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Abstract 
The need for more efficient and effective stem cell therapies and technologies is ever increasing on 

account of a general ageing worldwide population, leading to  a number of competing techniques to 

provide an effective means for the surface engineering of biomaterial substrates, especially in the 

stem cell technologies arena. This chapter will introduce the role of laser material processing, 

particularly laser surface engineering, in the field of stem cell research and will show how laser 

material processing of polymers and metals can modulate the adhesion, growth and proliferation of 

mesenchymal stem cells (MSCs). Through CO2 laser surface engineering of polytetrafluoroethylene 

(PTFE) and polyamide 6,6 it will be shown that the modification of wettability and adhesion 

characteristics gave rise to an enhanced MSC adhesion and growth. Fibre laser welding of NiTi alloy 

is demonstrated as giving rise to an enhanced biocompatibility, augmenting MSC adhesion and 

growth. The efficacy of laser material processing as a means to produce optimized platforms to 

increase biological adhesion and growth has been shown as viable, indicating that laser material 

processing has the potential to have a large influence upon the future of biomaterial science and 

regenerative medicine.  
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1. Introduction 
It is well known that many developed countries have issues relating to ageing populations [1,2]. Of 

major concern are the number of negative economic and health implications which need to be 

adequately addressed. One field that shows significant promise to counter these negative 

implications is that of stem cell technologies [3-6]. This is owed to the fact that the nature of 

mesenchymal stem cells (MSCs) to differentiate into specific cell types (for example osteoblasts and 

chondrocytes, etc.) [7] makes them critical for the development of biological tissues, making them 

an ideal candidate for use within the field of regenerative medicine [2,7-11]. What is more, a 

number of important works have been carried out to show that biological cells [12-14], including 

MSCs [4,15,16] hold the ability to distinguish between variations in surface characteristics (such as 

roughness, for example), giving rise to a highly modulated biological cell growth response including 

variations in adhesion, protein adsorption, differentiation and proliferation. It has been suggested 

that the use of surface engineering technologies, to assist in the development of substrates to 

provide a biomimetic environment, offers a substantial approach to enhance and prolong the in vitro 

lifecycle of MSCs whilst still upholding the MSC’s multipotency [9,17]. 

There are many applications of polymers in the biomaterial industry [18-20], as shown in Table 1. 

The advances in manufacturing and surface engineering techniques have led to many polymeric 

materials seeing increased use in both the biomedical industry and research. This is due to the fact 

that clinicians and researchers have an enhanced ability to augment the biocompatibility and 

biofunctionality of polymeric biomaterials [20,21]. 
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Table 1: Common applications for polymers within the biomedical industry. 

Material Applications 

Polyamide 6,6 Gastrointestinal segments; Tracheal tubes. 

Polyethylene (PE) Acetabular cup of hip prosthesis; heart pacemakers. 

Poly(methyl methacrylate) (PMMA) 
Dental restorations; intraocular lenses; joint 

replacement. 

Polypropylene Cardiovascular applications. 

Polytetrafluoroethylene (PTFE) 
Cardiovascular applications; soft tissue implants; medical 

devices; medical filtration.  

Polyurethane Heart pacemakers; maxillofacial prosthesis; 

Poly(vinyl chloride) (PVC) Gastrointestinal segments; maxillofacial prosthesis. 

Ultrahigh molecular weight polyethylene 

(UHMWPE) 

Total joint replacement- usually hip, knee and shoulder 

joints. 

 

Another material that has received increasing attention from the biomaterial industry is NiTi alloy. 

This is attributed to its attractive material properties, namely, unique shape memory and super-

elasticity [22]. On account of these superior material properties, NiTi alloys have been widely used in 

the biomedical industry for cardiovascular applications, orthopaedic applications and for the 

manufacture of surgical instrumentation [22,23]. Having said that, NiTi alloys possess a disadvantage 

in that toxic Ni can be identified within the surface layer [24] and, with the release of Ni into the 

biological environment, can cause severe negative reactions and biofunctionality [25,26]. In fact, 

recent work by Sun et al. [27] showed that, even at sub-toxic concentrations, Ni ions can give rise to 

a significant decrease in alkaline phosphatase (ALP) levels as well as hindering DNA synthesis having 

a negative impact upon cell growth and differentiation. This was further corroborated with the work 

of Nichols and Puleo [28].  With this major negative impact in mind, surface engineering of NiTi 

alloys for use as biomaterial is critical to the expansion of the biomaterial industry as it is believed 

that surface engineering can be applied to reduce the level of Ni release, enhancing the 

biofunctionality of NiTi alloys [29-32]. 

It is now common knowledge that the adhesion, proliferation and differentiation of MSCs are highly 

regulated by micro-environmental and nano-environmental factors such as extracellular matrix 

(ECM) and substrate surface topography [3,6,33-35]; indeed, it has been identified that MSCs will 

form different focal attachments on a less organized topographical surfaces and result in a 

phenotype district [36]. It has been shown that the attachment, adhesion and spreading in the early 

phase (minutes to hours) of cell-substrate interactions influence the capacity for cell proliferation 

and to differentiate itself on contact with the implant [37], indicating that the first 24 hours of 

biological cell growth is crucial. In addition to this, recent research [3,13,38,39] has highlighted that 

anisotropic laser-induced surface textures can guide cell growth, indicating that surfaces can be 

fabricated to direct biological cell growth. This also involves cytoskeletal reorganization which is a 

precondition for MSCs to differentiate into an osteoblastic lineage [40]. On account of this, surface 

engineering, in particular laser surface engineering, can be seen as an effective means to manipulate 

the surfaces of biomaterials to give rise to an optimized biomimetic material, enhancing the 

biological cell response. This enhanced biological cell response, through surface engineering, will 

then ultimately provide the biomedical industry with a means of developing optimized substrates 

and scaffolds upon which human tissue can be efficiently grown, especially with consideration of 

producing optimized substrates and scaffolds on a pharmaceutical scale, meeting the needs of the 

future with regards to healthcare. This chapter details some of the main surface engineering 

techniques used for modulating stem cell growth response and details two techniques (laser surface 



 

 

treatment and laser welding) and the impact these techniques have on stem cell growth and 

proliferation. 

2. Surface Engineering Techniques in Stem Cell Technologies 
Since surface engineering has a promising role for the development and optimization of substrates, 

upon which the growth of biological cells such as MSCs can be enhanced, there is an increasing 

application of numerous surface engineering techniques to this field [41-45].As a direct result of this, 

a number of competing techniques have been developed and employed in both academic and 

industrial environments. 

2.1 Laser Surface Engineering 

Laser surface engineering has been shown to provide an adequate means of modifying the surfaces 

of various material types for the sole purpose of surface engineering. That is, the surface topography 

or surface chemistry (or both simultaneously) can be modified through the application of laser 

surface engineering [46-48], modulating the biofunctionality of the material [35,49,50]. This is 

significant as, on numerous occasions, the surface properties of a material give rise to a biological 

cell response which is inadequate, leading to rejection of the material. This results in minimal, or no, 

biological adhesion [51]. 

Another laser material processing technique which has become an attractive means for processing 

biomaterials is that of laser micro-welding on account of the increasing demand in miniaturized 

biomedical implant technologies [19,20,52,53]. 

2.2 Plasma Surface Engineering 

Plasma surface engineering has the advantage of being able to manipulate the surface topography 
and surface chemistry of a material whilst maintaining the initial bulk material properties. As a direct 
result of this, plasma surface processing has been applied to a number of industries such as 
healthcare and the automotive industries [54,55]. With specific regard to healthcare and 
bioengineering it has been widely shown that the implementation of plasma surface engineering has 
the ability to significantly enhance the biofunctionality of materials, especially with regard to stem 
cells and influencing their growth and differentiation [56-58]. 

2.3 Lithography Techniques 

Owing to the fact that lithography is a well-established technique, there are a number of variations. 

Some of the main lithography techniques include photolithography, electron beam lithography, 

imprint lithography, and dip-pen lithography. Furthermore, due to the advanced nature of this 

technology, it holds the ability to readily produce surfaces on a nanometre scale which is ideal for 

the effective control of adhesion and wettability characteristics [59-61]. The main technique used for 

nano-lithography is that of photolithography which shows significant promise in the manipulation of 

stem cell growth and differentiation [62,63]. Having said that, it should be noted that for this 

particular technique to be effective a completely flat material surface is needed, in addition to the 

necessity of extremely clean operating conditions. This causes implications in terms of both pre- and 

post-processing leading to significantly high operating costs compared to other competing 

techniques. 

 

2.4 Micro- and Nano-Printing 

Micro- and nano-printing provides a low cost option to efficiently produce engineered polymeric and 

metal surfaces on a large scale [64-68]. This technology has, therefore, been tipped as one to 

provide sufficient expansion in healthcare bioengineering industries. Leading on from this, it has 



 

 

been shown that the adhesion, proliferation and differentiation of pluripotent stem cells can be 

manipulated through the means of micro- and nano-printing of the substrates on which they are 

cultured [42]. This is highly significant as it could provide an effective and large-scale technological 

solution to manufacturing optimised substrates which can be implemented to provide the industry 

with tailored stem cell growth for use within implant technologies and stem cell therapies. 

 

3. Laser Surface Engineering of Polymeric Materials 

3.1 Experimental Technique 

3.1.1 Materials 

Polyamide 6,6 was sourced in 100 x 100 mm2 sheets with a thickness of 5.0 mm (Goodfellow 

Cambridge, Ltd, UK). Polytetrafluoroethylene (PTFE) was sourced in a 500 x 500 mm2 sheet with a 

thickness of 0.6 mm. Both polymeric materials were mechanically cut into 10.0 mm diameter 

samples for CO2 laser processing, topography analysis, surface chemistry analysis and wettability 

analysis. Smaller samples with a diameter of 5.0 mm were mechanically cut for biological analysis. 

3.1.2 Laser Surface Engineering Techniques 

Both the polyamide 6,6 and PTFE were processed using a CO2 laser marking system (60W Ti-series, 

Synrad Inc., USA). Further details of the laser set-up can be found in [4,69]. For the polyamide 6,6 

samples, the laser-induced patterns were trenches with 50 μm spacing (NT50), hatches with 50.0 μm 

spacing (NH50), trenches with 100 μm spacing (NT100) and hatches with 100 μm spacing (NH100). 

For the PTFE samples, the laser-irradiated patterns were 50.0 μm Hatch (PH50), 50.0 μm Trench 

(PT50), 100 μm Hatch (PH100), and 100.0 μm Trench (PT100). For each of the polyamide 6,6 samples 

the laser power was kept constant at 11.7% (7 W) with a scanning speed of 600 mms-1. For the PTFE 

samples, a laser scan speed of 400 mm/s, with 50% power was used. These samples are denoted as 

“_1” (for example PT100_1). A speed of 600 mm/s, with 28% power was also used and these 

samples are denoted as “_2” (for example PT100_2). In addition, an as-received control sample (AR) 

was used.  

3.1.3 Analytical Techniques 

Surface profiles of each sample were determined using a non-contact confocal chromatic imaging 

(CCI) system (Micromesure 2; STIL S.A., France) with Surface Map software and TMS Plus software. 

Further details of this system can be found in [12].  

A sessile drop goniometer (OCA20; DataPhysics Instruments GmbH, Germany) was used with SCA20 

software to allow the contact angle, θ, for triply distilled water and diiodomethane to be determined 

for each sample. Before measurement, the samples were cleaned using ethanol in an ultrasonic bath 

for 10 minutes. Following this the samples were air dried for 30 minutes. An average droplet volume 

of 5 μl was used for the measurement of the distilled water contact angle, θ, while for the 

diiodomethane the average droplet volume was 1 μl in order to provide a sufficient size droplet to 

take measurements. By using the data obtained for the contact angles of the water and the 

diiodomethane, the two-liquid Owens, Wendt, Rabel and Kaelble (OWRK )method was used to 

determine the surface free energy for each of the samples. 

X-ray photoelectron spectroscopy (XPS) data were acquired using a bespoke ultra-high vacuum 

system fitted with a monochromatic Al Kα X-ray source (Specs Focus 500, GmbH, Germany), a  150 

mm mean radius hemispherical analyser with 9-channeltron detection (Phoibos; Specs GmbH, 



 

 

Germany), and a charge neutralising electron gun (FG20; Specs GmbH, Germany). Further details of 

the XPS experimentation are given in [70].   

3.1.4 Biological Analysis Techniques 

Mesenchymal stem cells (MSCs) used in this study were from human umbilical cord blood (Stem Cell 

Bank, Japan). The primary MSCs used were at passage number 6. MSCs were grown in tissue culture 

medium consisting of Dulbecco's Modified Eagles Media (DMEM) (with l-glutamine) (Sigma Aldrich, 

Ltd., UK), supplemented with 10% fetal calf serum (FCS) (Sigma Aldrich, Ltd., UK), and 100 units/ml 

of penicillin and 0.1-mg/ml of streptomycin (Sigma Aldrich, Ltd., UK), and placed in an incubator set 

at 37°C, 5% humidified CO2 (Wolf Laboratories, Ltd., UK), throughout the study. When the cells 

reached sub-confluence (70 to 80%), they were retrieved with 0.25% trypsin and 0.02% EDTA (Sigma 

Aldrich, Ltd., UK). The retrieved cells were washed twice with phosphate buffer saline (PBS), 

centrifuged at 1200 rpm for 12 minutes at room temperature and re-seeded onto the samples which 

had been placed in the 24- and 96-well plates (Corning Costar; Sigma-Aldrich, Ltd., UK). A consistent 

sample size of 5 x 104 cells/ml was used throughout the in-vitro experiments. Further details with 

regards to MSC preparation, growth and retrieval are provided in [4]. 

The cell morphology on different samples after 24 and 48 hours of culture was analysed in the 

secondary electron (SE) mode by the SEM. The following procedure was undertaken to produce a 

sample that was dehydrated and ready for Au coating. After removal of the culture medium, the 

samples were initially rinsed with PBS (Sigma-Aldrich, Ltd., UK) to remove any unattached cells and 

then adhered cells were fixed using 1.2% glutaraldehyde in water (Sigma-Aldrich, Ltd., UK) at room 

temperature for an hour within the biological safety cabinet (BSC). After an hour, the glutaraldehyde 

solution was removed and the fixed cells were washed with PBS prior to carrying out a graded series 

of ethanol:distilled water mixtures of 50:50, 80:20, 90:10, 95:5, 98:2 and 100:0. Each sample was left 

in these mixtures for 10 minutes and dried in air. The samples were sputter coated with Au for cell 

morphology observation by SEM.  

3.2 Effects of Laser Surface Engineering on Surface Topography 

It is well known and accepted that with an incident infra-red (IR) laser such as a CO2 laser the 

coupling of the laser light into the material is that of a thermolytic nature [71], resulting in lattice 

vibrations and a rise in material temperature. As a result of this, in many cases for CO2 laser material 

processing, the rise in temperature gave rise to melting of the material. Some typical three-

dimension (3-D) profiles of the polyamide 6,6 samples which have undergone CO2 laser surface 

engineering detailed in Section 2 are shown in Figure 1. This highlights that the scanning of the CO2 

laser beam across the polymeric samples gave rise to an increase in surface roughness. That is, the 

CO2 laser surface engineering gave rise to an increase in maximum peak heights from approximately 

0.5 µm to 44.0 µm. On account of this, the surface roughness increased with a maximum Ra of 4.4 

µm. 

 

 

 



 

 

 
(a)       (b) 

 
(c) 

Figure 1: Typical 3-D profiles of (a) the as-received polyamide 6,6 and the CO2 laser surface 

engineered polyamide 6,6 – (b) NH50 and (c) NH100 samples. 

 

In a similar fashion, typical 3-D profiles of the CO2 laser surface engineered PTFE samples are shown 

in Figure 2 further indicating that the laser surface engineering gave rise to an increase in surface 

roughness. It should be noted that the highest increase in roughness was approximately double 

compared to the as-received sample with the largest Ra roughness value being 4.09 µm for sample 

PH100_2. Still, it was found that the Ra roughness values decreased for the 50 µm spaced PTFE 

samples in comparison to the as-received sample (see Table 2). In addition to this, it was also 

observed that for the polyamide 6,6 samples the intended laser-induced scanned pattern was 

somewhat eradicated during the processing of the 50.0 µm spaced samples. This is of significance as 

it indicates that, with the laser focussed beam spot being of the order of 95.0 µm, the scanned laser 

lines across the surface would have overlapped, effectively re-melting sections of the sample. This 

appears to have reduced the surface roughness of these PTFE samples and eradicated the intended 

pattern for the nylon 6,6 samples on account of the material properties defining the way in which 

they reacted to the laser re-melting.    

 

 

 

 



 

 

 
(a) 

 
(b)       (c) 

Figure 2: Typical 3-D profiles of (a) the as-received PTFE sample (PAR) and the CO2 laser surface 

engineered PTFE – (b) PT50 and (c) PH100. 

 
Provided in Table 2 are the surface roughness Ra parameters for each surface. It should be noted 

that for the polyamide samples, the samples which had laser scan dimensions of 50.0 µm gave 

higher Ra roughness values compared to those samples which underwent 100.0 µm laser scan 

dimensions. In a similar manner, it was found for some of the 50.0 µm dimension laser scan samples 

that the Ra roughness value was lower than the other laser surface engineered PTFE samples, 

including the as-received sample. As discussed previously, it is highly likely that this is due to the 

overlapping nature of laser beam as it scanned across the surface coupled with the different 

material properties defining the surface topography outcome during the laser re-melting process.   

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 2: Table showing roughness, contact angle and the corresponding surface free energy 

for each polymeric sample. 

Sample 
Ra 

(µm) 
Contact Angle 

(°) Water 

Contact 
Angle 

error (°) 
Water 

Surface free 
Energy (mJm-2) 

NAR 0.023 56.4 1.29 49.12 ± 0.55 

NT50 2.230 60.3 1.72 47.59 ± 0.44 

NT100 0.115 55.2 0.81 47.16 ± 0.42 

NH50 0.798 54.7 1.06 
48.77 ± 0.45 

NH100 0.080 57.4 0.61 52.18 ± 1.22 

PAR 1.991 91.4 2.05 28.35 ± 1.27 

PT50_1 0.354 151.8 1.41 0.94 ± 0.25 

PT50_2 3.440 109.6 2.57 1.58 ± 0.03 

PH50_1 0.543 147.5 0.19 1.58 ± 0.03 

PH50_2 4.250 107.2 0.91 1.58 ± 0.03 

PT100_1 1.070 140.4 1.43 3.20 ± 0.38 

PT100_2 3.400 117.0 1.93 13.15 ± 1.03 

PH100_1 2.500 148.1 0.33 1.48 ± 0.06 

PH100_2 4.090 101.5 1.12 22.16 ± 0.68 

 

3.3 Effects of Laser Surface Engineering of Polymeric Materials on Stem Cell Adhesion and Growth 

Table 2 provides the contact angle, θ, data for all samples, and the corresponding surface free 

energy for each sample obtained from goniometer contact angle analysis. As one can see, for the 

polyamide 6,6 samples, the modification in θ and surface free energy following CO2 laser surface 

engineering is minimal with variations in θ ranging from 1.0 to 5.0°. This is contrasted with the PTFE 

samples which showed a significant increase in θ with contact angles increasing by over 50.0°, 

making the PTFE samples borderline superhydrophobic (θ>150°). With regards to the polyamide 6,6 

samples, it has been shown that CO2 laser surface engineering can be used to bring about discrete 

variations in the contact angle and the surface free energy, through topography and surface 

chemistry modification, discretely modifying the adhesion characteristics. Further details with 

regards to the manipulation of wettability and adhesion characteristics are given in [72]. 

 



 

 

 

Figure 3: A graph showing the viable cell count for each sample. 

 

As shown in Figure 3, the stem cell growth on the CO2 laser patterned polyamide 6,6 samples was 

significantly enhanced compared to the growth on the as-received sample and control sample, 

following 24 hours of incubation. This is contrasted somewhat with that of the CO2 laser surface 

engineered PTFE samples which did not seem to elicit a significant variation in stem cell adhesion 

and growth. That is, in general for the PTFE samples, the viable cell count following 24 hours 

incubation remained somewhat constant with viable cell counts being of the order 40,000 cells/ml. 

This is significant as it is stated by some researchers that highly hydrophobic materials, with high 

values of θ, hinder the adhesion and growth of biological cells [15]. Having said that, with the added 

complexity of CO2 laser processing, it is highly likely that the increase in surface roughness and 

increase in surface oxygen content could have given rise to a more enhanced response from the 

stem cells, as has been discussed previously [4,12]. This is in accord with other researchers 

[15,73,74] and explains the enhanced stem cell response to the CO2 laser surface engineered 

polyamide 6,6 samples and the CO2 laser surface engineered PTFE samples, even considering that 

the PTFE laser engineered samples are borderline superhydrophobic (θ>150°). Leading on from this, 

Biazar et al. [75] showed that there was a significant relationship between increased surface 

roughness and enhanced cellular adhesion and cellular spreading. Whilst there seemed to be little 

variation in cell spreading throughout the CO2 laser engineered samples, it should be noted that, for 

the polyamide samples especially, there was an enhancement of stem cell adhesion and growth (see 

Figure 4 for a typical SEM micrograph of the stem cells adhered to a CO2 laser engineered polyamide 

sample). 

 



 

 

 

Figure 4: SEM micrograph of typical MSCs growth on Sample NH100 following 24 hours of 

incubation. 

 

4. Laser Welding of NiTi Alloys 

4.1 Experimental Technique 

4.1.1 Material 

NiTi alloy was sourced flat annealed Ti-55.91 wt. % Ni foil (Johnson Matthey Inc., USA) with 

dimensions of 50x50x0.25 mm. The material was prepared by removing the oxide layer using 600 

grit SiC paper. Following this, all samples were degreased by ultrasonic cleaning for 10 minutes in 

isopropanol (Sigma Aldrich Inc., USA) and then for 5 minutes in distilled water (Sigma Aldrich Inc., 

USA). It should be noted that all samples were air dried prior to laser welding. 

4.1.2 Laser Micro-Welding Technique 

To produce laser autogenous welds, a 100 W, 1091 nm wavelength fibre laser was used, along with 

an x-y-z welding jig to manipulate the movement of the workpiece. In order to minimize the effects 

of thermal distortion, the welding jig enabled clamping of the samples. To eradicate the possibility of 

a plasma forming over the weld zone (WZ) argon was used as a shielding gas during the laser 

welding process. The argon was delivered to the workpiece as a central jet stream through the laser 

nozzle which had a diameter of 10 mm. It should also be noted that argon was delivered with a side 

jet with a 6.0 mm diameter output nozzle angled at 30° to the horizontal plane. Previous 

optimization of the laser welding process had been carried out [76] with the laser power set to 70 

W, the welding speed being 300 mm/min, the laser focal position being 1.6 mm from the sample 

surface and the argon gas flow being 35 l/min. 

4.1.3 Analytical and Biological Analysis Techniques 

For each sample the Ra surface roughness parameter was defined using a white light interferometer 

(WLI) (NewView 500, Zygo Ltd., UK). The WLI was set up using a ×50 Mirau lens (NA=0.55) with 

working distance of 3.4 mm. The Ra and maximum peak-to-valley height roughness parameters for 

each sample were determined using the MetroPro Software. 



 

 

The surface chemistry composition of each sample surface was analysed by X-ray photoelectron 

spectroscopy (XPS) (PHI5600, Physical Electronics Inc., USA). The X-ray source was monochromatic Al 

K α (15 kV, 25 W) and the beam size was 100 μm in diameter. The pass energies for survey scan and 

narrow scan spectra were 187.5 and 58.7 eV, respectively. 

For the biological analysis, single-tack laser weldments were used which comprised  of the weld zone 

(WZ), the heat affected zone (HAZ) and the base material (BM). The mesenchymal stem cells (Stem 

Cell Bank, Japan) were grown in tissue culture medium consisting of DMEM (with L-glutamine) 

(Sigma Aldrich, Ltd.), supplemented with 10% fetal calf serum (FCS) (Sigma Aldrich, Ltd.), and 100 

units/ml of penicillin/and 0.1-mg/ml of streptomycin (Sigma Aldrich, Ltd.), and placed in an 

incubator set at 37°C, 5% humidified CO2 (Wolf Laboratories, Ltd.), throughout the study. When the 

cells reached subconfluence (70 to 80%), they were retrieved with 0.25% trypsin and 0.02% EDTA. 

The retrieved cells were washed twice with PBS, centrifuged at 1200 rpm for 12 minutes at room 

temperature and re-seeded into four 24-well cell culture plates at an initial seeding density of 5×104 

cells per well, and placed in a CO2 incubator for 24 hours. 

Following the 24 hour incubation period, the morphology of the stem cells was analysed by 

secondary imaging SEM. In order to conduct such an observation the samples were initially rinsed 

with phosphate-buffered saline (PBS) (Sigma-Aldrich, Ltd.) to remove any unattached cells and then 

adhered cells were fixed using 1.2% glutaraldehyde in water (Sigma-Aldrich, Ltd.) at room 

temperature for 1 hour within the BSC. After an hour, the glutaraldehyde solution was removed and 

the fixed cells were washed with PBS prior to carrying out a graded series of ethanol:distilled water 

mixtures of 50:50, 80:20, 90:10, 95:5, 98:2 and 100:0. Each sample was left in these mixtures for 10 

minutes and dried in air. The samples were sputter coated with Au for cell morphology observation 

by SEM. The cell coverage (or cover density per cm2) was determined by analyzing the cell coverage 

on each sample using SEM and optical micrographs with the ImagePro software. The optical 

micrographs were obtained using an upright optical microscope (Flash 200 Smartscope; OGP Ltd., 

UK) with magnifications varying between ×100 and ×500. 

The number of viable cells on each sample was counted in a 25-square of the haemocytometer 
(Neubauer Improved Bright Line at depth 0.1 mm, 0.00025 mm3). Trypan blue was used as the dye 
to stain the cells. 50 μl of homogeneous cell suspension in tissue culture medium consisting of 
DMEM (with L-glutamine) (Sigma Aldrich, Ltd., UK) supplemented with 10% fetal calf serum (FCS) 
and 100 units/ml of penicillin and 0.1 mg/ml of streptomycin (Sigma Aldrich, Ltd., UK) was added to 
50 μl of 0.4% trypan blue (Sigma Aldrich, Ltd. UK). This was repeated for two chambers and the 
mean number of viable cells was obtained, and the following equation was applied: Number of cells 
/ml=mean number of cells x2 (dilution factor) x104. 

4.2 Surface Chemistry of Laser Micro-Welded NiTi Alloys 

Table 3 gives the relative percentages (at.%) for the main metallic elements which were present in 
the oxide layer following the laser welding process. It should be noted that from the XPS analysis, 
the Ni at the surface was mainly composed of Ni(OH)2 with a small amount of NiO and metallic Ni. 
Furthermore, as Table 3 suggests, there was a large concentration of carbon (C) due to 
environmental contamination. Another interesting factor is that of the Ni/Ti ratio as given in Table 3. 
The laser welded zone (WZ) gave rise to the lowest Ni/Ti ratio of 0.10 with the ratio increasing over 
the heat affected zone (HAZ) and the base material (BM). This is highly significant as it is known that 
the Ni/Ti ratio can provide an indication as to the potential levels of Ni release when used as an 
implant in a biological environment [77]. With this in mind, due to the low Ni/Ti ratio established by 
the laser welding process, it is highly likely that this would give rise to enhanced biomimetic 
properties, making the NiTi alloy material safer for implantation, reducing the probability of Ni 
release.  



 

 

 

Table 3: Surface atomic composition and the surface roughness parameters for the various 
weldment regions. 

Region C  
(at.%) 

N  
(at.%) 

Ni 
 (at.%) 

O 
(at.%) 

Ti  
(at.%) 

Ni/Ti 
Ratio 

Ra 
(μm) 

Max. Peak-to-
valley height 

(μm) 

WZ 33.0 1.8 1.5 48.1 15.6 0.10 0.375 2.49 
HAZ 35.1 3.1 2.2 44.7 14.9 0.15 0.289 1.46 
BM 36.9 2.6 2.6 43.6 14.3 0.18 0.301 1.53 

 

4.3 Effects of Laser Welding of NiTi Alloy on Stem Cell Adhesion and Growth 

SEM micrographs of stem cells attaching to the laser welded NiTi alloy and the base material are 

shown in Figure 5. This shows that the stem cells successfully adhered to the samples with the 

pseudopodia stretching out over the sample surfaces to assist in further proliferation. It was also 

observed that stem cells appeared to preferentially adhere to laser-induced surface features 

indicating that the stem cells preferentially adhered to those surfaces with high, irregular surface 

roughness. This is in agreement with what has been observed previously by other researchers 

[15,36,42,43,62]. In addition, it was identified, with the stem cells being sensitive to surface features, 

that the stem cells were somewhat guided during the 24 hour incubation period. This is owing to the 

fact that the stem cells appeared to grow in correspondence with the dendritic pattern associated 

with the laser welded NiTi alloy [3], especially on the rougher surface with the highest maximum 

peak-to-valley height (see Table 3). This is likely on account of the pseudopodia playing a nano-scale 

sensory role for guiding and manipulating the stem cell adhesion, growth and proliferation [78]. It 

has also been shown by other researchers that the larger the surface features, the higher the degree 

of direct guided cell growth, depending on the cell type [79]. Therefore, for stem cell technologies 

which require directed and guided cellular growth, it is highly advisable that the surface engineering 

technique should be chosen to augment the maximum peak-to-valley height roughness parameter.     
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Figure 5: SEM micrographs of the stem cells adhering and growing on (a) laser welded NiTi alloy (WZ) 
and (b) the base material (BM) with white arrows identifying that some cells have kept there round 

morphology and (c) laser welded NiTi alloy showing the oriented cell growth with a dendritic pattern. 

The percentage coverage of the stem cells over the NiTi alloy samples is shown in Figure 6. It should 

be noted that the laser welded NiTi alloy (WZ) gave rise to the highest stem cell coverage of 86% 

compared to the HAZ and BM giving rise to 73% and 76%, respectively. This further indicates the 

importance of surface roughness and surface features with regards to manipulating stem cell 

adhesion and proliferation. That is, the cell coverage appears to be somewhat related to the laser-

induced surface roughness, with rougher surfaces corresponding to higher cell coverages. This is 

further in agreement with other researchers who have found that anchorage dependent cells 

preferentially grow and proliferate on rougher surfaces [80,81]. This is owing to the fact that the 

rougher surfaces give rise to an increased surface area with which the biological cells can interact 

[17]. With regards to the stem cells, it may also have been the case that the laser-induced dendritic 

pattern improved the cytoskeleton, in accord with Eisenbarth et al. [82] who showed that oriented 

and guided cells have a higher density of focal contact in the regions of induced surface patterns. In 

addition to this, the higher cell coverage for the laser welded samples could very well be augmented 

by the low Ni/Ti ratio which is known to assist in the formation of a passive film, with a higher 

concentration of TiO2.  



 

 

 

Figure 6: Graph showing the stem cell coverage for each sample following 24 hours incubation.  

 

The viable cell count for the NiTi alloy samples, in comparison with the polyamide 6,6 samples and 
the PTFE samples, is shown in Figure 7. With regards to the NiTi alloy samples, it was found that the 
laser welded sample (WZ) gave rise to an increase in viable cell count compared to the HAZ and BM. 
This corresponds to what was identified with the stem cell coverage shown in Figure 6. Furthermore, 
it should be noted that after 24 hours of incubation, the NiTi alloy samples promoted stem cell 
growth and proliferation considerably more compared to the polymeric samples (polyamide 6,6 and 
PTFE). This indicates that the NiTi alloy is sufficiently more biocompatible compared to the polymeric 
materials and explains why, currently, NiTi alloy is more widely used in the biomedical industry. 
Having said that, with the polyamide 6,6 showing potential for enhanced stem cell growth, from 
laser surface engineering, it is likely that the biomedical industry would be interested in such 
technologies to manipulate cheaper materials which can be easily modified. Having said that, 
considerably more research is needed into the manipulation of stem cells through surface 
engineering and with the significant advancements in surface engineering techniques it is highly 
likely that within the next 10 to 20 years surface engineering will be used in the mainstream 
biomedical industries as a way to manipulate and dictate biological cell growth. 

 

 



 

 

 

Figure 7: Graph showing the viable cell count for the polyamide 6,6 samples, PTFE samples and the 
NiTi samples (WZ, HAZ and BM). 

 

5. Summary and Future Considerations 
With an ageing worldwide population following an upward trend it is becoming significantly evident 

that there are numerous socio-economic implications which need to be counteracted, this is 

especially the case for the healthcare industry. As a direct result of this numerous surface 

engineering techniques have been developed to provide a means to modify the surfaces of 

biomaterials to manipulate the growth of biological cells. This chapter has discussed some of the 

main engineering techniques and has shown how laser material processing in the form of laser 

surface engineering and laser welding can be implemented to ensure that stem cell adhesion, 

growth and proliferation can be enhanced simply by discretely and simultaneously modifying the 

surface roughness and surface chemistry of distinctly different ,materials: polymeric materials and 

NiTi alloys, to yield the same positive effect. Given the wide selection of lasers available in the 

market today it is safe to say that almost every material can be processed using laser technology. 

This can potentially open up a large array of applications for different materials in the biomedical 

and healthcare industries and could lead to further expansion, enhancing technologies and 

therapies. 

The work presented herein has shown that both the modifications in surface topography and surface 

chemistry have a considerable impact upon stem cell adhesion, growth and proliferation. It has been 

evidenced that there is a significant relationship between the roughness of a material and the 

growth of the stem cells. For the polymeric materials, it was shown that there was an enhanced 

stem cell response with an increase in roughness and increase in surface oxygen content. Having 

said that, for those PTFE samples which evidenced a near superhydrophobic surface (θ>150°), there 



 

 

appeared to be no variation in stem cell response when compared to the as-received sample. This is 

of significance as it shows that samples with a high contact angle, following laser surface 

engineering, could still be implemented for use in the healthcare industry for stem cell growth. 

Through further research this type of surface may be beneficial for complex biological environments, 

hindering bacterial growth whilst keeping the stem cell adhesion, growth and proliferation at as-

received levels. For the NiTi alloy it has also been shown that laser micro-welding is likely to give rise 

to a surface which would release less Ni into a biological environment, making it less toxic and more 

biomimetic.     

With specific regard to stem cells, it has been shown that the use of a CO2 laser for surface 

engineering of polyamide 6,6 can give rise to an enhanced stem cell growth, giving an increase of 

35% in viable cell count compared to the as-received sample. What is more, through fiber laser 

autogenous welding of NiTi alloy, it has been shown that the stem cell adhesion, growth and 

proliferation can be enhanced by increasing both the percentage cell coverage and viable cell count. 

This is significant as it shows that laser micro-welding could be implemented in the manufacture of 

biological implants whilst enhancing the biomimetic nature of the material at the same time.  
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