidification behaviours at the centre and 1 

outer periphery.  2 

To achieve high production rate wire feed speed should be kept to an optimum 3 

balance, failure to control this favour uncontrolled deposition of weld volumes and 4 

subsequently imposes surface roughness that ultimately increases process instability. 5 

According to Williams et al (27), the deposition rate needs to be restricted below 4kg/h 6 

for steels and 1kg/h for aluminium and titanium alloys to restrict BTF ratio below 1.5. 7 

This concludes necessity of machining operation for WAAM when high deposition rate 8 

is considered. Thus, WAAM cannot be a conclusive net shape operation for any part 9 

production where surface roughness is one of the decisive factors. 10 

Addition of metal layer-by-layer using arc imposes thermal cycles on solidified 11 

weld metal as well as in substrate. The effect of heat discharge not only causes partial 12 

melting and heat treating of the previously deposited layers but also extends a non-13 

isotherm heat treating effect up to 3 to 4 layers below the deposited bead. The level of 14 

this modification being a function of heat input and material thermophysical properties. 15 

The expansion and contraction of deposited metal enforced by thermal cycles 16 

indicatively and substantially generates residual stresses in a substrate and in formed 17 

component. Formation of residual stresses in a component by different means, 18 

classification, measuring methods and effect on performance is well addressed by 19 

Withers and Bhadeshia (47,48). A neutron diffraction, one of the measurement methods 20 

for type I (macro-stresses) residual stresses, recommended by Withers and Bhadeshia 21 

(47) was applied for the measurement of residual stresses in an arc-based layer type 22 

deposition of Ti-6Al-4V alloys to study the effect of interlayer rolling by Colegroave et 23 

al. (31). In without rolling condition, the WAAM wall revealed tensile residual stresses 24 

(approx. 500MPa) and was equilibrated by compressive stresses in a substrate while the 25 



14 
 

sample was clamped. However, after unclamping compressive plastic strain in the wall 1 

caused upwards bending of a substrate relieving tensile stresses and creating in the 2 

baseplate. After rolling, impressive reduction in residual tensile stresses was reported 3 

(approx. 150MPa). The experiment also confirmed that stress produced by arc 4 

deposition is greater that the stress relaxation offered by interlayer rolling. Figure 15 5 

demonstrates the upward distortion produced in a base plate during production of 6 

WAAM part which extends upto 15mm when measured at the edge. The study is in line 7 

with the results reported by Colegrove et al. (31) that measures 7mm distortion of 8 

baseplate. 9 

In comparison with laser and electron based processes that restricts overall 10 

dimensions of an object due to chamber size, WAAM is capable of producing objects 11 

without dimensional limits. Thus, high deposition rate and theoretically unlimited metal 12 

deposition capability makes WAAM suitable for production of medium to large scale 13 

parts. However, larger bead volumes and higher surface roughness compared to 14 

powder-based processes (25μm or less cited by Gu (43)) restricts its applications to 15 

production of low to medium complex parts. 16 

Mechanical strength of WAAMed products tend to under match the strength 17 

requirements of wrought product or filler wire of a similar chemistry. Table 3 briefly 18 

reveals the tensile properties of steel, stainless steel and titanium alloys of WAAM parts 19 

whilst tested in vertical direction. The tensile properties of WAAM parts are highly 20 

directional and dependent upon the deposition pattern followed during an object 21 

formation. Thus, the directional tensile properties are always needs to be reported. The 22 

grain orientation imparts great influence of tensile properties creating WAAM part 23 

stronger in specific direction than the other. Details of microstructural imperfections in 24 
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Ti-6Al-4V are discussed in the Section 2.2.3 whereas Section 3.2.3 and 3.2.4 discusses 1 

microstructural details and mechanical properties of aluminium alloys. 2 

3 WAAM of aluminium 3 

Porosity in aluminium welding as discussed earlier is highly reviewed major concern 4 

and one of the prime factors limiting the expansion and widespread applications of 5 

aluminium in WAAM field. Identifying the early stages of investigation, researchers 6 

thoughtfully applied low heat input CMT process for WAAM of aluminium. The 7 

combined effect of CMT, interlayer rolling and heat treatment on porosity and 8 

mechanical properties of aluminium alloys is the area of interest for many researchers. 9 

Initially an insight is provided on CMT technique followed by advancement of WAAM 10 

of aluminium. 11 

3.1 Cold metal transfer (CMT) technique 12 

The invention of the CMT technique, a variation of GMAW process, that produces good 13 

quality spatter-free weld with noticeably less heat input (49,50) compared to traditional 14 

GMAW modes is widely noted and well accepted by industries all over the world. An 15 

innovative modification in the metal transfer and integrated high speed electronic and 16 

mechanical control regulates arc length, method of metal transfer and amount of heat 17 

transferred to the base metal causes CMT an uncommon technique. The process 18 

basically works on the dip transfer concept. The CMT process is named as cold in the 19 

relative terms of welding in comparison to other welding techniques because the 20 

process constantly fluctuates between hot and cold phases (high and low current and 21 

voltage) averaging relatively less hot. Typical current and voltage variations in CMT 22 

process is shown in Figure 16. 23 
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To gain the maximum advantage of the CMT, four process variants namely 1 

conventional CMT, CMT Pulse (CMT-P), CMT Advanced (CMT-ADV) and CMT Pulse 2 

Advanced (CMT-PADV) were developed. Noteworthy advantages of these processes not 3 

only include lower thermal input with alteration in electrode burn off rate but also great 4 

control over the penetration with high wire melting efficiency and high deposition rate 5 

comparable to the conventional GMAW process. 6 

3.1.1 CMT operation 7 

Figure 17 and Figure 18 are the cyclograms of welding current vs voltage variations 8 

during conventional dip transfer (CDT) and CMT process respectively. Table 4 9 

differentiates the cycle of operation between the same. The operation of CMT in cyclic 10 

order can be categorised into 4 distinct stages as explained below.  11 

(1) Arc burning – An arcing mode, considered as a hot stage in which arc is fully 12 

ignited with high current and voltage. A metal at the tip of filler wire is heated to 13 

its melting temperature forming a globule at the wire tip. 14 

(2) Arc collapse – In this stage, arc length reduces by feeding a filler wire that touches 15 

the molten weld metal extinguishing an arc with the reducing power input creating 16 

a cold phase. A globule formed during the previous stage is transferred to the 17 

liquid weld pool. 18 

(3) Short-circuiting – A filler wire touches the liquid weld pool however, unlike 19 

conventional dip transfer, wire is instantaneously retracted back. Hardly any 20 

resistance heating is observed during this stage due to small short-circuiting 21 

period enforced by the mechanical retraction of a wire and the maintenance of low 22 

current for prescribed short-circuiting period by the advanced electronic circuitry. 23 
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(4) Arc re-ignition – Welding current and voltage is raised while retracting filler wire 1 

from the weld pool. Because of the raised electrical power, arc is reignited 2 

resulting in overall temperature rise forming a hot phase and further same cycle 3 

is repeated. 4 

The innovative part of the CMT operation is the mechanical retraction of wire and the 5 

control of current at a time of short circuiting that not only avoids unnecessary power 6 

and temperature rise but also precisely controls filler metal transfer which greatly 7 

enhances metallurgical properties. 8 

3.1.2 Heat input calculation 9 

The heat input calculations using tradition formula (equation 1) which considers 10 

average values of current and voltage are not very accurate when pulsing is involved. 11 

Hence, revised formula that considers instantaneous values of current and voltage needs 12 

to be used that can provide precise value of heat input as displayed in an equation 2 13 

(51,52). The error in the heat input calculation using equation 1 can be 9.1%, 16.6% and 14 

-14.6% for MIG/MAG Short Arc Transfer (DC), MIG/MAG Pulse Transfer (DC) and 15 

MIG/MAG Pulse (RapidArc) Transfer (DC) processes respectively (53,54).  16 

 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻 =
𝑉𝑉𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻𝑉𝑉𝐻𝐻 𝑥𝑥 𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝐻𝐻𝑖𝑖𝐻𝐻
𝑇𝑇𝑐𝑐𝐻𝐻𝑇𝑇𝐻𝐻𝑉𝑉 𝑠𝑠𝑖𝑖𝐻𝐻𝐻𝐻𝑠𝑠

 Eq. (1) 

   

 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻 =
Ƞ� 𝐼𝐼𝑖𝑖 ∗ 𝑈𝑈𝑖𝑖

𝑖𝑖
𝑛𝑛

𝑖𝑖=1
𝑇𝑇𝑐𝑐𝐻𝐻𝑇𝑇𝐻𝐻𝑉𝑉 𝑠𝑠𝑖𝑖𝐻𝐻𝐻𝐻𝑠𝑠

 Eq. (2) 

Where, Ƞ is welding process efficiency, Ii and Ui are the instantaneous current and 17 

voltage at each instant of time. 18 

Using the later equation, Cong et al. (50) compared the actual heat inputs of 19 

conventional CMT, CMT-P, CMT-ADV and CMT-PADV techniques which were 20 



18 
 

331.6J/mm, 366.8J/mm, 273.4J/mm and 135.4J/mm respectively (1.2 dia. wire) when 1 

wire feed speed and travels speed were unchanged (7.5m/min and 0.5m/min 2 

respectively). This emphasises that the increasing pulsing effect reduces actual heat 3 

input. In this case, with same deposition rate, the heat inputs of CMT-ADV and CMT-4 

PADV processes are 0.82 and 0.4 times to that of conventional CMT processes. For 5 

CDT, heat input using routine welding parameters is normally above 400J/mm however 6 

for spray transfer value crosses 1kJ/mm (for 1.2 dia. wire). This clearly demonstrates 7 

the importance of heat input calculations using equation 2 and thus explains why the 8 

CMT is a low heat input process.This fact impacts significantly when layer type 9 

deposition is considered. 10 

3.1.3 Applications of CMT 11 

On account of less possibility of warpage and burn through, CMT has been 12 

satisfactorily implemented for welding of aluminium sheets (55) and for low dilution 13 

cladding of aluminium alloys (56,57) and nickel-based superalloys (58). Elrefaey (59) 14 

noted better mechanical characteristics of 7xxx series aluminium alloys compared to 15 

conventional GMAW and GTAW processes. Gungor et al. (60) reported higher yield 16 

strength values for 5xxx and 6xxx series alloys when welded using CMT compared to 17 

any other welding methods previously addressed. 18 

3.2 Advances in WAAM of aluminium 19 

3.2.1 Application of GTAW 20 

Identifying early need of the capability development, various studies were carried out to 21 

build up background allowing discussion on fundamental issues related to WAAM of 22 

aluminium. In one of the early studies on applicability of GTAW for WAAM of 23 



19 
 

aluminium using 4043 alloy, Wang et al. (61) discussed suitability of varying polarity 1 

GTAW. Researchers described the evidence of fine dendritic structure at the top layer 2 

and coarse columnar/cellular grain structure in the middle and the bottom of formed 3 

part. Therefore, hardness incremental trend was observed from the bottom and middle 4 

layers to the top layer. Focusing on high deposition rate and introduction of CMT 5 

technique, research direction was shifted to GMAW process; since then on hardly any 6 

study was directed towards application of GTAW for WAAM of aluminium. 7 

3.2.2 Porosity 8 

The porosity formation in heat treatable and non-heat treatable alloys is closely related 9 

to the presence of alloying elements. The formation of pores in heat treatable alloy is 10 

attributed to the nucleation (during cooling) and dissolution (during heating) of eutectic 11 

phases (for example Al2Cu). In one of the related studies, Gu et al. (51) reported the 12 

presence of small pores (5µm to 20µm) in heat treatable alloy which was influenced by 13 

interdendritic spaces that forced detachment and flotation pores preventing formation of 14 

large pores. Large increase in number of pores after heat treatment was inferred to the 15 

vacant sites created by complete dissolution of eutectic phase (Table 5). In non-heat 16 

treatable alloys, the presence of volatile material (Mg) and the influence of alloying 17 

elements on metal solidification were responsible for pore formation. 18 

3.2.2.1 Porosity reduction using CMT 19 

Porosity formation in aluminium has close relationship with weld penetration, heat 20 

input, dendrite growth and shape and size of formed grains (50,62). Cong et al. (62) 21 

compared the effects of different CMT techniques such as conventional CMT, CMT-P, 22 

CMT-ADV and CMT-PADV on porosity formation (refer Figure 19 for macrograph of 23 
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weld displaying porosity distribution, Figure 20 for microstructural details and Table 5 1 

for detailed comparison of pore size distribution). Comparatively higher heat input, 2 

greater penetration and subsequently formed coarse columnar grains prevented the 3 

hydrogen escape in conventional CMT (50,62). This mode revealed large number of 4 

pores with pore size varying from 10 to >100µm. It was evident that the coalescence of 5 

small pores into large pores were responsible for the formation of large pores with size 6 

>100µm.  7 

Comparatively less penetration witnessed by CMT-P decreased the escape 8 

distance for hydrogen compared to CMT that supported the evidence of lesser number 9 

of pores (50). Also, the presence of no pore over a size of 100µm was attributed to the 10 

smaller grain size with CMT-P process. Presence of refined equiaxed grains, lower heat 11 

input, shallower penetration and alternating polarities producing oxide cleaning effect in 12 

CMT-ADV mode significantly helped hydrogen to escape that revealed no pore with 13 

size >50µm. The impressive results were obtained using CMT-PADV process with no 14 

pores over a size of 10µm. The technique exhibited combined effect of CMT-P and 15 

CMT-ADV processes producing finest equiaxed grain structure and lowest dilution 16 

(50,62). 17 

Cong et al. (52) reported the presence of lesser number of pores (refer Table 5) 18 

in a block structure compared to wall structure when deposited using CMT-P and CMT-19 

ADV processes. Walled structures showed some of the pores with size >50µm whereas, 20 

such large pores were absent in block structures. Also, lower heat input of CMT-ADV 21 

revealed lesser number pores than CMT-P in a block structure. The dissipation of heat 22 

by conduction in a wall structure is possible only through underlying layers. However, 23 

material available in surrounding in a block structure extracts heat increasing cooling 24 
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rate. Thus, formation of refined and finer microstructure in a block structure was 1 

responsible for reduced porosity compared to wall structure (see Figure 21). 2 

3.2.2.2 Porosity reduction by interlayer rolling 3 

The pressure exerted by rolls onto the WAAM bead greatly affects the pore structure. 4 

The strain induced by rolling, thus large amount of dislocation and vacancies acts as 5 

preferential sites for atomic hydrogen absorption. Gu et al. (51) reported the effect of 6 

interlayer rolling and post-deposition heat treatment on porosity evolution on heat 7 

treatable and non-heat treatable aluminium alloys. In heat treatable alloy, massive 8 

reduction of 68.7% and 99.1% in number of pores and 83.5% and 97.2% in percentage 9 

area of pores were documented when 15kN and 30kN loads were applied respectively. 10 

The reduction in number of pores was 25.9% and 97.5% and reduction in area 11 

percentage was 73.7% and 97% for non-heat treatable alloy for same rolling condition 12 

(refer Table 5). Impressively, the size of pores was reduced well below resolving power 13 

of available instrument that ideally revels complete elimination of porosity. The effect is 14 

also corelated with the grain size reduction with increasing rolling load which is 15 

explained in section 3.2.3.  16 

3.2.3 Grain structure 17 

Interlayer rolling mechanism is not only supportive in reducing porosity but also it 18 

greatly influences the grain structure. The variation of grain size and grain orientation 19 

angle with respect to loading conditions is depicted in Figure 22. In different 20 

experiments Gu et al. (63) and Gu et al. (64) reported the effect of interlayer rolling on 21 

Al-Cu and Al-Mg-Mn alloy WAAM structure. It can be evidenced from Figure 22 that 22 

the increasing loading condition creates smaller grains with low misorientaion angle. 23 
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For 5087, in as deposited structure grains with size <5µm existed only 7% whilst grains 1 

with size >50µm contributed around 40%. With increasing rolling load, number of 2 

grains with size <5µm increased to 16%, 34% and 49% for 15kN, 30kN and 45kN 3 

respectively. Subsequently, large grains reduced in numbers showing 0% of grains 4 

>50µm for 45kN load. The similar trend of reduction in grain size with increasing load 5 

can be clearly seen for Al-Cu alloy where grains with size less than 5µm contributed 6 

only 13% in as deposited condition which raised to 77% for 45kN load. 7 

Along with this, it is evidenced that the fraction of small grains boundaries 8 

(<15°) gradually increased along with increasing rolling load indicating the formation 9 

of large amount of sub grains by splitting of large grains. For both alloys with 45kN 10 

load, fraction of small grain boundaries contributed more than 70% of the total volume 11 

which was 20% and 6% in as deposited condition for alloys 5087 and 2219 respectively. 12 

The effect of grain size reduction on tensile properties and hardness is explained in 13 

section 3.2.4. 14 

Cong et al. (52) highlighted the difference in the microstructures of wall and 15 

block structures when manufactured from CMT-P and CMT-ADV processes. Wall 16 

Structures when manufactured from CMT-P technique, due to heat extraction from 17 

substrate, columnar grains formed in bottom part, equiaxed non-dendritic grains found 18 

in middle region and top region showed equiaxed dendritic portion. With CMT-ADV 19 

process, cellular grains were present in between columnar and equiaxed grains due to 20 

lower heat input of CMT-ADV. With block structure, microstructure transition was 21 

observed within a single bead where central region revealed equiaxed non-dendritic 22 

structure and columnar grains in outer part due to faster heat extraction at adjacent area 23 

when CMT-P was used. However, CMT-ADV process exhibited equiaxed dendritic 24 

zone in outer part. The results obtained from MIG/MAG process i.e. by application of 25 
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CMT are in conjunction with the outcomes reported by Wang et al. (61) using VP-1 

GTAW as mentioned in Section 3.2.1. The microstructural details are in conjunction 2 

with the porosity reduction as explained in Section 3.2.2.1.  3 

3.2.4 Tensile properties and microhardness 4 

Introduction of large number of dislocations into a WAAM object by rolling and 5 

formation of small sized grains greatly enhance tensile properties. The recrystallisation 6 

offered by cyclic heating may release strains and dislocations. However, this is not 7 

enough to nullify the entire effect induced by rolling and thus considerable density of 8 

dislocations remain induced (51) in the interlayer rolled object favouring the tensile 9 

strength increment. Table 6 describes the effect increasing load of interlayer rolling on 10 

tensile properties and elongation of heat treatable and non-heat treatable aluminium 11 

alloys. An approximately linear trend can be seen for incremental tensile strength for 12 

increasing rolling loads. 13 

In case of heat treatable alloys, repeated thermal cycles analogous to the 14 

annealing and aging heat treatment produced eutectic phases. However these 15 

precipitates were inactive in the strength improvement due to their large size and less in 16 

numbers (63) which creates weak resistance to dislocation movement. When rolling was 17 

applied to these alloys, formed eutectics fractured into smaller sizes depending upon 18 

applied load and after heat treatment uniform distribution of eutectics with refined 19 

smaller size grains were optioned (63) that greatly enhanceed tensile properties. 20 

Interestingly, the tensile properties of heat treated and rolled+heat treated samples 21 

showed comparable tensile properties however, grain size of the rolled specimen 22 

remained approximately half to that of without rolled specimens which was ascribed to 23 

the splitting of coarse grains and emergence of sub-grains due to induced strain by the 24 
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roller (see Table 6 and Section 3.2.3). In case of 5087, the major strengthening 1 

mechanisms are high density dislocations led by deformation, sub-grains produced due 2 

to rolling load (see section 3.2.2) and grain refinement. An interesting outcome reported 3 

by Geng et al. (16) in which researchers mentioned isotropy in tensile properties when 4 

specimens tested parallel and perpendicular direction of the deposition. Conversely, 5 

anisotropy was observed when specimens were tested in parallel and perpendicular 6 

direction of the grain texture. Thus, tensile strength in perpendicular direction of grain 7 

texture was higher than parallel directional properties. This fact is important while 8 

designing a component for practical application. 9 

As expected, irrespective of alloy type, a linear trend can be seen between 10 

hardness and rolling load (refer Figure 23). As experimented by Gu et al. (64) hardness 11 

increment was 14.8%, 27% and 40% compared with as-deposited for 15kN, 30kN and 12 

45kN rolling loads respectively for alloy 5083. Considering 2319 filler wire the 13 

incremental values were 14.2%, 33% and 52.8% (65) for the same loading conditions. 14 

This implies WAAM parts produced with proper operation can possess equivalent or 15 

even higher properties than respective wrought products (see Table 6) and thus, there is 16 

close possibility of replacing wrought product with comparable WAAM products in 17 

near future.  18 

3.2.5 Chemical composition 19 

To tackle metallurgical issues and reshape the grain structure favourable for the new 20 

solidification pattern of WAAM, alteration of chemical composition of filler wire 21 

becomes crucial factor. One of the examples of specially designed alloy for 3-D printing 22 

is AlMgSc-based corrosion resistant Scalmalloy (66) that eliminates the problems 23 

related to the presence of Mg such as spinel formation (MgAl2O4) and witnesses 24 
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reduced wettability and vaporization of Mg. Interestingly Scalmalloy displays very 1 

good combination of mechanical properties such as high ductility and specific strength 2 

comparable to titanium.  3 

Fixter et al. (67) studied the suitability of aluminium 2xxx series alloys focusing 4 

on hot crack susceptibility and amount of Mg present in an alloy. Surprisingly, authors 5 

found 2024 wire deposition, earlier considered as an unweldable composition, suitable 6 

for WAAM. The tensile properties of 2024 (see Table 6) were comparable with 7 

respective wrought part. This clearly highlights the fact that weldability of an alloy 8 

cannot be considered as a governing criterion for selection of a specific filler metal 9 

composition for WAAM application. Future experimental investigations are 10 

recommended to assess applicability of other metal alloys to WAAM. 11 

3.2.6 Single step forming 12 

Although, the interlayer rolling process has positively influenced WAAM of 13 

aluminium, the process suffers from limitations such as time-consuming process and 14 

difficultly in application for formation block structure. An idea of replacing the 15 

interlayer rolling with a single step forming process such as bending and forging as an 16 

extension of WAAM was emerged (68). Following the formability check by 17 

conventional compression test, researchers noted ductile and isotropic nature of WAAM 18 

part and through finite elemental analysis study. The authors provided positive results 19 

for the application of forming operation that will provide sufficient strain hardening 20 

along with the elimination of porosity. Even though there is likelihood of adoption this 21 

innovative concept, the results of actual experimentation are absent. Also, the 22 

operational feasibility of the introduction of a forming step as an extension of WAAM 23 

in the present industrial environment is the major concern where the final shape of 24 
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component becomes a decisive factor. 1 

3.2.7 Use of other techniques 2 

Despite the CMT technique being widely accepted and studied, potential of other 3 

techniques based on short-circuiting metal transfer, similar to CMT such as Pulse multi-4 

control (PMC), Low spatter control (LSC) and Synchrofeed are worth to consider at the 5 

development stage of WAAM of aluminium. Unfortunately, hardly any literature 6 

available other than CMT discussing its applicability to WAAM. 7 

4 Conclusion 8 

The growing market demands of aluminium products mainly high strength alloys in 9 

automobile and aerospace could be satisfactorily fulfilled using WAAM as an economical 10 

next-generation option. GMAW based CMT variants have been widely applied and 11 

studied as a competent technique for WAAM of aluminium. Elimination of porosity, a 12 

prominent issue highly debated in aluminium welding, was appreciably tackled by the 13 

application of interlayer rolling and CMT-PADV technique. Study of weld pool 14 

behaviour and weld metal solidification characteristics of heat treatable and non-heat 15 

treatable aluminium alloys for thin and thick structures through metallurgical viewpoint 16 

can prove to be an important constructive field of study. 17 

Distortion and uneven shrinkage resulting from uncommon solidification 18 

behaviour and resulting residual stresses in WAAM structure leaves a wide gap in the 19 

knowledge. It will be interesting to insight the stress pattern in open and closed loop 20 

structures with varying thicknesses. The maintenance of preheating and interpass 21 

temperature and its relation between heat accumulation, residual stress development and 22 

mechanical properties is an important area of study. Unweldable aluminium alloys have 23 

proven good WAAM capability suggests that there is a necessity to inspect metallurgical 24 
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aspects of WAAM solidification manner. This fact may lead to requisite of the 1 

redefinition of weldability concept or creation of a separate concept of ‘WAAMability’ 2 

of alloys. Also possibility of replacing time consuming interlayer rolling with the single 3 

step forming needs to tested to aluminium alloys. Thus, interdependency between weld 4 

deposition parameters, microstructure, imperfections and mechanical properties will 5 

govern the overall integrity of WAAM of aluminium component and the maturity of 6 

WAAM field. Matching mechanical properties of the WAAM product to respective 7 

wrought products, no dimensional limitations on product shape, economical advantages, 8 

requirement of comparatively less complex and less expensive instruments and simplicity 9 

in operation are the prime factors make WAAM incomparable to the techniques such as 10 

superplastic forming which were restricted only upto academic interest.11 
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Table 1 Hot short composition range for aluminium binary system 

Alloy system Hot short composition range 
(wt. %) 

Al-Si 0.5 – 1.2 
Al-Cu 2.0 – 4.0 
Al-Mn 1.5 – 2.5 
Al-Mg 0.5 – 2.5 
Al-Zn 4.0 – 5.0 
Al-Fe 1.0 – 1.5 
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Table 2 Major areas of study of WAAM technique in recent past 

Area of 

study 
Year Specific area of study 

Material / 

Filler wire 
Studied by 

Design 

2011 

• Cross structures 

• Root path determination 
Steel 

Mehnen et al. 

(25) 

• Inclined wall preparation 

• Preparation of horizontal 

wall and closed shape 

Steel 

(ER70S-6), 

Aluminium 

(4043) 

Kazanas et al. 

(30) 

2014 

• Deposition patterns 

• Cross structures 

Mild steel, 

Titanium (Ti-

6Al-4V) 

Mehnen et al. 

(28) 

• Tool path planning Mild steel Ding et al. (69) 

2015 • Hybrid manufacturing - 
Newman et al. 

(70) 

2016 
• T-crossing 

Steel 

(ER70S-6) 

Venturini et al. 

(29) 

• Adaptive path generation Steel Ding et al. (71) 

Process 

variation 

2005 
• Hybrid manufacturing 

using milling 

Steel 

(ER70S-6) 
Song et al. (72) 

2014 • Twin wire GMAW 

Steel 

(ER70S-6) & 

Steel 

ER110S-6 

Adinarayanappa 

and 

Simhambhatla 

(36) 

2016 

• Double electrode GMAW 
Steel 

(H08Mn2Si) 
Yang et al. (37) 

• Dissimilar twin wire 

deposition (functionally 

gradient part formation) 

Steel 

(ER70S-6) & 

Steel 

ER110S-G 

Somashekara 

and 

Suryakumar 

(40) 
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• Double electrode GMAW 
Steel 

(H08Mn2Si) 
Yang et al. (38) 

2017 

• Hybrid manufacturing with 

milling 

Aluminium 

2325 
Li et al. (73) 

• Hybrid manufacturing  
Steel 

(ER70S-6) 

Prado-

Cerqueira et al. 

(74) 

2018 
• Dissimilar twin wire 

GTAW deposition 

Aluminium 

ER2319 and 

ER5087 

Qi et al. (41) 

Residual 

stress 

2007 
• Finite elemental structural 

study 

Steel 

(Simulation) 

Mughal et al. 

(26) 

2011 • Computer simulation Steel Ding et al. (23) 

2015 • Distortion control 

Steel, 

Aluminium 

and Titanium 

(Ti-6Al-4V) 

Williams et al. 

(27) 

2016 

• Computational model for 

twin wire AM 

Steel 

(ER70S-6) 

Somashekara et 

al. (24) 

• Bulk deformation 
Steel 

(ER70S-6) 

Colegrove et al. 

(75) 

 • Microstructure 
Titanium (Ti-

6Al-4V) 
Szost et al. (32) 

Forming 

appeara-

nce 

2014 
• Passive vision sensor 

system 

Steel Xiong and 

Zhang (76) 

2015 
• Parametric study 

Steel Xiong et al. 

(14) 

• Bead overlapping factor Steel Ding et al. (17) 

2016 

• Double electrode GMAW 

parametric study 

Steel 

(H08Mn2Si) 
Yang et al. (38) 

• Minimum angle and 

curvature of radius 

Aluminium 

5A06 
Geng et al. (16) 
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• Control of arc start and end 
Steel Xiong et al. 

(15) 

2017 • Inclined wall structure 
Steel 

(H08Mn2Si) 

Xiong et al. 

(77) 

Interlayer-

rolling 

and its 

effect on 

microstru-

cture, 

mechani-

cal 

properties 

and 

residual 

stresses 

2013 

• Effect of different profiled 

rollers 

Steel (ER70S-

6) 

Colegrove et al. 

(78) 

• Grain structure refining Titanium (Ti-

6Al-4V) 

Martina et al. 

(33) • Mechanical properties 

2014 

• Distortion Titanium (Ti-

6Al-4V) 

Colegrove et 

al.(31) • Refined microstructure 

• Reduction of residual 

stresses 

Titanium (Ti-

6Al-4V) 

Martina et al. 

(79) 

2016 

• Controlling residual 

stresses 

Titanium (Ti-

6Al-4V) 

Honnige et al. 

(80) 

• Precipitation hardenable 

alloy 

Aluminium 

(ER2319) 
Gu et al. (63) 

• Porosity formation 

behaviour in work and 

precipitation hardenable 

alloy 

Aluminium 

(ER2319 and 

5087) 
Gu et al. (51) 

• β grain refinement in Ti-

6Al-4V 

Titanium (Ti-

6Al-4V) 

Donoghue et al. 

(34) 

2017 • Al-Mg4.5Mn alloy 
Aluminium 

(ER5087) 
Gu et al. (64) 

Cold 

metal 

transfer 

(CMT) 

2010 • Application for Ti-6Al-4V 
Titanium (Ti-

6Al-4V) 

Almeida and 

Williams (81) 

2014 

• Parametric study with 

AlSi5 

Aluminium 

(AlSi5) 

Wagiman et al. 

(82) 

• Variants of CMT technique 

• Effect on porosity 

Aluminium 

(2319) 
Cong et al. (62) 

2016 • Variants of CMT technique 
Aluminium 

(ER2319) 
Cong et al. (50) 
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2017 • Wall and block structure 
Aluminium 

(ER2319) 
Cong et al. (52) 

2018 

• Varying polarity and 

microstructural 

considerations 

Al-6Mg 
Zhang et al. 

(83) 

Fatigue 

failure 

and 

toughness 

2013 • Fatigue life 
Titanium (Ti-

6Al-4V) 
Wang et al. (84) 

2016 

• Fatigue crack growth 

propagation 

Titanium (Ti-
6Al-4V) 

Zhang et al. 

(85) 

• Fatigue crack path selection 
Titanium (Ti-

6Al-4V) 

Zhang et al. 

(86) 

2017 • Fatigue crack growth rate 
Titanium (Ti-

6Al-4V) 

Zhang et al. 

(87) 
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Table 3 Comparison of tensile properties of WAAM parts (vertical direction / 

longitudinal to build direction) with comparable wrought / filler wire 

Alloy 

Wrought product / filler 

wire 
WAAM product 

Reported 

by 
Yield 

strength 

(MPa) 

Ultimate 

tensile 

strength 

(MPa) 

Elong- 

ation 

(%) 

Yield 

strength 

(MPa) 

Ultimate 

tensile 

strength 

(MPa) 

Elong-

ation 

(%) 

Titanium 

(Ti-6Al-

4V) 

950 1030 11 870 920 12 
Martina et 

al.(33) 

Steel 

(ER70S) 
448 480 22 

402 

(max) 
- - 

Moore et 

al. (88) 
Stainless 

Steel 

(316L) 

452 520 30 
422 

(max) 
- - 

Bainitic 

steel 
1230 - 11 1010 - 6 

Fu et al. 

(89) 

Stainless 

steel 

(304) 

552 241 55 235 678 55.6 

Kotecki 

and 

Armao 

(90) and 

Ji et al. 

(91) 
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Table 4 Comparison of conventional dip transfer (CDT) and CMT mode based on 

operation cycle 

Stage 
CDT CMT 

Current Voltage Current Voltage Wire feed 

Arc burning LD SD LI SI Feed 

Arc collapse SI LD LD SD Feed 

Short circuiting LI SI SI LD Feed 

Arc re-ignition SD LI LI LI Retract 

*LI – Large increase, LD – Large decrease, SI – Small increase, SD – Small decrease 
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Table 5 Effect of different metal deposition conditions and different loads of inter-layer 

rolling on porosity in aluminium alloys 

Filler 
wire 

Condition Mode of 
metal 
transfer 

Pore 
count 

Pore 
diameter 

Length/area 
of 
consideration 
for pore 
count 

Reported 
by 

2319 

AD 

CMT 

155 10-50µm 

15mm length Cong et 
al.(62) 

42 50-
100µm 

25 > 100µm 

CMTP 

21 10-50µm 

7 50-
100µm 

0 > 100µm 

CMTADV 17 10-50µm 
0 > 50 µm 

CMTPADV 0 > 10µm 
AD 

CMTPADV 

614 13.5µm 

120mm2 Gu et al. 
(51) 

R15 192 12.5µm 
R30 5 8.8µm 
HT 2001 15.5µm 
AD 
block 
structure 

CMTP 

180 15µm 

225mm2 Cong et 
al. (52) 

40 25µm 
15 35µm 

AD 
wall 
structure 

110 15µm 
50 25µm 
100 35µm 
134 > 35µm 

AD 
 block 
structure 

CMTADV 

60 15µm 
35 25µm 
11 35µm 

AD 
wall 
structure 

120 15µm 
90 25µm 
30 35µm 
85 > 35µm 

5087 

AD 

CMTP 

454 25.1µm 

120mm2 Gu et al. 
(51) 

R15 336 33.2µm 
R30 11 13µm 
HT 359 9.6µm 

*AD – As deposited, R15 – Rolled 15kN, R30 – Rolled 30kN, HT – Heat treated 
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Table 6 Tensile properties of different aluminium alloys based on different testing 

conditions 

Filler 

wire 

Condition YS 

(MPa) 

UTS 

(MPa) 

Percentage 

Elongation 

Reported by 

5087 As deposited 142 291 22.4 Gu et al. (64) 

Rolled 15kN 169 320 35 

Rolled 30kN 149 311 39 

Rolled 45kN 200 344 47 

Wrought 

(5083-O) 

145 290 22 ASM Vol.2 (92) 

2024 As deposited 175 290 12 Fixter et al. (67) 

Rolled 45kN 315 375 8 

T4 335 465 15 

T6 415 505 8 

Rolled 45kN + 

T6 

415 500 11 

Wrought 

(2024-T62) 

345 440 5 ASM Vol.2 (92) 

2319 As deposited 130 260 15 Gu et al. (63) 

Rolled 15kN 140 270 14.5 

Rolled 30kN 185 285 11 

Rolled 45kN 245 315 9 

T6 315 465 13 

Rolled 45kN + 

T6 

310 460 16 

Wrought  

(2219-T62) 

220 340 7 ASM Vol.2 (92) 

2319 Vertical 106 258 15.5 Gu et al. (65) 

Horizontal 114 263 18.3 

Al-

6Mg 

CMT - 320 - Zhang et al. (83) 

CMTP - 285 - 

VP-CMT - 325 - 

*VPCMT – Varying polarity cold metal transfer mode 
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Figure 1 Classification of AM processes with respective material handling capabilities 

 

 

 

 

 



50 
 

 

Figure 2 Typical classification of WAAM 

 

 

 

 

 

 

Figure 3 Solidification cracking in aluminium welding (93) 
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Figure 4 Microhardness variation in the 6xxx series alloy across the weld when 

welded by MIG/MAG (94)  
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Figure 5 History of WAAM (5–12,31,33–35,72,95–103) 

 

 

 

 

 

 

 

 

  

Figure 6 Schematic diagram showing superposed deposit of metal (5) 
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Figure 7 Technical drawing showing a thick walled circular cross-section pressure 

vessel (7) 

 

 

 

 

Figure 8 Development and complexity of WAAM process over the years 
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Figure 9 Single bead multi-layer WAAM part without start and end control 

 

 

 

 

 

 

 

 

Figure 10 Single bead multi-layer WAAM part with controlled start and end 
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Figure 11 Deposition of cross structure(25) 

 

 

 

 

 

 

 

Figure 12 Horizontal features deposition without support(27) 
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Figure 13 Macrostructural comparison of grain size variation in different load 

application condition;(a) without loading, (b) load of 50kN and (c) load of 75kN (34) 
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Figure 14 EBSD map of effect of rolling on beta grain size; (a) and (b) with 

application load to the second last layer only and (c) and (d) rolling applied to the 

each layer, for both conditions rolling laods 50kN and 75kN respectively 
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Figure 15 Large distortion produced due to multiple thermal cycles during production 

of WAAM object 

 

 

 

 

Figure 16 Current and voltage waveforms of CMT process 
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Figure 17 Cyclogram of current and voltage variation for conventional dip transfer 

(104) 

 

 

Figure 18 Cyclogram of current and voltage variation for CMT transfer mode (Private 

communication with Melton, Jan 2018) 
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(a) (b) 

(c) (d) 

Figure 19 Porosity distribution in (a) Conventional CMT (b) CMT-P (c) CMT-ADV 

and (d) CMT-PADV(50) 

 

  

  

Figure 20 Weld microstructure of (a) Conventional CMT (b) CMT-P (c) CMT-ADV 

and (d) CMT-PADV(50) 
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Figure 21 Schematic of microstructure variation in wall and block structure using 

CMT-P and CMT-ADV processes 
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Figure 22 Effect different interlayer rolling conditions on grain size distribution and 

grain orientation in 5087 and 2219 alloys 

 

 

 
Figure 23 Effect of interlayer rolling with different loads on microhardness 
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