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Abstract 12 

Over recent decades, regions of West and Central Africa have experienced different and significant changes 13 

in climatic patterns, which have significantly impacted hydrological regimes. Such impacts, however, are 14 

not fully understood at the regional scale, largely because of scarce hydroclimatic data. Therefore, the aim 15 

of this study is to (a) assemble a new, robust, reconstructed streamflow dataset of 152 gauging stations; (b) 16 

quantify changes in streamflow over 1950 – 2005 period, using these newly reconstructed datasets; (c) 17 

significantly reveal trends and variability in streamflow over West and Central Africa based on new 18 

reconstructions; and (d) assess the robustness of this dataset by comparing the results with those identified 19 

in key climatic drivers (e.g. precipitation and temperature) over the region. Gap filling methods applied to 20 

monthly time series (1950-2005) yielded robust results (median Kling-Gupta Efficiency >0.75). The study 21 

underlines a good agreement between precipitation and streamflow trends and reveals contrasts between 22 

western Africa (negative trends) and Central Africa (positive trends) in the 1950s and 1960s. Homogenous 23 

dry conditions of the 1970s and 1980s, characterized by reduced significant negative trends resulting from 24 

quasi-decadal modulations of the trend, are replaced by wetter conditions in the recent period (1993-2005). 25 

The effect of this rainfall recovery (which extends to West and Central Africa) on increased river flows are 26 

further amplified by land use change in some Sahelian basins. This is partially offset, however, by higher 27 

potential evapotranspiration rates over parts of Niger and Nigeria. Crucially, the new reconstructed 28 
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streamflow datasets presented here will be available for both the scientific community and water resource 29 

managers.  30 

Keywords: West and Central Africa, streamflow trend and variability, hydroclimate variability, multi-31 

temporal trend identification, gap filling methods. 32 

1. INTRODUCTION 33 

Rainfall in Africa during the 20
th

 century was characterized by decreasing annual trends over the continent 34 

except regions in Cameroon, Sierra Leone and southern equatorial Africa (Hulme et al., 2001). Since 1950, 35 

most of the extreme climatic conditions occurred in the Sahel region, which has experienced several 36 

drought events from the end of the 1960s to the 1990s (Dai et al., 2004; Lebel, 2003; Nicholson, 2013). For 37 

the 1968–1997 period, rainfall in August in the West African Sahel showed a decrease of up to 37% 38 

compared to the 1931–1960 period (Nicholson et al., 2000). Rainfall patterns in the post-1990 period are, 39 

however, less well documented, given data scarcity: this has led to controversial findings regarding the end 40 

of Sahel drought. For example, Ozer et al. (2003) claimed that the Sahel drought ended in the 1990s, 41 

whereas L´Hôte et al. (2002) suggested that the drought continued beyond the 1990s. These contradictions 42 

partly reflect the significant changes in the spatial distribution of precipitation, which make findings highly 43 

dependent on the specific region, and the years and even months considered. This underlines the need for 44 

studies covering larger spatial scales. However, there is agreement on an increase in annual rainfall over the 45 

West African Sahel since the 1990s (e.g. Ali and Lebel, 2009; Jury, 2013; Lebel and Ali, 2009; Mahé and 46 

Paturel, 2009). See also Maidment et al. (2015), who described rainfall trends over Africa during the period 47 

1983-2010, using different observational datasets and simulations from the current state-of-the-art global 48 

climate models.  49 

Interestingly, while rainfall variability has been investigated at the continental scale in Africa, its effects on 50 

runoff regimes have mostly been investigated at catchment scales, using different statistical approaches and 51 

hydrological models (e.g. Ibrahim et al., 2015). This is mainly due to restricted data, and several factors 52 
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(e.g. Gyau-Boakye and Schultz, 1994) resulted in missing values in streamflow records. Such data 53 

restrictions have limited attempts to systematically assess streamflow trend, variability and changes at the 54 

regional scales. Descroix et al. (2009) reported a negative trend (more than 15% decrease) in streamflow 55 

for the 1960-2010 period in Sudanian regions (receiving approximately 700 - 1300 mm yr-1 annual 56 

rainfall) as a response to changes in rainfall regimes. Also, Mahé et al. (2013) found that a decrease in 57 

annual rainfall of around 20% since 1970 has resulted in a streamflow decrease of up to 60% for some 58 

rivers in West Africa (e.g. Niger and Senegal rivers). Amogu et al. (2010), in their attempt to regionalize 59 

runoff evolution over western Africa (1950-2010), found a clear difference between the Sahelian zone 60 

(where, curiously, runoff increases despite reduction in rainfall) and Sudanian and Guinean areas (where 61 

runoff decreases logically with rainfall). While major rivers of West Africa show a distinct runoff decrease 62 

since 1970, river flows in Central Africa do not show any long-term trend (Mahé et al., 2013). However, 63 

these results are restricted to a few long and gap-free time series, making it difficult to describe regional 64 

streamflow variability.  65 

Changes in the observational networks (e.g. station locations, gauge maintenance and data collection 66 

methods) have limited attempts to study streamflow trends and variability at regional scales. Different gap 67 

filling methods have been used (e.g. regression analysis, time series analysis, artificial neural network and 68 

interpolation). Multiple imputations approaches, such as proposed by Rubin (1987), were recently 69 

implemented to construct a complete rainfall-runoff database in Iran (Kalteh and Hjorth, 2009). More 70 

complex methods such as artificial neural networks (Kim and Pachepsky, 2010) and random forest-based 71 

approaches (Stekhoven and Bühlmann, 2012) have also been implemented for gap filling problems with 72 

satisfactory results. Despite many hydrological data gap filling studies, few African examples exist. Most 73 

African studies focus on gap-free stations (e.g. Nka et al.,2015) or reconstructions using linear interpolation 74 

techniques. A decision support system based on length of data-gaps, seasons, climatic zones, model 75 

performances and data availability has been provided by Gyau-Boakye and Schultz (1994), but such a 76 

system would be difficult to implement at the regional scale due to substantial input data requirement and it 77 
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may result in: i) spatially non-homogenous reconstructions, and ii) non-statistically independent 78 

reconstructions from climate variables. The development of regional climate models (RCM) also open new 79 

prospects for hydrological data reconstruction. For instance, Moalafhi et al. (2017), testing such approaches 80 

over the Limpopo basin, in southern Africa, found that dynamical downscaling of reanalysis products can 81 

be very useful for semi-arid, data-scarce environments. However, important biases in RCM physics 82 

combined with uncertainties in hydrological modeling could substantially impact the quality of streamflow 83 

estimates. The present study aims at (1) providing a new, robust reconstructed streamflow dataset, using 84 

only streamflow records as predictands, over West and Central Africa, and (2) using the new dataset, 85 

together with gridded climatic data, to examine and assess flow changes and variability over the region 86 

between 1950 and 2005. This paper is organized as follows. After introducing the study area and the 87 

different datasets in section 2, we present the methods in section 3. In section 4.1, two gap filling methods 88 

are used to generate a robust and complete streamflow dataset for West and Central Africa. Then, we 89 

examine changes (abrupt and gradual) and variability in streamflow, and we compare these results to those 90 

observed in climatic variables from section 4.2 to section 4.4. Results are interpreted, and their wider 91 

implications discussed in Section 5. 92 

2. STUDY AREA AND DATASETS 93 

2.1 Research Area 94 

The study area covers West and Central Africa, from -10°N to 25°N and -20°E to 30°E. The selection of 95 

the research area was motivated by the key importance of climate change and variability in this region, 96 

which also has a dense streamflow gauging network (Figure 1). Some records were short or incomplete, 97 

mainly due to equipment failure, instrumentation maintenance issues and sometimes political instability. 98 

Most hydrological studies in the region primarily refer to four eco-climatic zones, which are based on both 99 

annual rainfall amounts and agricultural properties (FAO, 2004; Roudier et al., 2014): (a) the Sahelian zone 100 

(mean annual precipitation ranges between 250 and 500 mm yr-1), (b) the Sudano-sahelian zone (mean 101 



  

5 

 

annual precipitation ranges between 500 to 900 mm yr-1), (c) the Sudanian zone (mean annual precipitation 102 

ranges from 900 to 1100 mm yr-1) and (d) the Guinean zone (mean annual precipitation exceeds 1100 mm 103 

yr-1). However, more complex classifications based on seasonal to interannual variability of rainfall can be 104 

found (Badr et al., 2016; Hermann and Mohr, 2011; Janicot, 1992; L´Hôte et al., 1996; Mahé et al., 2001).  105 

West African rainfall is primarily related to the displacement of the Intertropical Convergence Zone 106 

(ITCZ), which results in two major seasonal cycles. Regions with less than ~1100 mm yr-1 annual rainfall 107 

are characterized by a single rainy season with a maximum in August, while, further south, the rainfall 108 

seasonal cycle is characterized by two rainy seasons (September-November and March-July) (e.g. L´Hôte 109 

et al., 1996; Roudier et al., 2014). The boundary between these two zones is however not very clear, with 110 

areas experiencing both cycles from year to year because of high rainfall variability (e.g. Le Barbé et al., 111 

2002). 112 

These different rainfall patterns result in different streamflow regimes. If the characteristics of the flow 113 

hydrographs coincide with the rainfall seasonal cycle, aspects such as the timing of the peak and the shape 114 

of hydrographs are mainly related to the size and physical properties of drainage basins (Roudier et al., 115 

2014). For example, headwater catchments in the Niger river basin (e.g. Mopti, Koulikoro), are 116 

characterized by hydrographs with shorter lag times compared to their downstream counterparts (e.g. 117 

Niamey, Malanville). 118 

Figure 1: Study area with locations of the main catchments (grey shaded), the river network (blue) and streamflow 119 

gauges collected from the SIEREM database (light blue dots). 120 

Furthermore, water related issues have led to the construction of several hydraulic structures, which can 121 

have significant impacts on hydrological regimes in some basins. According to the Global Reservoir and 122 

Dam database (GRanD; Lehner et al.,2011), large dams (capacity >10
6
.m³), as defined by the International 123 

Commission on Large Dams (ICOLD; http://www.icold-cigb.net/GB/Dictionary/dictionary.asp), are 124 

primarily located in the Volta basin (53.5%) and in the Niger River basin (35.2%; Figure 2). The other 125 

large dams are distributed within the Lake Chad basin (9.4%), the Senegal River basin (1.2%) and the 126 

http://www.icold-cigb.net/GB/Dictionary/dictionary.asp
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Congo basin (<1%; Figure 2). This corroborates the study by Adeaga et al. (2012) who found that the Volta 127 

River and the lower Niger River are the most impacted rivers in western Africa. A summary of the key 128 

characteristics of the existing major water resource schemes (hydropower, irrigation) in the Volta basin is 129 

provided by McCartney et al. (2012).  130 

Figure 2: Large dams (Capacity > 10
6
 .m³) in the study area and their start of operation (purple: 1920-1950; blue: 1950-131 

1970; green:1970-1990; red: 1990-2006). Data source: Global Reservoir and Dam database (GRanD; Lehner et al., 2011). 132 

2.2 Data 133 

2.2.1 Streamflow data 134 

Mean daily streamflow data were collected from the SIEREM (“Système d’Informations 135 

Environnementales sur les Ressources en Eaux et leur Modélisation”) database, which initially consisted of 136 

data collected by the “Institut de Recherche pour le Dévelopement” (IRD). Further developments include 137 

data quality assessment and a coupling to gridded environmental data over West and Central Africa (Boyer 138 

et al., 2006). Station metadata and GIS format files (basin contours, hydrological network, soil water 139 

holding capacity, vegetation, and geology) can freely be retrieved from 140 

http://www.hydrosciences.org/sierem. Additional streamflow data for the Niger River (Idah, Lokoja, 141 

Makurdi and Onitsha) were collected from the National Inland Waterways Authority of Nigeria. 142 

Over the study area, 863 daily streamflow datasets were collected, and monthly time series were generated 143 

but only for the complete months. The percentage of missing data was then calculated for the entire region 144 

(Figure 3A), and only stations with less than 50% missing records were selected for analysis. This approach 145 

covered most of the study area, and rigorously minimized reconstruction errors. (see Appendix A for the 146 

list of reconstructed stations). Figure 3B shows that most gaps are in the 1950s and 2000s for the 152 147 

selected stations. This is due, in some countries, to the absence of gauging stations (e.g. Burkina Faso) and 148 

lack of updated records for the recent period (e.g. Central African Republic).  149 

Figure 3: A) River network (blue lines) and spatial distribution of stream gauges over the study area, and with their 150 

percentage of missing data (purple=0-25%, blue=25-50%, green=50-75% and red= >75%. Major catchments are 151 

http://www.hydrosciences.org/sierem
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displayed in grey shaded. B) Time-evolution of missing values for the 152 selected stream gauges. Missing values are in 152 

red, while observations are in grey. Stations are ordered by country (BF: Burkina Faso, BJ: Benin, CF: Central African 153 

Republic, CG: Democratic Republic of Congo, CI: Cote d´Ivoire, CM: Cameroon, GA: Gabon, GH: Ghana, GN: Guinea 154 

Conakry, ML: Mali, NG: Nigeria, SN: Senegal, TD: Chad, TO: Togo). The black line represents the number of records 155 

per month over the study area for the 1950–2005 period.  156 

2.2.2 Gridded climate data 157 

To investigate climate variability and its impact on streamflow regimes over West and Central Africa, 158 

gridded monthly climatic datasets (P, T, PET) from the Climatic Research Unit (Mitchel and Jones, 2005) 159 

were used. The dataset consists of monthly climatic data for the entire world (generated with more than 160 

4000 weather stations at the global scale) at half a degree resolution. The development of this database 161 

required seven data sources, the most important being: the Global Historical Climatology Network (GHCN; 162 

Peterson and Vose, 1997), Jones Surface Temperature Anomaly dataset (Jones, 1994; Jones and Moberg, 163 

2003) and Hulme Historical Monthly Precipitation (Hulme et al., 1998). The latest release (CRU TS 164 

v.4.00) was preferred as it was built using a new gridding technique (Angular Distance Weighting), which 165 

provides more robust results due to a better selection of observation stations for gridding (Harris and Jones, 166 

2017). Unlike precipitation and temperature, which are observed variables, potential evapotranspiration 167 

was derived based on a variant of the Penman-Monteith formula, i.e. the FAO (Food and Agricultural 168 

Organization) grass reference evapotranspiration equation (Ekström et al.,2007), which assumes a 169 

homogenous grass surface (0.12 m height) with no moisture stress, surface albedo of 0.23 and bulk surface 170 

resistance of 0.70 s/m. All climate variables are measured at 2m AGL (Above Ground Level), except for 171 

wind speed (commonly recorded at 10m AGL) which has been reduced to 2m AGL using a conversion 172 

coefficient. Absolute values of the different variables were computed using the baseline values (i.e. 1961–173 

1990 long-term average) (see Harris et al., 2014; Appendix 1).  174 

Even though the high spatial resolution of the dataset makes it very convenient for investigating local 175 

processes, limited number of operational stations over West and Central Africa before 1940 could have 176 

resulted in inconsistencies in the CRU dataset (Mitchell and Jones, 2005). Therefore, analyses in this study 177 
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will be performed from 1950 to 2005. In addition, Harris et al. (2014) compared the CRU dataset to 178 

datasets developed by the University of Delaware (UDEL) and the Global Precipitation Climatology Centre 179 

(GPCC), which both used different observation datasets, interpolation and quality control techniques than 180 

the CRU dataset and found good agreement. For instance, for the period considered in this study, mean 181 

annual precipitation values from the CRU dataset and the GPCC dataset have a correlation coefficient of 182 

0.9885 significant at p ≤ 0.1. 183 

3. METHODOLOGY 184 

Methods have been implemented using R, a free software environment for statistical computing and 185 

graphics (https://www.R-project.org/). 186 

3.1 Gap filling Methods 187 

Although parametric gap-filling methods are more commonly used (e.g. Gyau-Boakye and Schultz, 1994; 188 

Kalteh and Hjorth, 2009), non-parametric tests are more suitable for hydroclimate variables, as there is no 189 

assumption regarding the distribution of the data. Both parametric and non-parametric gap filling methods 190 

are therefore tested in this study to generate robust streamflow reconstructions. 191 

3.1.1 Multiple Imputation by Chained Equations (MICE) 192 

Based on a set of imputation models defined for individual variables with missing values, Multiple 193 

Imputation by Chained Equations (MICE; Van Buuren and Oudshoorn, 1999) is a practical approach for 194 

handling missing data. The method has been successfully tested for both continuous and categorical 195 

variables in hydrology (e.g. Kalteh and Hjorth, 2009). 196 

In this study, for each incomplete streamflow record, the first step consists of imputing missing values by 197 

randomly sampling with replacement from the distribution of observed values. The observed values of each 198 

streamflow station are then regressed to other streamflow stations, and missing values are completed by 199 

simulated draws from the corresponding posterior predictive distribution of the considered variable (e.g. 200 

observed values of x1 are regressed on all other variables x2 … xk, and the missing values of x1 are sampled 201 

https://www.r-project.org/
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from its posterior predictive distribution). Several simulations are required to generate a stable single 202 

reconstructed streamflow dataset, and the process is repeated several times to generate multiple complete 203 

streamflow datasets. In most applications, linear regression models are used for imputing normally 204 

distributed continuous variables. The different steps are summarized below: 205 

Considering an incomplete variable z (with nobs observed values) to be reconstructed using other complete 206 

variables X = (x1 … x2) the following linear model is used: 207 

                                          z|x; β ~ N(βx, σ²)                                (eq. 1) 208 

Let     be a row vector of length k, a realization of the estimated parameters from fitting the model with the 209 

observed z. V represents the covariance matrix of   , and    the estimated root mean-squared error. 210 

Imputation parameters σ* and β* are drawn from the exact joint distribution of σ, β such that: 211 

                                                                                (eq. 2) 212 

                                           β*=   + 
  

   
   

                                  (eq. 3) 213 

with g, a random draw from a χ² distribution on nobs – k degrees of freedom, u1 a row vector of k 214 

independent random draws from a standard Normal distribution and V
1/2

 the Cholesky decomposition of V. 215 

For each missing observation zi estimates are calculated: 216 

                                     zi
*
= β

*
xi + u2i  

*                                         
          (eq. 4) 217 

where u2i is a random draw from a standard normal distribution. 218 

As the normal assumption is not often valid for streamflow data (e.g. Kundzewicz and Radziejewski, 219 

2006), missing values were estimated using the Predictive Mean Matching (PMM) approach, which 220 

samples estimates from the observed values of the variable z. Instead of estimating missing values of z as in 221 

eq. 4, PMM identifies α elements with the smallest error              (h=1,…, nobs). One of these 222 

elements is randomly selected and the imputed value of zi is zi’. The method was implemented using 50 223 

iterations and 100 multiple imputations, which produce a standard deviation only 0.25% wider than a case 224 
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of infinite multiple imputations according to Rubin (1987). The median was taken as the better estimate to 225 

combine the multiple reconstructed datasets. 226 

3.1.2 Random forest-based reconstruction 227 

The method is based on the random forest (RF) technique (Breiman, 2001), and involves iteratively training 228 

a RF on observed values for predicting the missing values. This method was chosen for its ability to 229 

perform under high dimensions, complex interactions and non-linearity (Stekhoven and Bühlmann, 2012). 230 

Furthermore, compared to other gap filling methods (e.g. KNNimpute: Troyanskaya et al., 2001; MICE: 231 

Van Buuren and Oudshoorn, 1999), it does not require tuning parameters and prior knowledge of the data, 232 

making it computationally attractive. The main limitation, however, is the lack of understanding around the 233 

construction of the different trees. The different steps are presented below: 234 

Assuming X = (X1, X2, ………. Xp) a n*p-dimensional dataset (in our case n observations and p streamflow 235 

gauges), the missing values are estimated based on a RF trained on the observed parts of the dataset. For a 236 

given gauging station Xs with missing values at the indices imis
(s)

, the dataset is separated in four parts: 237 

 The observed streamflow values at the station Xs, denoted by Y
(s)

obs; 238 

 The missing values at the station Xs, denoted by Y
(s)

mis; 239 

 The other gauging stations with streamflow records at the indices i
(s)

obs ={1,…n}\i
(s)

mis denoted X
(s)

obs  240 

 The other gauging stations with streamflow records at i
(s)

mis denoted by X
(s)

mis. 241 

The initial step consists of an initial guess of missing values using mean values. The data frame is then 242 

sorted and gauging stations are placed in increasing order, based on the proportion of missing data. For 243 

each gauging station Xs, the missing data is imputed by first fitting a RF taking Y
(s)

obs as response variable 244 

and X
(s)

obs as predictors; then estimating missing values Y
(s)

miss by applying the trained RF to X
(s)

mis. The 245 

procedure is repeated until the difference between the newly filled data matrix and the previous one 246 

increases for the first time. The stopping criteria is defined as follows: 247 

                                 
      

   
     

   
      

      
   

     

                                   (eq. 5) 248 
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The simulations were performed using 1000 trees with the maximum number of iterations set to 100. 249 

3.1.3 Validation of gap filling methods 250 

The validation method used to assess the performance of the implemented reconstruction techniques 251 

involves generating artificial gaps in the time series, performing the reconstructions on the new dataset and 252 

estimating agreements between predictions and observations. Over the study area, the assumption of data 253 

missing completely at random was considered. First, observed values (12, 24, 36, 48, 60 and 120 months) 254 

over the entire period, 1950–2005, were randomly removed in each of the stations and later compared to 255 

the predictions. Secondly, we randomly removed entire segments of observed data to assess the ability of 256 

the gap filling methods to reconstruct contiguous missing data. The modified Kling-Gupta Efficiency 257 

(KGE) was used as an indicator of agreement between observations and predictions. This efficiency 258 

criterion ensures that the temporal dynamics (measured by the correlation coefficient) as well as the 259 

distribution of flows (measured by both the bias and variability ratio) are well represented (Kling et al., 260 

2012). 261 

3.2 Step change detection and trend analysis   262 

Changes (natural or artificial) in hydro-climatic time series can occur abruptly (step change) or gradually 263 

(trend) or in more complex forms (Machiwal and Jha, 2006). Step-like changes, induced by reservoir 264 

construction and changes of gauging structures, for example, might also result from gradual changes since 265 

nonlinear system dynamics may show cumulative effects and thresholds (Kundzewicz and Radziejewski, 266 

2006). In this study, step-like changes in the mean are investigated in reconstructed mean annual 267 

streamflow time series using a multiple change-points detection analysis (Killick and Eckley, 2014). This 268 

technique, which is similar to the method proposed by Hubert et al. (1989), is based on the segment 269 

neighborhood algorithm (Auger and Lawrence, 1989). The non-parametric cumulative sum test statistic 270 

(Page, 1954) is used to assess the optimal position of change-points.  271 

Linear trends are then investigated for periods defined based on the results of the multiple change-points 272 

analysis at the regional scale. The significance of the Mann-Kendall (MK) test (Kendall, 1975; Mann, 273 
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1945) is highly sensitive to positive serial correlation (Von Storch, 1995), so its variant (Yue et al., 2002) 274 

was preferred for linear trend detection here. The Yue et al. (2002) method assumes trends are linear; 275 

datasets are first detrended before extracting the lag-1 serial correlation from the detrended series (i.e. a 276 

trend-free pre-whitening procedure (TFPW) which should generate independent residuals series). The 277 

detected trend and the residuals are combined, before the MK test for significance is applied. The Theil Sen 278 

Approach (TSA) is used to estimate the slope of the trend in a dataset. This approach is less sensitive to 279 

outliers and therefore provides a better estimate of slope for skewed data, compared to regression methods.  280 

In addition, as trend values are highly dependent on start and end dates, a multitemporal trend analysis 281 

approach has been implemented here (Liebmann et al., 2010; McCabe and Wolock, 2002). Trends here are 282 

calculated for all possible segments (minimal length of 5 years) from 1950 to 2005 to explore and define 283 

the time series internal variability. For each time series, the multitemporal trend analysis generates a 284 

diagram in which each possible pair of start and end dates is associated with a trend value. To investigate 285 

the spatial extent and zonal coherence of the different variability patterns in precipitation and streamflow, 286 

the multi-temporal trend analysis results were grouped using hierarchical clustering, using the Euclidean 287 

distance as the metric of dissimilarity. Different approaches exist to determine the optimal number of 288 

clusters (Charrad et al., 2014), but we used the multiscale bootstrapping approach of Suzuki and 289 

Shimodaira (2006), which allows uncertainty estimation for each cluster. This is achieved through 290 

thousands of bootstraps resampling and used to estimate the probability that a cluster appears in the 291 

replicates.  292 

4. RESULTS AND DISCUSSIONS 293 

 4.1 Reconstruction outputs 294 

Two reconstruction methods were applied to the subset of streamflow stations with less than 50% missing 295 

data (i.e. 152 streamflow gauges here). All 152 stations were reconstructed with satisfactory results as 296 

illustrated in Figures 4 and 5.  297 
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The validation shows that gap filling methods perform well for both cases of randomly removed 298 

observations and contiguous missing segments. Figure 4 shows that the median of the KGE is always 299 

greater than 0.75, which indicates that for half of the stations, the worst component (e.g. correlation, bias 300 

ratio or variability ratio) is higher or equal to 0.75: this suggests good reconstruction performance. Very 301 

similar results were achieved using the Nash-Sutcliffe Efficiency and the normalized Root Mean Squared 302 

Error (not shown). Also, both methods are reasonably stable when artificially increasing the number of 303 

missing observations and when artificially increasing the length of missing segments, despite an artefact 304 

suggesting better performances with increasing missing data, which is in fact caused by the sensitivity of 305 

efficiency criteria to sample size (e.g. Schönbrodt and Perugini, 2013). However, MICE seem to perform 306 

better than RF when increasing the number and the length of missing data (Figure 4). 307 

Figure 4: Validation of gap filling methods: boxplot of validation efficiencies for all the reconstructed stations; upper 308 

panels for randomly removed values and lower ones for cases of randomly missing data segments. A red line is drawn at 309 

KGE=0.75. Outliers are represented in blue dots.  310 

To compare both gap filling methods, results from five stations from different climatic zones and 311 

hydrological regimes are presented in Figure 5. While both methods show similar results overall, 312 

significant dissimilarity appears in some cases, such as in the Niger River at Niamey, where MICE show an 313 

abrupt increase in minimum flow, and decrease in peak flow from 1999 (Figure 5). This pattern, which is 314 

similar to those induced by large dams (higher low flows and lower peak flows in downstream reaches), is 315 

not consistent with recent studies in the region (e.g. Amogu et al., 2010; Mahé et al., 2013), highlighting 316 

increased runoff coefficients at Niamey from the 1990s. MICE generate estimates of missing values by 317 

sampling from the observed values and might therefore fail at reconstructing flows beyond observed 318 

ranges. Thus, even though MICE often seem to provide better estimates than the RF based method, the 319 

latter appears to be more appropriate in the context of changing hydrological regimes, because of its ability 320 

to capture complex nonlinear relations between predictors and predictands.  321 
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Figure 5: Reconstructed time series for five streamflow stations representative of different climatic conditions: Wayen 322 

(Sahelian), Bonou (Tropical humid), Mbasso (Tropical humid), Niamey (Tropical humid, Sudanian and Sahelian), 323 

Bangui (Tropical humid). Blue lines represent observations; black dotted lines represent MICE estimates and Red dotted 324 

lines represent Random Forest estimates. Red Boxes highlight time windows of interest. 325 

4.1. Streamflow changes between 1950 and 2005 326 

 With the assumption that two major break points occurred in the streamflow time series, the step change 327 

analysis detected changes in 147 stations over the study area. Both reconstruction methods presented 328 

similar results and only those of random-forest based reconstructions are presented. At the regional scale, 329 

the first discontinuity in mean annual streamflow occurred in 1970 (Figure 6), with a marked negative shift 330 

in the mean (up to -60%). Similar results were found by Hubert et al. (1989), for the Niger and Senegal 331 

rivers. The second discontinuity at the regional scale occurred around 1993 and is characterized by a 332 

positive shift for more than 70% of the stations (with an average increase of about +23%, Figure 6). 333 

Despite this positive shift in mean streamflow, recent conditions are still below the 1950s and 1960s wet 334 

periods. 335 

Some sub-regional differences, however, emerge along the Gulf of Guinea and regions in Central Africa, 336 

where a discontinuity in the mean annual streamflow occurred in the 1950s and early 1960s, with an 337 

average positive shift of around 18% (Figure 6). These results are consistent with the findings of Mahé et 338 

al. (2001), underlining differences in rainfall variability between West and Central Africa from 1951 to 339 

1989. Also, some discontinuities are revealed before the 1990s in some stations (Figure 6), probably 340 

induced by the wet episodes observed at the end of the 1980s. Based on the data collected from the Global 341 

Reservoir and Dam database (GRanD; Lehner et al.,2011), presented in Figure 2, regional scale 342 

discontinuities in streamflow were more likely induced by climate variability and land use change rather 343 

than reservoirs as only 4% of the large dams in the region were completed between 1968 and 1970 and 344 

14% between 1985 and 1993.  345 

Figure 6: Locations of step changes in random-forest based streamflow reconstructions: positive shift in the mean (blue), 346 

negative shift in the mean (red). Stations are ordered by country (BF: Burkina Faso, BJ: Benin, CF: Central African 347 
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Republic, CG: Democratic Republic of Congo, CI: Cote d´Ivoire, CM: Cameroon, GA: Gabon, GH: Ghana, GN: Guinea 348 

Conakry, ML: Mali, NG: Nigeria, SN: Senegal, TD: Chad, TO: Togo). The black curve on top presents the temporal 349 

distribution of change-points over the study area. 350 

Gradual changes (trends) are investigated in mean annual reconstructed streamflow time series (MICE and 351 

RF) over the periods defined by the change-points analysis, which highlights two major discontinuities at 352 

the regional scale (1970 and 1993): 1950-1970 (wet conditions), 1970-1993 (drought conditions), 1993-353 

2005 (partial recovery). Figure 7 presents the correlation between the results from both reconstruction 354 

methods for the different time intervals. Both reconstruction methods show similar streamflow trends at the 355 

regional scale (Figure 7). However, although the results from both methods remain significantly correlated 356 

(p ≤ 0.1), trends differ slightly in the post-1990 period, mainly due to the limited ability of MICE to 357 

extrapolate beyond the range of observed values, highlighting that hydrological regimes may have changed 358 

in the 1993–2005 period.  359 

Figure 7: Spatial correlation between normalized trends calculated using both reconstructed datasets, for the three 360 

periods of investigation: 1950-1970 (red), 1970-1993 (green) and 1993-2005 (blue).   361 

Trend analysis over the three different time intervals revealed that, during the 1950–1970 period, even 362 

though mean annual streamflow values are at the highest, streamflow trends are significantly negative (up 363 

to -4% per year) over the Sahelian and Sudanian regions of West Africa (Figure 8a-b): this suggests that the 364 

step change observed around 1970 in this region was mainly induced by a gradual aridification pattern. 365 

During the same period, significant positive trends are identified over Central Africa (up to +2.5% per year) 366 

(Figure 7a-b). At the regional scale, 35% and 30% of trends are significant for MICE and RF respectively. 367 

Among those significant trends, 52% and 40% are positive mainly in Sudanian and coastal regions (Figure 368 

8a-b) for MICE and RF respectively. Most of the significant negative trends are in the Sahelian region, 369 

driven by dryer conditions in the end of the 1960s compared to the 1950s (Figure 8a-b).  370 

These negative streamflow trends along the Sahelian band spread toward the Gulf of Guinea and over 371 

Central Africa during the well-known drought period of the 1970s and 1980s (Dai et al.,2004; Lebel, 2003; 372 

Nicholson, 2013; Figure 8c-d), marking a stronger spatial coherence. During this dry period, mean annual 373 
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streamflow values decrease by up to 69% compared to the 1950s and 1960s. Also, more than 90% of all 374 

significant trends (40% and 38% using MICE and RF, respectively) are negative (up to -5% per year), as a 375 

result of intensified dry conditions from the end of the 1960s (Figure 8c-d). 376 

 The last period (1993-2005) is characterized by a reduction in significant trends [MICE (26%) and RF 377 

(8%)] and contrasting patterns mainly due to the limited ability of MICE to fully capture complex 378 

streamflow interactions (Figure 8e-f). Compared to the previous period (1970-1993) mean annual 379 

streamflow values mark an increase of at least 15% over more than half of the study area and a decrease of 380 

around 7% in some regions (Figure 8c-f). Significant positive trends on the Niger River, as shown using 381 

RF, would however be consistent with the “Sahelian paradox” (Descroix et al., 2013; Mahé et al., 2005), 382 

with a higher flow contribution from the Sahelian tributaries. Despite positive rainfall trends in some 383 

Sudanian areas (Northern Ghana and Ivory Coast), which are detected using both MICE and RF, 384 

streamflow trends remain negative (Figure 8e-f). This might have resulted from severe groundwater 385 

depletion during the dry periods 1970s and 1980s (Mahé et al., 2005), but this needs further research. 386 

Figure 8: Streamflow trends estimated for both reconstructed datasets, upward triangles for positive trends and 387 

downward triangles for negative trends, filling highlights the significance of trend at 10% (negative trends in red and 388 

positive trends in blue). River basins are greyed and the river network in blue. 389 

4.2 Observed climatic trends between 1950 and 2005 390 

4.2.1 Trends in annual precipitations 391 

Annual rainfall trends for the 1950–1970 period decline by ~10 mm yr-1 (significant for around 34% of the 392 

study area) along the entire Sahelian band, but locally increase in parts of the Central African Republic and 393 

Democratic Republic of Congo (Figure 9a). This suggests that the drying trends might have started earlier 394 

than hitherto recognized. The negative trends observed along the Sahelian band then spread towards the 395 

Gulf of Guinea during the 1970–1993 period (Figure 9b), similarly to the pattern observed in streamflow 396 

(Figure 8 c-d).  397 
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However, although this period is widely recognized to be extremely dry from comparisons of mean values, 398 

we find here that only 11.5% of the study area show significantly negative precipitation trends. 399 

Interestingly, however, significant positive trends are identified in the Congo River basin (Figure 9b). This 400 

highlights a potential hiatus in the regional drying trend during the 1970s and 1980s, supporting earlier 401 

studies (Le Barbé and Lebel, 1997; D’Amato and Lebel, 1998). These could result from increasing quasi-402 

decadal rainfall variability as suggested in Dieppois et al. (2013, 2015). In the post-1993 period, we note an 403 

increase of annual precipitation compared to the previous period (trends significant for 11% of the study 404 

area), corroborating previous findings (Biasutti, 2013; Lebel and Ali, 2009; Nicholson et al., 2000). This 405 

potential annual rainfall recovery (~ +11.5 mm yr-1) is particularly pronounced in western and eastern 406 

Sahel and Liberia (Figure 9c), which agrees with the findings of Ogungbenro and Morakinyo (2014) in 407 

northern Nigeria. At the same time, regions in northern Cameroon and in the Democratic Republic of 408 

Congo, are characterized by significant negative trends (~ -7 mm yr-1, to ~ -30 mm yr-1), in agreement 409 

with the recent study of central African rainfall by Maidment et al. (2015).  410 

The same analysis, conducted using the GPCC V7 datasets, show similar patterns. The relationships are, 411 

however, slightly more significant over the study area for the three periods (35%, 11.43%, and 14.65% for 412 

the 1950-1970, 1970-1993 and post-1993 periods, respectively; not shown). In addition, during the post-413 

1993 period, the GPCC V7 dataset underlines a significant decreasing trend in Guinea (which, 414 

interestingly, does not appear in the CRU dataset) and a wider spatial extent of negative trends in 415 

Cameroon and Central African Republic. Despite these slight differences probably resulting from the 416 

greater number of observation stations used to generate the GPCC V7 dataset, agreement between 417 

precipitation and streamflow trends remains strong. 418 

Overall, there is a good agreement between annual streamflow and precipitation trends over the entire study 419 

area highlighting the importance of precipitation in driving hydrological systems. However, quantifying 420 

runoff response to increasing precipitation is likely to be a complex task since rising temperatures and 421 

potential evapotranspiration could offset increasing precipitation. This issue is addressed in the following 422 
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section by investigating trends in temperatures and potential evapotranspiration and their impact on runoff 423 

responses.  424 

4.2.2 Trends in mean annual minimum and maximum temperatures, and potential 425 

evapotranspiration 426 

As widely accepted, temperatures over the African continent have been increasing during the 20
th

 century 427 

(since 1950), and this is primarily associated with anthropogenic causes (e.g. IPCC, 2014; Stott et al., 428 

2010). However, here we aim to discuss temperature trends in term of impact on water resources, through 429 

its impact on evapotranspiration and effective rainfall.  430 

Trends in annual minimum and maximum temperatures over the study area show different amplitude and 431 

spatial extents. For instance, in West and Central Africa, the 1950–1970 period is characterized by positive 432 

trends (+0.5 to +1.5°C) in minimum annual temperatures (significant for 32.5% of the study area). 433 

However, weaker and spatially less coherent trends are detected for annual maximum temperatures (~ 434 

+0.5°C; significant for 9.5% of the study area). Maximum values are reported only in the western Sahel 435 

(Figure 9d, g). The rest of the study area shows few significant trends, apart from some significant negative 436 

trends in both minimum and maximum annual temperatures (Figure 9d, g). According to the CRU potential 437 

evapotranspiration estimates, the patterns in both minimum and maximum temperatures could have resulted 438 

in significant positive evapotranspiration trends (~ +2.5 mm yr-1) in western and central Sahel, and 439 

significant decreasing trends (~ -3.75 mm yr-1) over the Gulf of Guinea and Central Africa regions (Figure 440 

9j).  441 

The 1970–1993 period is marked by a homogeneous increase in annual minimum temperatures, which is 442 

significant over 63% of the study area (including regions in the Congo River basin, where significant 443 

cooling is identified; Figure 9e). These trends contrast with annual maximum trends, which are negative in 444 

the Sahelian region (~ -1°C), but positive in the Gulf of Guinea coastal regions and Central Africa (Figure 445 

9h). This configuration is, however, consistent with a weaker meridional thermal gradient, which 446 

characterizes a southward shift of the ITCZ and dry conditions in the Sahel (Chiang and Friedman, 2012; 447 
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Webster et al., 1998). The fluctuation of temperature range during this period has driven a uniform 448 

decrease in potential evapotranspiration over the Sahelian band but increased significant positive trends in 449 

the Gulf of Guinea and Central Africa (Figure 9k).  450 

Since 1993, greater spatial coherence emerges, with increasing trends of both annual minimum 451 

temperatures (significant for 65% of the study area) and maximum temperatures (significant for 85% of the 452 

study area; Figure 9f, i). Trends in annual maximum temperatures, however, are more pronounced (~0.1°C 453 

higher in average) than in annual minimal temperature (Figure 9i). This could be an artefact of the baseline 454 

period used in our study, as this result contrasts with those revealed in some other studies (e.g. Funk et al., 455 

2012; Ringard et al., 2016), which suggested that minimum temperatures have risen faster compared to 456 

maximum temperatures in the post-1990 period. Nonetheless, temperature trends are consistent with trends 457 

in potential evapotranspiration (Figure 9l), which highlight a uniformly significant (for around 46.8% of the 458 

study area) and positive trend (~ < +3.8 mm yr-1) over almost the entire eastern part of the study region. 459 

Regions in western, eastern Sahel and part of the Gulf of Guinea, however, show non-significant negative 460 

trends (Figure 9l), which may result from the spurious trends (above) in minimum temperatures and errors 461 

resulting from the use of the same monthly wind speed values (1961-1990) for each year.  462 

Trends in effective rainfall, approximated here as the difference between rainfall totals and potential 463 

evapotranspiration are presented in Figure 9m-o. Over the two first periods (1950-1970 and 1970-1993), 464 

these trends are similar to precipitation trends: this suggests the limited effect of potential 465 

evapotranspiration on the relationship between rainfall and streamflow (Figure 9m-n). However, from 466 

1993, the situation is reversed, mainly in the eastern part of the Sahel (eastern Niger, Chad and northern 467 

Nigeria), where high potential evapotranspiration rates significantly subdue the potential impact of the 468 

rainfall recovery (Figure 9o) on streamflow. This might help explain, at least partially, why the rainfall 469 

recovery over these regions is not associated with significant positive streamflow trends (Figure 8c-d). 470 

Over Central Africa (areas in the Congo basin), it also appears from trends in effective rainfall that during 471 



  

20 

 

recent decades, the decrease in rainfall is exacerbated by increased evapotranspiration (Figure 9c, i, o). This 472 

suggests enhanced climatic stress on Central African streamflow in relation to warming temperatures. 473 

Figure 9: Hydroclimatic trends over the study area for three different time intervals (1950-1970, 1970-1993 and 1993-474 

2005) according to the CRU.TS. V4.00 dataset: a-c) Annual precipitation trends d-f) Minimum annual temperature 475 

trends g-i) Maximum annual temperature trends j-l) Annual potential evapotranspiration trends m-o) Annual effective 476 

rainfall trends. Sen’s slope values are displayed through a red-white-blue color scale. Solid red lines highlight trend 477 

significance at p ≤ 0.1 according to a modified MK trend test accounting for serial correlation in the time series.  478 

4.3  Precipitation and streamflow variability 479 

Standard trend analysis methods assess the slope of the considered variables over the period of 480 

investigation. The value of the slope is, however, highly dependent on the selected time window and 481 

changes significantly for different start and end dates, mainly because of internal variability. Such 482 

limitations are tackled in the multitemporal trend analysis method (Liebmann et al.,2010; McCabe and 483 

Wolock, 2002). We used the Liebmann et al. (2010) approach, to calculate precipitation and streamflow 484 

trends for all possible segments of 5 to 56 years between 1950 and 2005. The results are stored in two-485 

dimensional diagrams (e.g. Figure 11), which have been analyzed using multiscale bootstrapped 486 

agglomerative hierarchical clustering.  487 

Clustering streamflow variability diagrams resulted in three main clusters, which are highly significant (p ≤ 488 

0.1) based on the multiscale bootstrapping test, with associated spatial distributions presented in Figure 10, 489 

identified using hierarchical clustering. 490 

Figure 10: Spatial distribution of streamflow variability (1950–2005) clusters based on multi-temporal trend analysis 491 

superimposed on the river network (blue) and major river basins (grey shaded). All the clusters are highly significant at p 492 

≤ 0.1 according to the multiscale bootstrapping test. Different colours displayed the location of the different clusters. 493 

Overall, these three clusters show decreasing flow trends over the entire period (1950–2005), but we also 494 

identify decadal periods of alternating positive and negative trends with different amplitudes, modulating 495 

the general trend, according to the three clusters (Figure 11). For instance, a pronounced positive trend in 496 

the mid-1970s during the drought period emerges in cluster 1 (Congo Basin at Brazzaville), which 497 
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progressively disappears in cluster 2 (lower Niger River, Benue and stations in the upper Congo basin) and 498 

cluster 3 (all the other stations; Figure 11). This emphasizes the importance of decadal variability in 499 

modulating streamflow trends (which has hitherto been little studied) and provides a new picture of the 500 

behaviour of hydrological systems in West and Central Africa.  501 

These differences in the contribution of interannual to decadal variability could, however, arise from 502 

differences in the large-scale climate drivers. According to Mahé et al. (2013), Cluster 1, which is located 503 

at the outlet of the Congo Basin at Brazzaville, could be more sensitive to changes in the thermal gradient 504 

between the Atlantic and Indian oceans resulting in a unique runoff variability. Such decadal fluctuations 505 

have also been reported for eastern Sahel rainfall in Dieppois et al. (2013, 2015), suggesting that 506 

differences between clusters should at least partly be related to different interactions with catchment 507 

properties (e.g. reduction in soil water holding capacity) and water management. In addition, while trend 508 

amplitude is a distinctive element between clusters, the sign and temporal scale during the humid period 509 

(1950-1960) and the recovery period (post-1990) are also very important. For instance, stations in clusters 1 510 

and 2 are characterized by wet conditions in the 1950s-1960s, whereas most of the stations in cluster 3 511 

show decreasing trends during the same period (Figure 11). Furthermore, cluster 3 highlights less intense 512 

dry conditions in the 1980s and a more pronounced recovery in the recent years compared to the first two 513 

clusters (Figure 11). A further classification of the stations in cluster 3 is provided as supplementary 514 

materials. The significant negative trend (observed in the 1980s) in stations of cluster 2, for instance might 515 

have been partly accentuated by large dams in Nigeria (e.g. the Dadin Kowa Dam and the Kiri dam, on a 516 

main tributary of the Benue river). 517 

Figure 11: Multi-temporal diagrams of the different cluster centroids: trends in m³/s are presented in red (negative) – 518 

white (null) – blue (positive) colour scale, contours lines represent trend significance at p ≤ 0.1.  519 

Applying the same clustering method to gridded annual rainfall, variability diagrams resulted in 12 major 520 

clusters (p ≤ 0.1) and few grid points with lower probabilities (p ≤ 0.2) and therefore unclassified (Figure 521 

12).  522 
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Figure 12: Clusters of rainfall variability generated using CRU TS V4.00 (2.5°x2.5°) on the period 1950-2005:  colours 523 

and numbers from 1 to 12 refer to the grid points within the 12 initial clusters at p ≤ 0.1. Red boxes represent grid points 524 

which did not fall within the clusters. All the clusters are highly significant at p ≤ 0.1 according to the multiscale 525 

bootstrapping test.  526 

West African regions predominantly fall within clusters 11, 8, 2 and 1 (Figures 12, 13) which are mainly 527 

characterized by persistent dry conditions from the end of the 1960s, and positive trends starting earlier in 528 

clusters 2 and 8 (1970s) compared to clusters 1 and 11 (end of 1980s). Comparing, for instance, patterns 529 

observed in streamflow cluster 3 and rainfall cluster 11, it appears that the significant negative rainfall trend 530 

in the 1980s is attenuated in the streamflow signal and, furthermore, the observed streamflow recovery is 531 

more widespread compared to the recovery observed in rainfall. This suggests a combination of drivers 532 

which might have enhanced the runoff response, described by some authors as the “Sahelian paradox” 533 

(Descroix et al., 2013; Mahé et al., 2005) which refers to a counterintuitive increase in runoff coefficient 534 

despite decreasing rainfall. In fact, parts of this region are known to have experienced drastic changes in 535 

land cover resulting from several coupled interactions between increasing cultivated areas (Cappelaere et 536 

al.,2009), and natural vegetation changes after the 1970s and 1980s major drought periods (Gal et al., 537 

2017). 538 

The clustering underlines a high variability in rainfall over the western part of West Africa, where some 539 

grid points are left outside the clusters. Some parts of this region are characterized by the pattern observed 540 

in cluster 9 (Figures 12-13).  After the humid period of the 1960s, rainfall is characterized by decreasing 541 

trends until the 1990s (Figure 13). From the end of the 1990s rainfalls largely returned to their level of the 542 

1960s as a result of a recovery which started in the 1980s (Figure 13). From these different clusters, it 543 

appears that most regions over western Africa have experienced improved streamflow conditions because 544 

of the recent rainfall recovery even though long-term trends remain negative.  545 

Over Central Africa, rainfall shows high decadal variability (succession of wet and dry periods) with no 546 

clear long-term trends (clusters 4, 5, 6, 10 and 12; Figure 13). This region is characterized by a humid 547 
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period from the mid-1950s to the 1970s, with dry episodes around 1980 (Figure 13). In cluster 4, for 548 

instance, recent conditions (1990s-2000s) are almost as wet as the humid period, which is not the case for 549 

cluster 6 where recent conditions remain relatively drier (Figure 13). The streamflow variability displayed 550 

in cluster 1 (Congo basin at Brazzaville) appears to have resulted from a combination of rainfall clusters 6, 551 

10 and 12, highlighting the diverse climatic influences in this basin (Figure 11-13). Rainfall-runoff 552 

relations over this region suggest that rainfall is the main driving factor, with no, or limited, effect from 553 

other moderating factors (e.g. land use change, intensification of agriculture, deforestation, and warming 554 

temperatures). The change in seasonal rainfall distribution may likely be the major factor related to climatic 555 

change in this area to have an impact on discharges' seasonal regimes. This can be observed at the scale of 556 

small basins like the Kienke at Kribi in the South coastal Cameroon, where the small dry season 557 

disappeared during the last decades (Lienou et al., 2008), and at the larger scale for the Ogooue river in 558 

Gabon, where the Spring flood lost 30% of discharge value after the rainfall regimes slightly changed over 559 

past decades (Mahé et al., 2013), the same being observed to a lesser extent for the whole Congo basin 560 

(Alsdorf et al., 2016; Tshimanga et al., 2016). 561 

Figure 13: Multi-temporal diagrams of the 12 rainfall variability clusters derived from the multi-scale bootstrap 562 

clustering: trends (mm) are presented in red (negative) – white (null) - blue (positive) color scale, contours lines represent 563 

trend significance at p ≤ 0.1. 564 

5. CONCLUSION 565 

Using parametric (MICE) and non-parametric (RF) gap filling methods, a new and complete streamflow 566 

dataset, spatially distributed over West and Central Africa and encompassing different climatic zones and 567 

hydrological regimes has been generated. Gap filling results highlighted that both methods performed well, 568 

though, in general, MICE was slightly outperforming RF. However, due to its parametric nature, MICE 569 

analyses, in some cases, failed to capture changes in streamflow conditions (case of Niamey on the Niger 570 

River). The complete streamflow dataset (RF method) was then used to investigate streamflow changes and 571 

variability and their interactions with key climatic variables (P, T, PET) over West and Central Africa 572 
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between 1950 and 2005.  573 

Majority of streamflow stations over the study area present a step change in 1970 mainly induced by a 574 

gradual aridification pattern. In the 1990s a positive shift in mean discharge is observed, but it is difficult to 575 

conclude whether this change is led by positive rainfall trends or single wet episodes amplified by land use 576 

change, warming temperature and evapotranspiration reduction. In general, there is a good agreement 577 

between streamflow and precipitation trends, with an offsetting effect of potential evapotranspiration 578 

observed in some regions. Over the study area, the period 1950–1970 was characterized by negative 579 

streamflow trends in Sahelian and Sudanian regions of West Africa, which seems counterintuitive 580 

considering that this period was the wettest on record. The opposite is observed over Central Africa where 581 

significant positive streamflow trends emerge. The following period (1970–1993), is marked mostly by 582 

negative trends due to dryer conditions. This pattern is reversed during the 13-year period 1993–2005, with 583 

mainly positive trends resulting from increased rainfall and changes in land use in Sahelian regions. Annual 584 

streamflow trends reflect annual precipitation trends which decrease from the 1950s to 1980s and increase 585 

from the 1990s. More importantly, the study showed that, even though the 1950s and 1960s were the 586 

wettest decades in terms of total rainfall amounts, decreasing annual rainfall trends were more prominent, 587 

suggesting an earlier start of the drought. The drought peaked during the 1970s/80s, over most of western 588 

Africa, but the reduced negative trends in precipitation suggest a hiatus, which have resulted from quasi-589 

decadal variability.  590 

Furthermore, over most of the study area, hydrological regimes during the recent period have been 591 

impacted by the rainfall recovery which is not limited to the west African Sahel. Even though other 592 

climatic variables such as wind speed and vapor pressure deficit might have played an important role, 593 

temperature trends appeared to be highly related to trends in potential evapotranspiration, which seem to 594 

have hampered the effect of the rainfall recovery on hydrological regimes in some areas over the eastern 595 

Sahel (eastern Niger, Chad and northern Nigeria).  596 

Building significantly on previous studies, which generally provide trend estimates over a certain period, 597 
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we have provided novel information and analyses of the impact of internal variability using the 598 

multitemporal trend analysis method. The results highlight strong interannual to decadal signals which 599 

clearly modulate streamflow and precipitation trends. In West Africa, for instance, the 1970-1989 period is 600 

characterized by two main dry events (1972-1973 and 1983-1984) separated by a wet period (Nicholson et 601 

al., 2000; Dai et al., 2004). This probably resulted in increased runoff coefficients in Sahelian catchments, 602 

as observed by Albergel (1987) in Burkina Faso over the period (1969-1984) and later in larger Sahelian 603 

catchments (Descroix et al., 2013; Mahé et al., 2005). Such a rainfall-runoff response (referred to as the 604 

Sahelian paradox) indeed seems paradoxical when considering long-term trends but becomes less 605 

counterintuitive when investigating variability in precipitation and streamflow time series. Therefore, rather 606 

than describing the “Sahelian paradox” as an increase in runoff despite reduced rainfall since 1970, it 607 

should be considered as enhancing runoff response to positive rainfall anomalies, as a result of changes in 608 

land-surface properties.   609 

If flow trends can be largely explained by decadal variability in rainfall (Dieppois et al., 2013), influence of 610 

other driving factors should also be considered at the catchment level (such as geology, soils, agricultural 611 

land use change, water consumption and urbanization). For instance, large dams constructed in the 1980s in 612 

Nigeria (e.g. the Dadin Kowa Dam and the Kiri dam, on a main tributary of the Benue river), might have 613 

affected to some extent the variability of the lower Niger river, but this is beyond the scope of the present 614 

paper. 615 

This study has shed light on hydroclimatic variability and its associated impact on streamflow regimes over 616 

large, key parts of West and Central Africa over recent decades, and also provides water practitioners with 617 

reconstructed streamflow time series which can be used as input for water balance models to develop sound 618 

water and agricultural management policies. These useful time series here can form the basis of future 619 

developments, to include updating of the streamflow datasets through national water offices. This should 620 

further improve the quality of the reconstructions and open up investigations of more recent conditions. In 621 

addition, future in-depth studies are required of climate processes (e.g. sea-surface temperature, 622 
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atmospheric circulation), catchment land use properties, and water management policies, all of which can 623 

drive streamflow variability at interannual to decadal timescales. As these potentially modulate the climate 624 

signal, such work is required to further improve our understanding of hydrological variability in West and 625 

Central Africa, and our ability to model hydrological changes in this region.  626 
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Appendix A: List of reconstructed streamflow time series 633 

ID Basin Station name latitude Longitude 

BFQ0010 LERABA YENDERE au pont 10.1667 -5.0683 

BFQ0060 VOLTA WAYEN 12.3789 -1.08 

BFQ0064 VOLTA BOROMO 11.7833 -2.9167 

BFQ0065 VOLTA DAPOLA 10.5667 -2.9167 

BFQ0072 VOLTA NWOKUY 12.5278 -3.55 

BFQ0074 VOLTA SAMANDENI 11.4667 -4.4667 

BJQ0009 SOTA  COUBERI 11.74 3.3333 

BJQ0022 COUFFO  LANHOUNTA - LANTA 7.1 1.8833 

BJQ0028 MONO  ATHIEME 6.9167 1.6667 

BJQ0033 OUEME  BONOU 6.9 2.45 

BJQ0036 OUEME  HETIN SOTA 6.6 2.5 

BJQ0047 OKPARA  KABOUA 8.25 2.7167 

BJQ0050 SOTA  RTE KANDI-SEGBANA AMONT 10.9833 3.25 

BJQ0075 WE-WE  WE-WE 9.1667 2.1083 

BJQ1000 PENDJARI  PORGA 10.99401 0.9773 

BJQ2000 NIGER  MALANVILLE 11.888 3.383 

BJQ2004 OUEME  PONT DE BETEROU 9.199179 2.267582 

BJQ2005 OUEME  PONT DE SAVE 8 2.4167 

BJQ2006 ZOU  ATCHERIGBE 7.5333 2.0333 

CFQ0005 OUHAM BOSSANGOA 6.4667 17.45 

CFQ0025 OUBANGUI ZINGA TRANSIT 3.713833 18.58716 

CFQ0027 MBOMOU ZEMIO 5.028726 25.1471 

CFQ0028 BANGUI-KETTE ALINDAO 5.04457 21.20172 
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CFQ0034 LOBAYE M'BATA 3.666296 21.98114 

CFQ0040 M'POKO BOSSELE-BALI 4.530737 18.46878 

CFQ0057 SANGHA SALO 3.181621 16.11362 

CFQ2000 OUBANGUI BANGUI 4.364275 18.59487 

CGQ0003 ALIMA TCHIKAPIKA -1.26385 16.16937 

CGQ0013 LEFINI BWEMBE -2.9167 15.6308 

CGQ0014 LIKOUALA ETOUMBI 0.0167 14.95 

CGQ0015 LIKOUALA MAKOUA 0.00167 15.633 

CGQ0017 N'KENI GAMBOMA -1.9 15.85 

CGQ0020 KOUYOU LINNEGUE -0.5 15.9333 

CGQ0026 LIKOUALA BOTOUALI -0.55 17.45 

CGQ2000 CONGO BEACH - V.N. Brazzaville -4.27285 15.29392 

CGQ2001 SANGHA OUESSO 1.6167 16.05 

CIQ0007 BANDAMA MBRIMBO 6.0125 -4.425 

CIQ0013 BANDAMA KIMOUKRO  BALISE  10201 6.5056 -5.3053 

CIQ0032 MARAOUE RTE BEOUMI-SEGUELA - KONGASSO 10145 7.8319 -6.2542 

CIQ0033 MARAOUE BOUAFLE        10147 6.979988 -5.75437 

CIQ0058 NZI BOCANDA 7.0442 -4.52 

CIQ0061 NZI DIMBOKRO  10141 6.6358 -4.71 

CIQ0154 KOUROUKELE IRADOUGOU 9.7069 -7.8028 

CIQ0292 KAVI MBESSE 5.8386 -4.2961 

CIQ0312 CAVALLY FLAMPLEU 7.2833 -8.0583 

CIQ0314 CAVALLY TAI 5.86 -7.45 

CIQ0319 NSE TAI 1 (TAI PONT) 5.875 -7.4583 

CIQ4020 BANDAMA BADA 8.1069 -5.4972 

CIQ4022 BANDAMA TIASSALE            10144 5.8947 -4.8178 

CIQ4025 NZI FETEKRO 7.8106 -4.6875 

CIQ4026 NZI MBAHIAKRO          10133 7.4458 -4.3556 

CIQ4027 NZI NZIENOA       10136 5.9964 -4.8125 

CIQ4028 COMOE ANIASSUE PONT 10138 6.6375 -3.7126 

CIQ4029 COMOE MBASSO 6.125 -3.48 

CIQ4030 COMOE SEREBOU 7.9383 -3.9419 

CIQ4031 SASSANDRA SEMIEN        10130 7.7083 -7.0669 

CIQ4032 SASSANDRA SOUBRE 5.7833 -6.6131 

CIQ4033 BAFING BAFINGDALA (BADALA)  BIANKOUMA 10162 7.841611 -7.66658 

CIQ4034 LOBO NIBEHIBE (NIBEIGBEU) 6.8003 -6.7 

CIQ4035 COMOE AKAKOMOEKRO  10149 7.447418 -3.5094 

CMQ0008 DOUME DOUME 4.2333 13.45 

CMQ0029 SANAGA NACHTIGAL 4.35 11.6333 

CMQ0030 SANAGA NANGA EBOKO 4.7 12.3833 

CMQ0038 MBAM BAC DE GOURA 4.5667 11.3667 

CMQ0071 NYONG DEHANE 3.5667 10.1167 

CMQ5001 VINA NORD PONT DE BEREM 7.55 13.95 

CMQ5005 DJA SOMALOMO 3.3667 12.7333 
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CMQ5006 BENOUE BUFFLE NOIR 8.1167 13.8333 

CMQ5007 BENOUE GAROUA 9.294019 13.4041 

CMQ5015 MAPE  AU PONT DE MAGBA  AMONT 5.9833 11.2667 

CMQ5016 VINA DU SUD LAHORE 7.25 13.5667 

CMQ5018 LOBE BAC KRIBI-CAMPO 2.8667 9.8833 

CMQ5019 LOKOUNDJE LOLODORF 3.2333 10.7333 

CMQ5038 MUNGO MUNDAME 4.5667 9.5333 

CMQ5040 NTEM BAC DE NGOAZIK 2.1333 11.3 

CMQ5044 LOM BETARE OYA 5.9167 14.1333 

CMQ5047 KIENKE  KRIBI SCIERIE 2.9333 9.9 

CMQ5050 KADEI BATOURI 4.4167 14.3167 

GAQ0006 OGOOUE  BOOUE (LMNG) -0.1025 11.9367 

GAQ0015 OGOOUE  NDJOLE OPERATIONNEL -0.455 10.4025 

GAQ0028 IVINDO  MAKOKOU (LMNG) 0.5689 12.8611 

GAQ0041 NGOUNIE  FOUGAMOU  S H O  (LMNG) -1.2156 10.5908 

GAQ0046 NGOUNIE  MOUILA VAL MARIE -1.8869 11.0558 

GHQ0045 NASIA  NASIA 10.15 -0.8 

GHQ1005 VOLTA NOIRE BUI AMONT 8.2833 -2.2333 

GNQ0015 NIGER  FARANAH 10.03744 -10.7495 

GNQ0016 NIGER  KOUROUSSA 10.65169 -9.87096 

GNQ0018 NIGER  TIGUIBERY  (Siguiri) 11.3545 -9.16459 

GNQ0026 MILO  KANKAN 10.3833 -9.3 

GNQ0030 NIANDAN  BARO 10.6167 -9.7 

GNQ0034 NIANDAN  KISSIDOUGOU (NIANDAN SCIERIE) 9.25 -10.0167 

GNQ0200 BADI  BAC DE BADI 10.2833 -13.4 

GNQ0204 KONKOURE  PONT DE LINSAN 10.3 -12.4167 

MLQ0009 NIGER DIRE 16.27595 -3.395 

MLQ0012 NIGER KE MACINA 13.95831 -5.35896 

MLQ0019 NIGER KOULIKORO 12.85727 -7.55811 

MLQ0022 NIGER MOPTI 14.49605 -4.20127 

MLQ0036 NIGER TOSSAYE 16.9333 -0.5833 

MLQ0052 DIAKA KARA 14.1667 -5.0167 

MLQ0091 BANI SOFARA 14.01393 -4.2429 

MLQ0123 SENEGAL GALOUGO 13.8333 -11.1333 

MLQ0130 SENEGAL BAFING MAKANA 12.55 -10.2667 

MLQ0131 SENEGAL SOUKOUTALI 13.2 -10.4167 

MLQ0134 BAKOYE OUALIA 13.6 -10.3833 

MLQ0135 BAKOYE TOUKOTO 13.45 -9.8833 

MLQ0137 FALEME FADOUGOU 12.5167 -11.3833 

MLQ0145 BAOULE SIRAMAKANA  (Balenda) 13.5833 -9.8833 

MLQ2003 NIGER KENIEROBA 12.1 -8.3167 

MLQ2007 SANKARANI SELINGUE 11.5833 -8.1667 

MLQ2008 BANI DOUNA 13.21385 -5.90311 

MLQ2064 SENEGAL DAKA SAIDOU 11.95 -10.6167 
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MLQ2066 SENEGAL DIBIA 13.2333 -10.8 

MLQ2069 FALEME GOURBASSY 13.4 -11.6333 

MLQ2070 SENEGAL KAYES 14.45 -11.45 

NEQ2000 NIGER NIAMEY 13.5016 2.105 

NGQ0001 BENUE MAKURDI 7.75 8.5333 

NGQ0002 NIGER ONITSHA 6.166667 6.75 

NGQ2000 NIGER LOKOJA 7.8 6.7667 

NGQ2004 NIGER IDAH 7.1 6.716667 

SNQ2039 GAMBIE  KEDOUGOU 12.55 -12.1833 

SNQ2045 GAMBIE  MAKO 12.8667 -12.35 

SNQ2055 GAMBIE  SIMENTI 13.0333 -13.3 

SNQ2060 GAMBIE  WASSADOU-AMONT 13.35 -13.3667 

SNQ2062 GAMBIE  WASSADOU-AVAL 13.35 -13.3833 

SNQ2063 SENEGAL  BAKEL 14.9 -12.45 

SNQ2064 SENEGAL  DAGANA 16.5167 -15.5 

SNQ2065 FALEME  KIDIRA  UHEA 14.45466 -12.205 

SNQ2066 SENEGAL  MATAM 15.65 -13.25 

SNQ2067 DOUE  NGOUI 16.15 -13.9167 

SNQ2068 SENEGAL  SALDE 16.16325 -13.8795 

TDQ0004 CHARI SARH (EX.FORT-ARCHAMBAULT) 9.15 18.4167 

TDQ0009 CHARI  MAILAO 11.6 15.2833 

TDQ0013 BAHR-SARA MANDA 9.1833 18.2 

TDQ0014 BAHR-SARA MOISSALA 8.3333 17.7667 

TDQ0036 LIM OULI BANGALA 7.8333 15.8333 

TDQ0041 PENDE GORE 7.95 16.6167 

TDQ0043 TANDJILE TCHOA 9.3333 16.0833 

TDQ2011 CHARI BOUSSO 10.5 16.7167 

TDQ5004 LOGONE KATOA 10.8333 15.0833 

TDQ5005 LOGONE LAI (MISSION) 9.4 16.3 

TDQ5006 LOGONE  LOGONE-GANA 11.55 15.15 

TOQ0006 KARA  LAMA KARA 1 9.5333 1.1833 

TOQ0037 SIO  KPEDJI 6.5317 1.0083 

TOQ0042 MONO  CORREKOPE 7.8 1.3 

TOQ0043 MONO  DOTAIKOPE 7.8167 1.2667 

TOQ0046 MONO  TETETOU 7.0167 1.5333 

TOQ0048 AMOU  AMOU OBLO 7.4 0.8667 

TOQ0053 ANIE  PONT C F T 7.7333 1.2 

TOQ0056 KOLOWARE  KOLOWARE 8.9667 1.2833 

TOQ0057 NA  PARATAO 8.95 1.1833 

TOQ0059 OGOU  SIRKA 7.9167 1.3667 
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HIGHLIGHTS 919 

 The first imputed streamflow dataset for West and central Africa 920 

 Good agreement between historical trends in streamflow and rainfall 921 

 Partial modulations of post-1990s rainfall recovery by enhancing evapotranspiration 922 

 Decadal modulations of Trends in hydroclimatic trends 923 

 Homogenous zones of streamflow and precipitation variability 924 
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