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Orthogonal or Superimposed Pilots?
A Rate-Efficient Channel Estimation Strategy for

Stationary MIMO Fading Channels
A. Taufiq Asyhari, Member, IEEE, and Stephan ten Brink, Senior Member, IEEE

Abstract— This paper considers channel estimation for
multiple-input multiple-output (MIMO) channels and revisits two
competing concepts of including training data into the transmit
signal, namely, orthogonal pilot (OP) that periodically transmits
alternating pilot-data symbols, and superimposed pilot (SP)
that overlays pilot-data symbols over time. We investigate rates
achievable by both schemes when the channel undergoes time-
selective bandlimited fading and analyze their behaviors with
respect to the MIMO dimension and fading speed. By incor-
porating the multiple-antenna factors, we demonstrate that the
widely known trend in which the OP is superior to the SP in the
regimes of high signal-to-noise ratio (SNR) and slow fading, and
vice versa, does not hold in general. As the number of transmit
antennas (nt ) increases, the range of operable fading speeds for
the OP is significantly narrowed due to limited time resources for
channel estimation and insufficient fading samples, which results
in the SP being competitive in wider speed and SNR ranges.
For a sufficiently small nt , we demonstrate that as the fading
variation becomes slower, the estimation quality for the SP can
be superior to that for the OP. In this case, the SP outperforms
the OP in the slow-fading regime due to full utilization of time
for data transmission.

Index Terms— Achievable rates, Doppler frequency, general-
ized mutual information, MIMO, multiple antennas, orthogonal
pilots, pilot-aided channel estimation, superimposed pilots.

I. INTRODUCTION

ESTIMATING channel state information (CSI) is indis-
pensable for multiple-input multiple-output (MIMO)

wireless communication systems to facilitate reliable transmis-
sion. This task can be accomplished using observations from
known training sequences (also referred to as pilots [2], [3]),
received data symbols (blind methods [4]) or a combination
of both (semi-blind methods [4]). Although each method has
its own merits, pilot-aided channel estimation has arguably
been the widely used technique in most wireless standards
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(see [5]–[7]), which is likely due to the ability of provid-
ing satisfactory estimates at a low complexity under various
channel models.

In this paper, we study pilot-aided channel estimation in
stationary MIMO fading channels and investigate the effects
of fading dynamics to the effective selection of emitted pilot
patterns. More specifically, we focus our attention to two
competing approaches for transmitting pilots. The first and
possibly the most popular approach is orthogonal pilot (OP)
transmission as considered in [8]–[10], where several time
instants are exclusively reserved for transmitting pilots and
no data transmission is permitted at those reserved slots.
The second approach is superimposed pilot (SP) transmission,
where pilot symbols are transmitted at the same time instants
as the data symbols [3], [11].

A. Previous Works

Most works on pilot-aided channel estimation focused
on the signal processing aspects such as mean-squared
error (MSE) and bit-error rate (BER) [2], [3], [12]. An earlier
work by Cavers [2] underlined the advantage of the OP by
showing that despite a loss due to exclusive transmission of
pilots, the OP is able to produce a reliable channel estimate
at sufficiently high signal-to-noise ratio (SNR), which in turn
provides a reasonably good BER performance. Hoeher and
Tufvesson [3] demonstrated that the loss in the OP scheme
may be significant in fast fading channels due to frequent
emittance of pilots and thus suggested that the SP scheme
may have a competitive advantage. This insight is further
confirmed by Dong et al. [12]. Assuming a Gauss-Markov
fading process, they showed that in terms of MSE and BER,
superimposed pilots can outperform orthogonal pilots for fast-
fading channels and/or low SNR [12]. A more comprehensive
survey on those works and related studies can be found in [13].

Fundamental insights on pilot-aided channel estimation can
be deduced from information-theoretic studies. Most previous
studies such as [14], [15], and [9], [10], [16] focused on the
information-theoretic analysis of the OP scheme. It has been
shown in [10] and [16] that the OP scheme is an attractive
choice in the high SNR regime as it achieves the same or
nearly the same rate growth as the channel capacity in this
regime. At low SNR, it seems clear that relying on orthogonal
pilots for channel estimation may not achieve near-capacity
performance [10].

Systematic information-theoretic comparisons on the OP
and SP schemes were considered by Coldrey and Bohlin [17]
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and Wang et al. [18]. In those works, the authors consid-
ered a block-fading channel where highly correlated fading
coefficients in several adjacent symbols are assumed to be
constant and lowly correlated fading coefficients are assumed
to be independent. Such block-fading simplifications allow the
authors to derive a lower bound to the instantaneous mutual
information. By comparing the lower bound for both schemes,
they showed that the OP performs better at high SNR while
the SP is superior at low SNR.

The high-SNR superiority of the OP due to spatial multi-
plexing gain is subject to question in the context of the recent
interests in large-scale MIMO systems. Largely based on the
block-fading channel, references [19] and [20] highlighted
the significant dimension cost of channel estimation if the
orthogonality of pilots is to be maintained across users and
cells. It is therefore intuitive that the MIMO dimension plays
an important role in the performance comparison between the
OP and SP, and its interplay with the fading dynamics deserves
a close investigation.

Block-fading channels used in the existing studies of the
OP [19]–[21] as well as rate comparisons between the OP
and SP [17], [18] oversimplify modeling the fading dynamics,
by underestimating the dependency among the blocks. This
model inherently facilitates channel estimation from channel
outputs within a block and thus cannot fully capture the effects
of time-correlation of the fading.

B. Contributions of Our Work

In this work we exclude the block-fading simplifications and
precisely specify the fading memory from symbols to symbols
in the analysis as a basis for computing the information rates.
More specifically, we focus on a stationary ergodic fading
process where the fading dynamics is characterized by a ban-
dlimited power spectral density (PSD). While such a model has
been well studied for the OP (see [9], [10], [14]–[16]), limited
efforts have been devoted to investigate—from the reliable
transmission rate perspective—the same channel model for
the SP. One of these few efforts is our preliminary work [1],
which provides systematic information-theoretic comparisons
between the OP and SP, and demonstrates some similar trends
(with respect to the SNR and fading variation) to those
observed in the signal-processing results [3], [12]. A main
limitation of all these works is the fact that the training period
of the OP is always restricted to the inverse of twice the fading
bandwidth (proportional to the coherence time [22]) and thus
limited insights can be drawn from the comparisons.

Building upon all of these existing results, we remove
the restriction on the training period of the OP and analyze
transmission rates achievable by the OP and SP schemes for
any ranges of SNR and fading bandwidth. Removing this
restriction allows for more comprehensive understanding of
the rate behavior at fast fading where the mobility of devices
leads to channel variation that is faster than the training period.
By utilizing the framework of generalized mutual informa-
tion (GMI) [23] for stationary MIMO fading channels, we
underline that the desirable feature of the OP is interference-
free fading observation whereas the strengths of the SP are
given by having not only full utilization of time instants for

data transmission, but also more fading observations (i.e., the
observation gain) than the OP for channel estimation.

Our in-depth analysis reveals the following new
insights. While interference-free fading observation in the
OP facilitates a very accurate fading estimate at high
SNR—which in turn leads to a high-SNR logarithmic growth
of the rate with appropriate scaling due to multiple antennas
as reported in [24] and [16]—, such a rate behavior holds
true only if sufficient fading samples can be retained. This
sufficiency cannot always be guaranteed in bandlimited MIMO
channels because, e.g., fading varies faster than the frequency
of the pilot emittance or the MIMO dimension is too large to
estimate (i.e., the training period is too short to accommodate
training for a large number of transmit antennas). Therefore, in
addition to its already-known low-SNR superiority [17], [18],
the SP with its efficient time-utilization for transmitting data
can also be superior to the OP when the latter cannot
maintain enough fading samples. We further demonstrate
the inherent attribute of observation gain that reveals a new
superiority regime for the SP. For a small transmit dimension,
the observation gain enables the SP to produce a reliable
fading estimate in the slow-fading regime, which, coupled
with efficient time-utilization, makes it superior to the OP in
terms of rates.

These new insights provide more comprehensive under-
standing on the complex interplay among achievable rates,
MIMO dimension and fading bandwidth in determining the
choice between the OP and SP. Moreover, they can unlock
the potentials of the SP in assisting data communication
using MIMO technology. Some numerical results exemplify
the superiority of the SP in slow-fading single-input multiple-
output (SIMO) channels (scenarios of slow mobility: static
to typical walking speeds in mobile communications), fast-
fading MIMO channels (scenarios of fast mobility: typical
train speeds) and across a wide range of the SNR at a suf-
ficiently fast fading variation. Those new insights and results
constitute a more complete picture of the rate behaviors in
time-varying wireless channels than the existing understand-
ing of the SP’s low-SNR and fast-fading superiority for the
block-fading [17], [18].

The rest of the paper is organized as follows. Section II
describes our channel model. Section III describes the OP
scheme and its corresponding achievable rate. Section IV
explains the SP scheme alongside its achievable rate.
Section V specifically compares the two schemes using a
rectangular fading PSD to reveal some important design
parameters of the schemes. Section VI provides concluding
remarks on the main contribution of the paper.

II. CHANNEL MODEL

We consider a discrete-time MIMO channel with nt transmit
antennas and nr receive antennas. For a given time-k nt-
dimensional channel input vector Xk = xk , the channel output
at time instant k is given by

Y k = √
SNR Hk xk + Zk . (1)
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Fig. 1. System model that captures insertion of orthogonal and superimposed pilots.

The channel input Xk is assumed to satisfy the two constraints

lim
n→∞

1

n

n∑

k=1

E
[
‖Xk‖2

]
= 1, (2)

Pr
{
|Xk(t)|2 > ρth

}
≤ e−ρth , ρth ≥ 1 (3)

for all t = 1, . . . , nt , where Xk(t) denotes the channel
input symbol transmitted from the t-th transmit antenna. The
constraint (2) corresponds to average power constraint, which
is commonly used in the analysis of fading channels. The
constraint (3) is applied to limit the peakiness of the input
signals with parameter ρth.1

The fading process {Hk, k ∈ Z} consists of nt · nr inde-
pendent and identically distributed (i.i.d.) processes {Hk(r, t),
k ∈ Z}, r = 1, . . . , nr , t = 1, . . . , nt . Each {Hk(r, t),
k ∈ Z} has a bandlimited PSD fH (λ), −1/2 ≤ λ ≤ 1/2,
with bandwidth λD < 1/2. The fading PSD is related to the
autocorrelation function AH (·) as

AH (m) � E
[
Hk+m(r, t)H ∗

k (r, t)
] =

∫ 1/2

−1/2
eı2πmλ fH (λ)dλ.

(4)

The noise {Zk, k ∈ Z} is a sequence of i.i.d. nr-variate
Gaussian with zero mean and identity covariance matrix. This
noise assumption and equation (2) imply that the average
SNR per receive antenna is given by SNR. We assume that
{Hk, k ∈ Z} and {Zk, k ∈ Z} are independent and that their
joint law does not depends on {xk, k ∈ Z}.

In this work, we focus on the multiplexing transmission
mode of the multiple-antenna systems where independent data
streams can be spatially multiplexed over the MIMO channel.
Depending on the design of pilot transmission, the channel
input vector xk, k ∈ Z can represent either a data vector
or a pilot vector or a combination of both. A data vector,
which is an element of a codeword, is used to convey a
message whereas a pilot vector is used to facilitate channel
estimation. Suppose that M = {1, . . . , M} is the set of all
possible messages. The time-k data vector conveying message
m, i.e., x̄k(m), is an element of the length-n codeword
x̄1(m), . . . , x̄n(m). Note that the codeword is drawn i.i.d. from
an nt-variate zero-mean complex Gaussian distribution. On the
other hand, a pilot vector consists of training symbols that are

1The role of the constraint in (3) is restricting the peakiness of deterministic
signals (such as pilot symbols), but at the same time allowing the use of
widely-used Gaussian constellations in the rate analysis.

known at the receiver in order to extract the information about
the channel. A transmission rate (in nats per channel use) is
defined by

R � log M
n

(5)

and is said to be achievable if the probability of decoding
error tends to zero as the codeword length n tends to infinity.
Clearly, such an achievable rate depends on how reliable the
transmission scheme is. In this work, we consider analysis of
achievable rates for the two transmission schemes, namely the
OP scheme in Section III and the SP scheme in Section IV.

III. ORTHOGONAL PILOT (OP) SCHEME

A. Transmission Scheme

For the OP scheme as illustrated in Fig. 1, data and pilot
symbols are transmitted at different time instants. The data
vector comes from the codeword x̄1, . . . , x̄n , whose entries
are drawn i.i.d. from nt-variate Gaussian random vectors with
zero mean and covariance matrix ρd

nt
Int . Herein ρdSNR is the

average data SNR. Pilot symbols are periodically emitted every
L time instants for channel training. Herein the interval L is
also known as (a.k.a.) the training period. In order to estimate
fading coefficients from nt transmit antennas for the OP
scheme, we require any set of nt orthogonal pilot vectors to
ensure sufficient channel observations. Due to its favorable
performance in terms of channel estimation error as reported
in [24, Sec. VI] and [10], we particularly adopt the pilot
orthogonality in the space/time domain, i.e., by allowing only
a single transmit antenna to emit a pilot symbol at a given time
instant. This approach implies that a pilot vector to estimate
fading from transmit antenna t , t ∈ {1, . . . , nt}, is given by pk ,
where pk(t) = √

ρp and pk(t ′) = 0 for t ′ �= t , k ∈ P .
Herein ρp is the fraction of power allocated to pilot symbols
and P denotes the set of time indices for pilot transmission.
To estimate a complete entries of fading matrix Hk , nt pilot
vectors p1, . . . , pnt

are thus required to be transmitted.
In terms of power fractions ρp and ρd , the average power

constraint (2) can be re-written as

ρp
nt

L
+ ρd

(
1 − nt

L

)
= 1. (6)

Both ρp and ρd also have to satisfy the peakiness
constraint (3), which can be expressed as

ρp ≤ ρth, and ρd ≤ nt. (7)
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At the receiver, a decoder consisting of a channel estimator
and a data detector is considered. Let D denotes the set of time
indices for data transmission. The channel estimator considers
the output Y k, k ∈ P to obtain a channel estimate for a
transmit-receive antenna pair (r, t) as

Ĥo,k(r, t) =
∑

k′∈P

ak,k′(r, t)Yk′ (r), k ∈ D (8)

where subscript o indicates results with orthogonal pilots. The
channel estimation error is defined by the difference between
the actual fading and its corresponding estimate, i.e.,

Eo,k(r, t) = Hk(r, t) − Ĥo,k(r, t). (9)

On the right-hand side (RHS) of (8), the linear coefficients
ak′(r, t) are chosen to minimize the mean-squared channel esti-
mation error. Such an estimator is commonly known as linear
minimum mean-squared error (LMMSE) estimator. When the
fading Hk(r, t) is Gaussian, the LMMSE estimator achieves
the globally minimum mean-squared error (MMSE) [25].

Due to stationary assumption on the fading, it can be shown
that irrespective of r and k, the mean-squared error (MSE) for
the channel estimator (8), namely

ε2
o,k(r, t) = E

[∣∣∣Hk(r, t) − Ĥo,k(r, t)
∣∣∣
2
]

, (10)

admits a general expression [9], [26]

ε2
o,�(r, t) = 1 −

∫ 1/2

−1/2

SNR | f�−t+1(λ)|2
SNR f0(λ) + 1

dλ (11)

where � � k mod L denotes the remainder of k/L. Here f�(·)
is given by

f�(λ) � 1

L

L−1∑

ν=0

f̄H

(
λ − ν

L

)
eı2π� λ−ν

L , � = 0, . . . , L − 1

(12)

and f̄H (·) is the periodic function of period [−1/2, 1/2) that
coincides with fH (λ) for −1/2 ≤ λ ≤ 1/2.

Once the fading estimates {Ĥo,k, k ∈ D} (which consist
of matrix entries {Ĥo,k(r, t), k ∈ D}) are obtained, the
channel estimator forwards them to the data detector. Based
on the realizations of channel outputs { yk, k ∈ D} and
fading estimates {Ĥo,k, k ∈ D}, the data detector outputs the
message m̂ using a nearest neighbor decoding rule

m̂ = arg min
m∈M

∑

k∈D

∥∥∥yk − √
SNR Ĥo,k x̄k(m)

∥∥∥
2
. (13)

B. Achievable Rate

Based on the channel model in Section II, we analyze the
achievable rate for the scheme in Section III-A using the
GMI [23]. Under a fixed decoding rule, the GMI character-
izes the largest transmission rate below which the ensemble-
average error probability of i.i.d. Gaussian codebooks vanishes
as the codeword length increases.

For a communication scheme that utilizes OP-aided channel
estimation and nearest neighbor decoding, the achievable rate
has been partly derived in [16] when the training period

is constrained to L ≤ 1
2λD

(a.k.a. no-aliasing condition).
The following proposition generalizes the result in [16] by
removing the constraint L ≤ 1

2λD
.

Proposition 1: Consider the communication scheme
in Section III-A. Nearest neighbor decoding together with
OP-aided channel estimation achieves a rate

Ro = 1

L

L−1∑

�=nt

E

[
log2 det

(
Inr + ρdSNR

nt + ρdSNR ε2
o,∗

Ĥo,�Ĥ
†
o,�

)]

(14)

where Ĥo,� is a channel estimate matrix whose (r, t)-th entry
is given by (8), ε2

o,∗ is defined by

ε2
o,∗ = max

�∈{nt,...,L−1}

nt∑

t=1

ε2
o,�(r, t) (15)

and the MSE ε2
o,�(r, t) has been given in (11). Subject to the

constraints in (6) and (7), Ro can be further optimized over
the values of ρd and ρp .

Proof: See Appendix A-A.
The main aim of OP-aided channel estimation is to produce

a good quality of estimates as measured by a small value
of ε2

o,∗ in (15). Two basic principles underpin the OP scheme:

• Interference-free fading samples (apart from the back-
ground noise) by placing pilot symbols orthogonally from
one another and from data symbols;

• Sufficient fading samples by frequent emittance of pilot
symbols as reflected by the training interval L.

In achieving this aim, however, inevitable rate-loss occurs
due to exclusive transmission of pilot symbols (i.e., over nt
time instants per training interval) that effectively reduces time
instants for data transmission. As captured by Proposition 1,
this rate-loss (a.k.a. the dimension cost of the OP scheme)
linearly scales with nt , the transmit dimension of the MIMO
channel.

The severity of the rate-loss in the OP scheme is further
determined by the length of the training interval L. The larger
the value of L, the smaller the rate-loss we incur. Depending
on how large L with respect to the inverse of twice the Doppler
bandwidth, two distinct behaviors of Ro can be observed.

1) No-Aliasing Case, L ≤ 1
2λD

: This is a common restric-
tion to satisfy sufficiency of fading samples in order to produce
reliable estimates [9], [27]. More specifically, if L ≤ 1

2λD
holds, then the MSE (11) is identical for all �, r, t (the estima-
tion error becomes wide-sense stationary) and the achievable
rate (14) can simply be expressed as [16], [24]

Ro = L − nt

L
E
[
log2 det

(
Inr + SNRoefH̃oH̃

†
o

)]
(16)

where H̃o � Ĥo,1
1−ε2

o,∗/nt
has unit variance entries, and

SNRoef �
ρdSNR

(
1 − ε2

o,∗/nt
)

nt + ρdSNR ε2
o,∗

, (17)

ε2
o,∗ = nt ×

(
1 −

∫ 1/2

−1/2

ρpSNR[ fH (λ)]2

ρpSNR fH (λ) + L
dλ

)
. (18)
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No-aliasing ensures that at high SNR, the MSE (18) vanishes
as O(SNR−1) and the rate Ro grows logarithmically with SNR
as captured by [16]

Ro ≈
[
1 − nt

L

]
min (nt, nr) log2 SNR. (19)

This approximation shows that reliable estimates Ĥo,� due to
vanishing MSE in the OP scheme has brought out the coherent
MIMO multiplexing gain [28] of min(nt, nr). Consequently,
the effective multiplexing gain is the coherent MIMO mul-
tiplexing gain linearly scaled by a pre-factor of (1 − nt/L),
which is the fraction of time for data transmission.

2) Aliasing Case, L > 1
2λD

: As the mobile terminals can
move at a very high speed, aliasing may be unavoidable, which
results in insufficient fading samples. Under this condition, the
MSE (11) can be lower-bounded by [26]

ε2
o,�(r, t) ≥

2
[
1 − cos

(
2π[�−t+1]

L

)]

L2

×
∫ 1/2

−1/2

ρpSNR f̄H
(

λ
L

)
f̄H
(

λ−1
L

)

ρpSNR f0(λ) + 1
dλ (20)

where we have recalled f̄H (λ) as the periodic function in (12).
Due to overlapping of f̄H

(
λ
L

)
and f̄H

(
λ−1

L

)
within the

interval of λ ∈ [−1/2, 1/2), it can be shown that the RHS
of (20) is bounded away from zero. As such, the channel
estimates are no longer reliable, which result in a bounded
rate Ro at high SNR.

In order to fully operate within no aliasing boundary,
existing works (see [9], [14]–[16]) commonly employed the
OP with adaptive L (OPAL) where L is a function of Doppler
bandwidth, given by L = L∗ = 
1/(2λD)�. This choice of L∗
is well-founded from the perspectives of maximizing Ro under
no aliasing constraint [9], achieving the best known multi-
plexing gain of noncoherent MIMO channels [16], [22], [29]
and providing foundation for a widely-celebrated block-fading
model [10], [24], [30]. However, it seems to be agreed that the
desirable attributes of the OPAL can only be realized at high
SNR and a conservative range of antenna sizes. Specifically,
the vanishing MSE of O(SNR−1) at high SNR would be
less beneficial at low SNR. Furthermore, the dependency of
L∗ = 
1/(2λD)� limits the supported MIMO dimension.
As captured by (19), i.e., if nt > 1/(2λD), then the OPAL
cannot achieve any positive Ro as the training period cannot
support complete channel estimation. This is problematic when
aiming to reap the MIMO gain min(nt, nr) using massive
transmit and receive antennas.

In some wireless standards, the OP with a fixed L (OPFL)
is preferred and intended to operate for a wide-range of mobile
speeds [31], [32]. In this case, the number of transmit antennas
may no longer be limited by the fading speed, but at the same
time, aliasing may occur. A smaller value of L leads to a wider
no-aliasing range of λD at the expense of a larger linear rate
loss that is proportional to 1 − nt/L, and vice-versa.

IV. SUPERIMPOSED PILOT (SP) SCHEME

A. Transmission Scheme

For the SP scheme as illustrated in Fig. 1, pilot symbols are
transmitted at the same time instant as data symbols, i.e., the
channel input vector at time k is given by

xk = p + x̄k, k ∈ Z (21)

where we have recalled x̄k as the time-k data vector and
p denotes the pilot vector that superimposes data symbols.
For simplicity, we assume that the pilot vector p is time-
invariant and its entries are identical for all transmit antennas
and given by p(t) =

√
�p
nt

, t ∈ {1, . . . , nt}. The data vectors
x̄1, . . . , x̄n are drawn i.i.d. from nt-variate complex Gaussian
distribution with zero mean and covariance matrix �d

nt
Int .

We recall that the channel input vector xk satisfies the average
power constraint (2), under which the pilot power fraction �p

and data power fraction �d need to satisfy

�p + �d = 1. (22)

The peakiness constraint (3) is automatically satisfied as
�p ≤ 1 and �d ≤ 1 to validate (22).

Similarly to the OP scheme, at the receiver we employ a
decoder that performs separate channel estimation and data
detection. Note that for superimposed pilots, the sets of time
indices for pilot transmission (P ) and for data transmission (D)
coincide, i.e., P = D. Due to the stationarity of the fading
channel, the channel input and the additive noise, the time-k
channel estimate Ĥs,k can justifiably be implemented by a time
invariant function of the observation, i.e.,

Ĥs,k = f ({ yk′ }k′∈P ) (23)

where subscript s denotes any result with superimposed pilots.
The optimal function on the RHS of (23) that minimizes the
MSE—defined by E[‖Hk − Ĥs,k‖2]—is given by

Ĥs,k = E
[
Hk|{Y k′ = yk′ , k ′ ∈ P}] . (24)

Evaluating the expectation in (24) is not only intractable due
to data interference in the observation Y k′ for all k ′ ∈ P , but
also leading to undesirable characteristics (such as correlation
among the channel estimate Ĥs,k , data X̄k and noise Zk) for
mutual information and achievable rate evaluation (see the dis-
cussion in Appendix A-B and also in [33] and [34]). In order to
circumvent those difficulties, we consider a suboptimal linear
channel estimator that instead of considering observations at
all k ′ ∈ P , only takes into account those at k + 2k ′ − 1
for k ′ ∈ P . More specifically, assuming the large codeword
length (n → ∞) for the achievable rate analysis, the channel
estimator produces a time-k channel estimate for a transmit-
receive antenna pair (r, t) as2

Ĥs,k(r, t) =
∞∑

k′=−∞
bk′(r, t)Yk+2k′−1(r), (25)

2A more precise analysis follows a similar treatment for orthogonal
pilots [16], [35], which uses guard bands of size T before and after the main
transmission block where T scales with n but at a sub-linear growth. The
interpolator to produce fading estimates can then be defined over a window
of 2T superimposed pilots. As n → ∞, we recover the interpolator in (25).
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where the coefficients bk′(r, t) are chosen to minimize the
following scalar MSE

E
[
|Es,k(r, t)|2

]
= E

[
|Hk(r, t) − Ĥs,k(r, t)|2

]
. (26)

We refer to the estimator (25) as a single-gap linear interpola-
tor, motivated by the fact that consecutive observation timings,
e.g., k +2k ′−1 and k +2(k ′+1)−1, are separated by a single
time instant to ensure no correlation among the time-k triplet
(Ĥs,k, X̄k, Zk). Note that for each (r, t), the estimation suffers
from extra interferences (in addition to additive noise) due to
data symbols and pilot symbols from t ′ �= t (i.e., inter-antenna
pilot interference).

As derived in Appendix B, the minimum MSE defined
by (26) admits the following expression

ε2
s,k(r, t) = 1 −

∫ 1/2

−1/2

�pSNR | f1(λ)|2
nt�pSNR f0(λ) + nt�dSNR + nt

dλ

(27)

where fl(λ), l = 0, 1 is given by

fl(λ) = 1

2

1∑

ν=0

f̄H

(
λ − ν

2

)
eı2πl λ−ν

2 . (28)

The expression on the RHS of (27) captures contributing
factors that determine the accuracy of channel estimation,
i.e., the PSD function, the data power �dSNR, the pilot power
�pSNR, the number of transmit antennas nt and the additive
noise.

Upon obtaining the fading estimates {Ĥs,k = Ĥs,k, k ∈ Z},
where the (r, t)-th entry of Ĥs,k is given by (25), the channel
estimator feeds them to the data detector, which will then
employ a nearest neighbor decoding rule to decide the message
output. The decoding rule considers the realizations of channel
outputs yk , fading estimates Ĥs,k and the pilot vector p to
select the message m̂ such that

m̂ = arg min
m∈M

∑

k∈Z

∥∥∥yk − √
SNR Ĥs,k (x̄k(m) + p)

∥∥∥
2
. (29)

B. Achievable Rate

To analyze the achievable rate for the SP scheme, we
compute the GMI corresponding to the setup in Section IV-A.
The resulting achievable rate is given in the following.

Proposition 2: Consider the communication scheme
in Section IV-A with the channel estimate matrix Ĥs,k .
Nearest neighbor decoding with SP-aided channel estimation
achieves a rate

Rs = E
[
log2 det

(
Inr + SNRsefH̃sH̃

†
s

)]
(30)

where H̃s is the normalized channel estimate

matrix H̃s � Ĥs,k

1−ε2
s

with zero-mean unit-variance entries,
and

SNRsef � �dSNR(1 − ε2
s )

nt + ntSNR ε2
s

, (31)

with the MSE ε2
s equal to the RHS of (27), i.e,

ε2
s = 1 −

∫ 1/2

−1/2

�pSNR | f1(λ)|2
nt�pSNR f0(λ) + nt�dSNR + nt

dλ. (32)

The rate Rs can be further optimized over the values of
�d and �p subject to the constraint (22).

Proof: See Appendix A-B.
The main attribute of the SP scheme is full utilization of

time instants for both data and pilot symbols. This ensures
that the pre-factor of log2(·) in (30) is unity and the MIMO
transmit dimension nt is not restricted by the frequency of pilot
emittance. At the same time, however, the resulting channel
estimate is less reliable due to data and inter-antenna pilot
interference—in addition to the receiver noise—as illustrated
in Fig. 1 and from the MSE (32), i.e., equation (33), as shown
at the top of the next page.

Although multiple transmit and receive antennas shall offer
the benefit of multiplexing gain at a sufficiently high SNR
(see [28], [36]), such a benefit does not seem to materialize
for the SP rate Rs due to unfavorable scaling of SNRsef with
transmit dimension nt . By analyzing (31) and (32), we can
see that increasing nt → ∞ yields nt + ntSNRε2

s → ∞ and
1 − ε2

s ↓ 0, which in turn lead to SNRsef ↓ 0 and Rs ↓ 0.
To verify that the MIMO multiplexing gain is in fact not
attainable, we show in the following that Rs is bounded
at high SNR. Since the partial derivatives of SNRsef with
respect to �p and �p are both non-negative, SNRsef is a non-
decreasing function of �p and �d . For a scheme with power
constraint (22), namely �p +�d = 1, we can then upper-bound
Rs by setting �p = �d = 1 to the RHS of (31) to yield

Rs ≤ E

[
log2 det

(
Inr + SNR · (1 − g1) · H̃sH̃

†
s

nt + ntSNR · g1

)]
(34)

� E
[

Q(SNR, H̃s)
]
.

where g1 = 1 − ∫ 1/2
−1/2

SNR| f1(λ)|2
ntSNR f0(λ)+ntSNR+nt

dλ. For a given

H̃s = H̃s, the function SNR �→ Q(SNR, H̃s) is monoto-
nously non-decreasing in SNR [36]. Therefore, applying the
Monotone Convergence Theorem [37, Th. 1.26] yields

lim
SNR→∞

Rs ≤ E
[

lim
SNR→∞

Q(SNR, H̃s)

]
(35)

= E
[
log2 det

(
Inr + g2 · H̃sH̃

†
s

)]
(36)

where g2 =
∫ 1/2
−1/2

| f1(λ)|2
nt f0(λ)+nt

dλ

nt

(∫ 1/2
−1/2

nt [ f0(λ)]2−| f1(λ)|2+nt f0(λ)
nt f0(λ)+nt

dλ

) is SNR-

independent, which implies that Rs is bounded and its multi-
plexing gain is strictly zero. This is valid irrespective of λD .

While the SP scheme seems unattractive at high SNR due
to more noisy channel estimates, the absence of linear rate-
loss in the expression (30) can be its desirable attribute at
low SNR where any channel estimator will likely produce
unreliable estimates. In terms of the single-gap linear estimator
for stationary fading channels (25), the benefit of the SP
scheme is further strengthen by the fact that the estimator
has approximately L/2 times more observations than that of
the OP scheme. Such a benefit can be referred to as the
observation gain. We can deduce the significance of this gain
to compensate more noisy observations, by comparing the
mean-squared errors (MSEs) ε2

o,�(r, t) and ε2
s,k(r, t) for nt = 1



2782 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 16, NO. 5, MAY 2017

ε2
s = 1 −

∫ 1/2

−1/2

�p
nt

SNR | f1(λ)|2 dλ

�p
nt

SNR f0(λ) + (nt − 1)
�p

nt
SNR f0(λ)

︸ ︷︷ ︸
inter-antenna pilot interference

+ �dSNR + 1︸ ︷︷ ︸
data symbols

plus noise

(33)

and 2 ≤ L ≤ 1/2λD , i.e.,

ε2
o,�(r, 1) = 1 −

∫ 1/2

−1/2

ρpSNR[ fH (λ)]2

ρpSNR fH (λ) + L
dλ, (37)

ε2
s,k(r, 1) = 1 −

∫ 1/2

−1/2

�pSNR [ fH (λ)]2

�pSNR fH (λ) + 2(�dSNR + 1)
dλ.

(38)

Assuming �p does not significantly differ from ρp , the denom-
inators in the integrands of (37) and (38) indicate that the
competitive advantage offered by the SP can be measured by
the ratio

η = 2�dSNR + 1

L
. (39)

If η < 1, then the SP provides a cleaner channel estimate
than the OP and vice-versa. Therefore, we can clearly see
justification of the superiority of the SP at low SNR for L ≥ 2.
Contradictorily, at high SNR with �d > 0, we have η � 1
and the OP definitely produces a better quality of channel
estimates. The ratio η may also depend on λD when the
OPAL is employed. By replacing L on the RHS of (39) with
L∗ = 
1/(2λD)�, we see that as λD ↓ 0, η will eventually
be less than one, which further implies that the SP can be
superior at a sufficiently slow fading speed.

Note that aliasing for the SP only occurs at an extremely
fast fading speed, i.e., λD > 1/4, due to the single-gap
interpolator (25) that undersamples the fading process by a
factor of two. Unlike the OP in Section III, however, aliasing
or non-aliasing condition does not seem to drastically change
the behavior of Rs at both high and low SNR. The Rs
expression (30) is valid for any λD and the channel estimation
error {Hk − Ĥs,k}k remains a wide-sense stationary process,
irrespective of whether aliasing occurs (see Appendix B).

V. ANALYSIS AND RESULTS FOR

RECTANGULAR FADING PSD

In this section we give a specific analysis on the behavior of
the rates Ro and Rs under a fading process with a rectangular
PSD (a.k.a. ideal low-pass filter Doppler spectrum [9]), i.e.,

fH (λ) =
{

1
2λD

, |λ| ≤ λD

0, otherwise.
(40)

This PSD simplifies numerical computations of Ro and Rs for
any λD ∈ [0, 1/2], which are based on the channel estimators
in (8) and (25), respectively.

A. Optimizing Ro and Rs in the Case of no Aliasing

Recall from Sections III and IV that for the two pilot-aided
schemes, the pilot and data power fractions are optimized

subject to the constraints (2) and (3). In the case of no aliasing,
the values of (ρd , ρp) that maximize Ro and the values of
(�d , �p) that maximize Rs can be analytically determined as
follows.

The OP scheme is aliasing-free whenever L ≤ 1
2λD

. In such
a case, the MSE ε2

o,�(r, t) in (11) and the effective SNRoef
in (17) with fH (λ) in (40) can be expressed as

ε2
o,�(r, t) = 2λD L

ρpSNR + 2λD L
, (41)

SNRoef =
ρdSNR · ρpSNR

ρpSNR+2λD L

nt + ρdSNR nt · 2λD L
ρpSNR+2λD L

. (42)

Based on (16), the values of (ρd , ρp) satisfying the two
constraints (6) and (7) that maximize SNRoef also maximize
Ro due to the monotonicity of log2 det(·) function. Since the
partial derivatives of SNRoef with respect to ρp and ρd are
non-negative, SNRoef is a non-decreasing function of each
individual ρp and ρd . Thus, in the case of the peakiness
constraint (7) only without the average constraint (6), we have
the optimal values of ρp = ρth and ρd = nt . Combining this
result with the optimal power fractions under the average con-
straint (6) given in [9], [24], we obtain the optimal ρp and ρd

satisfying both (6) and (7) as

ρ∗
p = min

⎧
⎨

⎩ρth,
L

nt
·
√

1 − SNR·(L−nt−2λD Lnt)
(L−nt)·(SNR+2λDnt)

1 +
√

1 − SNR·(L−nt−2λD Lnt)
(L−nt)·(SNR+2λDnt)

⎫
⎬

⎭ , (43)

ρ∗
d = min

⎧
⎨

⎩nt,
L

L − nt
· 1

1 +
√

1 − SNR·(L−nt−2λD Lnt)
(L−nt)·(SNR+2λDnt)

⎫
⎬

⎭ .

(44)

The SP scheme has a wider margin of λD that is free from
aliasing than the OP scheme, i.e., λD ≤ 1/4. In this case, the
integral in the MSE expression (27) for rectangular PSD (40)
can be analytically evaluated to yield

ε2
s = ε2

s,k(r, t)

= (nt − 1)�pSNR + 4λD(nt�dSNR + nt)

nt�pSNR + 4λD(nt�dSNR + nt)
, (45)

SNRsef = �dSNR(1 − ε2
s )

nt + ntSNR ε2
s

. (46)

Similarly to the OP scheme, it suffices to find the values
of �p and �d that maximize SNRef in order to optimize Rs.
By substituting �p = 1 − �d according to the constraint (22),
and subsequently deriving SNRsef with respect to �d and
equating to zero as a standard convex optimization approach,
it can be shown that the optimal values of (�d , �p) that
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maximize (46) are given by

�d = 1
√

1 + 4λDnt 2SNR2+4λDnt 2SNR−nt 2SNR−ntSNR2(nt−1)

4λDnt
2+4λDnt

2SNR+nt
2SNR+ntSNR2(nt−1)

+ 1

,

(47)

�p = 1 − �d . (48)

At high SNR, the optimal �d and �p generally depend on
both nt and λD . Interestingly, as the SNR tends to zero, the
transmit power has to be equally divided for both data and
pilot symbols, i.e., �d = �p = 1/2 for optimal performance.

Remark that from the practical perspectives, the Doppler
bandwidth λD in the PSD (40) can be associated with the
speed of the mobile device, carrier frequency ( fc) and the
coherence bandwidth of the channel (Wc) [22]. For a given
fc and Wc, λD is directly proportional to the mobile speed.
In the following comparisons, we thus associate slow-fading
with slow mobility (static to typical walking speeds) and fast-
fading with fast mobility (typical bullet train speeds).

B. Behaviors of Channel Estimation Errors and Rates

In the following we have a closer look on the channel
estimation errors and rates for the OP and SP schemes.
We show the non-trivial dependency of those performance
metrics with the transmit dimension and highlight that the
existing trend drawn from existing works [3], [12], i.e.,
fast- (slow-) fading superiority of the SP (OP), is only
a special case of this work. Note from Section III-B
that two possible types of OP can be designed based on
specification of the training interval L. The first one, which
is common in the literature, is the OPAL where L is adapted
according to L = L∗ = 
1/(2λD)� in order to avoid spectrum
aliasing. The second one, which is more desirable in some
wireless standards, is the OPFL where L is fixed to a constant
and intended to operate under a diverse range of λD . For
example, in [31], [32], L is chosen to be L = 7 that guarantees
no aliasing for the OPFL up to λD = 0.07. This approximates
to the vehicle speed of 150 km/h when the delay spread
is 20 μs and fc = 5 GHz, following from the calculation
in [22].

Based on the aliasing-free MSE expressions ε2
o,�(r, t)

in (41) and ε2
s,k(r, t) in (45), we can partly identify the range

of λD under which the OP and SP are superior to each other.
Specifically, for fixed nt , SNR and pilot/data power fractions,
we have the following.

• MSE comparison between the OPAL and SP: Since it
holds for the OPAL that c0 = 1

2 ≤ 2λD L ≤ c1 = 1,
by replacing 2λD L with c0 in ε2

o,�(r, t) of (41) and
comparing it with ε2

s,k(r, t), we have that the SP is always
superior for

λD ≤ �p(c0 − [nt − 1]ρpSNR)

4ρp(nt�dSNR + nt)
, λD ≥ 0, (49)

and the OPAL is always superior for

λD ≥ �p(c1 − [nt − 1]ρpSNR)

4ρp(nt�dSNR + nt)
, λD ≥ 0. (50)

Fig. 2. Normalized MSE against the Doppler bandwidth λD for SNR = 1 dB
and peakiness parameter ρth = 1 dB.

• MSE comparison between the OPFL and SP: The region
of SP’s superiority below λD ≤ 1

2L is given by

λD >
(nt − 1)ρp�pSNR

2L�p − 4ntρp�dSNR − 4ntρp
,

if L >
2ntρp�dSNR + 2ntρp

�p
. (51)

Otherwise, the SP’s superiority may only occur in the
aliasing regime where λD > 1

2L .
The interval (49) shows that in comparison to the OPAL,
the SP tends to be superior at a small value of λD . On the
other hand, the range (51) indicates that in comparison to the
OPFL, the SP may be superior at a typically large value of λD

(potentially in the aliasing region).
If the pilot and data powers are optimized with respect

to λD (see, e.g., equations (43) and (48)), then solving the
MSE superiority regimes of the OP and SP generally involves
solving the parametric polynomial inequalities of degrees eight
(when ρth in (43) does not dominate) and three (when ρth
dominates) where the polynomial parameters depend on nt
and SNR. In this case, a complete analytical characterization
of those superiority regimes is challenging as it is widely-
known from Abel-Ruffini theorem [38] that for polynomials
of degrees five and above, there exists no algebraic solution
of the roots in terms of polynomial parameters.

In order to understand the behaviors of the MSE when the
pilot and data powers are optimized, we invoke numerical
evaluation as illustrated in Fig. 2. Herein the normalized MSE
is defined by ε2

o,∗/nt where ε2
o,∗ is given by (15) for the OP

and by nt
−1∑nt

t=1 ε2
s (r, t) where ε2

s (r, t) is given by (27) for
the SP. We consider channels with nr = 4 receive antennas
and two different transmit antennas, which we refer to the
first as the MIMO channel (nt = 4) and the second as the
SIMO channel (nt = 1).

For the MIMO case at sufficiently fast fading we observe
that, in terms of the normalized MSE, the SP is competitive
with the OPFL but inferior to the OPAL (for only up to
λD = 0.1). In this regime, the OPFL looses its channel track-
ing capability due to insufficient fading samples (i.e., aliasing
for L > 1

2λD
). On the other hand, the OPAL maintains

its superiority to the SP due to the capability of retaining
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Fig. 3. Achievable rates versus nt for SNR = 1 dB, the peakiness parameter
ρth = 1 dB and nr = 4.

sufficient fading samples up to λD = 1
2(nt+1) = 0.1. Above

λD ≥ 1
2(nt+1) , the OPAL is inoperable because the MIMO

dimension is too large to estimate, i.e., when nt > L∗ =

1/2λD�. The SP can thus offer a wider operation range than
and superior performance to the OPAL in the fast fading
regime. In the slow-fading regime, the SP appears to be
inferior to both OPFL and OPAL due to the dominant inter-
antenna pilot interference (33) that scales up with an increase
of nt . This is confirmed from the MSE in (45). I.e., since the
function a+x

b+x is monotonously non-decreasing in x for a ≤ b,
the MSE for the SP can in fact be lower-bounded as

ε2
s,k(r, t) = (nt − 1)�pSNR + 4λD(nt�dSNR + nt)

nt�pSNR + 4λD(nt�dSNR + nt)

≥ nt − 1

nt
, (52)

which is bounded away from zero for nt > 1.
In the SIMO case (nt = 1), the required dimension to

estimate for the OP and the inter-pilot interference for the
SP are both minimized. While the MSE trend at fast fading
exhibit similar behavior to that in the MIMO case, the slow-
fading behavior is unalike. The SP can be superior to the OPAL
because the latter maintains just enough fading samples satis-
fying no aliasing criterion, which linearly scale with λD . For
the OPAL, this results in a nearly-invariant MSE (41)—with
respect to λD—with some minor variation due to the product
of 2λD L∗ = 2λD
1/2λD�, which strictly lies in the interval
of [1/2, 1]. On the other hand, the SP is inferior to the OPFL
in terms of the MSE. As λD ↓ 0, the number of fading samples
are kept the same for the OPFL, but the channel varies slower.
The MSE for the OPFL thus improves with a decrease in λD .
The absence of inter-pilot and data interference further justifies
the superiority of the OPFL.

The advantages and limitations of the OP and SP in terms of
achievable rates when varying the MIMO transmit dimension
are illustrated in Fig. 3. The transmit dimensions nt of both
OPAL and OPFL are strictly constrained by the length of the
training period L to yield positive rates. On the other hand, the
full utilization of time slots for data transmission ensures that
the SP can maintain a positive rate even when nt is very large.
Surprisingly, due to an improved quality of channel estimates

Fig. 4. Achievable rates versus the Doppler bandwidth λD for SNR = 1 dB
and the peakiness parameter ρth = 1 dB. The number of receive antennas is
set to be nr = 4.

at a slower fading speed, the SP can be superior to the OPAL
at a sufficiently small nt (see the curves for λD = 0.008).

Results in Figs. 2 and 3 underline the complex roles of the
MIMO dimension, frequency of pilot emittance and fading
speed in determining the performance of the OP and SP
schemes, which in turn reveal insights that were minimally
captured in the previous works such as [12], [13], [17], [18].
The premise of a superior quality of estimates in the OP does
not always hold across different fading speeds and, depending
on the nt and frequency of pilot emittance, the SP can produce
more reliable estimates. In the context of stationary fading
channels, the SP is benefited not only from the full utilization
of time instants for data transmission, but also from the
observation gain captured by (39). This latter SP’s strong point
is particularly instrumental at slow fading speed to demonstrate
its superiority to the OPAL. The substantial dimension cost of
the OP can be unfavorable, especially when nt is close to the
value of the training interval.

From Figs. 2 and 3, the OPAL and OPFL have different
behaviors of the MSE, which naturally affect the behaviors
of the achievable rate Ro. Therefore, in order to gain more
insights on their performance over SNR and λD , we separately
compare the SP with the OPAL and with the OPFL in terms
of achievable rates in the following subsections.

C. Rate Comparisons of SP and OPAL

In terms of achievable rates, we exemplify in the following
that the SP can be competitive with (or, in some cases,
superior to) the OPAL, not only at fast-fading as reported
in [3], [12], but also at slow-fading. This is possible since
in the stationary fading channels, the SP is benefited not only
from full utilization of time for data transmission, but also the
observation gain, cf. Section IV-B.

In Fig. 4, we plot the achievable rates against the Doppler
bandwidth λD for both the MIMO (nt = 4) and SIMO
(nt = 1) cases. The OPAL avoids aliasing with the adaptive
L∗ = 
1/(2λD)� at the expense of having a Doppler-limited
transmit dimension nt < L∗. For a given nt , the OPAL
can only accommodate both data transmission and channel
estimation up to λD = 1

2(nt+1) .
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Fig. 5. Achievable rates versus the SNR with the peakiness
parameter ρth = 1 dB and Doppler bandwidth λD = 0.01. The number
of receive antennas is set to be nr = 4.

For the MIMO case, the limitation of the OPAL in the fast
fading regime is clearly demonstrated by an abrupt transition
around λD = 0.1 in Fig. 4, where its rate goes to zero.
In this case, the SP is preferred due to full utilization of
time for data transmission irrespective of the fading speed.
The trend at slow fading is the exact opposite. In this regime,
we have nt � L∗ = 
1/(2λD)� and consequently, the more
reliable estimates enable the OPAL to reap the rate gains due
to multiple antennas [36] and significantly outperform the SP.

When nt is reduced to one, i.e., the SIMO case, the operable
fading speed for the OPAL extends up to λD = 1

4 . This implies
the fast-fading superiority of the SP may only occur at an
extremely fast fading variation, i.e., λD > 0.25. Surprisingly,
the advantage of the SP over the OPAL is more instrumental
at slow fading as a consequence of a better MSE as shown in
Fig. 2 as well as no timing loss in terms of data transmission.
Herein the better MSE is due to the observation gain of the SP.
More specifically, the ratio η (which is inversely proportional
to the observation gain) in (39) tends to zero as λD ↓ 0 when
L∗ = 
1/(2λD)�.

Given nt < L∗ for the OPAL, the trend over different values
of SNR is in agreement to the widely-known signal-processing
results (see [3], [12]) as demonstrated in Fig. 5. The OPAL is
superior to the SP at high SNR due to the logarithmic growth
of its rate, which is further amplified in the case of nt = 4 due
to a better MIMO multiplexing gain, cf. (19), as compared to
the bounded rate, cf. (36). At low SNR, the SP is competitive
with the OPAL because of the observation gain and effective
time-utilization for sending data. The regime of superiority for
the SP is wider for nt = 1 as explained by the fact that the
MSE for the SP decreases with decreasing nt , cf. Fig. 2 and
equation (52).

D. Rate Comparisons of SP and OPFL

For the purpose of comparing the SP and OPFL, we note
that the OPFL can suffer from aliasing if the channel varies
faster than the frequency of pilot emittance. In contrast to the
well-known high-SNR superiority of the OP [1], [17], [18], we
show in the following example where the SP can outperform
the OPFL at high SNR where the latter experiences aliasing.

Fig. 6. Achievable rates for a SISO channel (nt = nr = 1) versus the
SNR with the peakiness parameter ρth = 1 dB. For λD = 0.14, Ro and Rs
at 120 dB approximate upper-bounding quantities at high SNR.

In Fig. 6, we demonstrate the achievable rates against SNR
for two different values of λD , where one corresponds to non-
aliasing (λD = 0.05) and the other corresponds to aliasing
(λD = 0.14). If the OPFL does not suffer from aliasing,
then the widely-known trend applies, i.e., the OPFL mostly
outperforms the SP across a wide range of SNR with the
SP being reasonably competitive at very small SNR values.
If the OPFL suffers from aliasing, then both the OPFL and
SP rates are bounded from above at high SNR, which implies
that the high-SNR trend depends on their asymptotic values.
The exact opposite trend (i.e., the SP outperforms the OPFL
at high SNR) typically occurs for: 1) a smaller value of nt
(1 or 2) due to a significantly smaller MSE for the SP, cf.
equation (52); and 2) nt > L as the MIMO dimension is
too large to estimate. This opposite trend is clearly observed
in Fig. 6 for the case of nt = 1 and λD = 0.14.

VI. CONCLUSION

We have studied the performance of orthogonal
pilot (OP)- and superimposed pilot (SP)-aided channel
estimation schemes in stationary bandlimited fading channels.
The analyses have revealed new insights on the complex
interplay among the achievable rate, MIMO dimension,
frequency of pilot emittance and SNR, which further
determine the regimes of superiority for each scheme. The
desirable behavior of the OP heavily relies on aliasing-free
condition in order to achieve the high-SNR logarithmic
growth of the rate, which can be significantly enhanced by
the effective MIMO multiplexing. Alongside this advantage,
there are two caveats: 1) restriction of the MIMO transmit
dimension by the frequency of pilot emittance (training
interval); 2) challenge of maintaining sufficient fading
samples at fast fading. On the other hand, at the expense
of more noisy fading samples due to data and inter-antenna
pilot interference, the SP is benefited from two attributes: 1)
efficient time-utilization for data transmission (the absence of
linear rate-loss); 2) observation gain. Numerical results have
demonstrated that these desirable attributes of the SP can be
dominant in slow-fading SIMO channels, fast-fading MIMO
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channels and across a wide range of the SNR when the OP
suffers from spectrum aliasing.

The two schemes considered in this work represent two
contrasting cases of pilot placements in the light of pilot-aided
channel estimation. The new insights from the comparisons
shall provide a direction to the design of hybrid schemes for
stationary MIMO fading channels that take into account the
superiority regimes of the OP and SP.

APPENDIX A
ACHIEVABLE RATES

A framework of computing an achievable rate in station-
ary fading channels has been outlined in [33], [34] using
the GMI for mismatched decoders with genie-aided imper-
fect CSI. Leveraging upon the same framework, we replace
the genie with specific channel estimators of the OP and SP,
cf. (8) and (25), and evaluate the corresponding achievable
rates.

A. Orthogonal Pilots

For L ≤ 1
2λD

, the rate (14) has been obtained in [24], [27]
using mutual information and can be similarly obtained using
the GMI [33], [34]. The condition L ≤ 1

2λD
is instrumental

in guaranteeing the wide-sense stationarity of the channel
estimation error.

For any L ≥ 1, however, the channel and its estimate
are generally not stationary, but jointly cyclostationary with
a cyclic period of L. Therefore, instead of using the GMI
in [33], [34] directly, we apply a similar derivation by noting
that the channel and its estimate are blockwise ergodic. We can
then obtain the GMI (in nats/channel use) for any L > 0 as

I gmi � sup
θ<0

1

L

L−1∑

�=nt

[κ�(θ) − θT�] (53)

where

κ�(θ) = E
[

log det

(
Inr − θ

ρdSNR
nt

Ĥo,�Ĥ
†
o,�

)]

− θE

[
Y † ·

(
Inr − θ

ρdSNR
nt

Ĥo,�Ĥ
†
o,�

)−1

· Y

]

(54)

= E
[

log det

(
Inr − θ

ρdSNR
nt

Ĥo,�Ĥ
†
o,�

)]

− θ
(

1 + ρd SNR
nt

∑nt
t=1 ε2

o,�(1, t)
)

× tr

{
E
[(

Inr + ρdSNR Ĥo,�Ĥ
†
o,�

nt + ρdSNR
∑nt

t=1 ε2
o,�(1, t)

)

×
(

Inr − θ
ρdSNR

nt
Ĥo,�Ĥ

†
o,�

)−1 ]}
, (55)

T� = E
[∥∥∥

√
SNR

(
H� − Ĥo,�

)
X� + Z�

∥∥∥
2
]

(56)

= nr + nr
ρdSNR

nt

∑nt
t=1ε

2
o,�(1, t). (57)

Herein we have recalled Ĥo,� as a channel estimate matrix
whose (r, t)-th entry is distributed as NC(0, [1 − ε2

o,�(r, t)])
where ε2

o,�(r, t) has been given in (11).
Finding the exact optimal θ for (53) is analytically chal-

lenging, particularly due to the sum over � on the RHS
of (53). Therefore, in order to obtain a reasonable closed-
form expression, we will substitute the optimal θ with a good
choice of θ similarly to [39, App. D], i.e.,

θ = −1

1 + ρd SNR
nt

ε2
o,∗

, ε2
o,∗ � max

�∈{nt,...,L−1}
∑nt

t=1ε
2
o,�(1, t).

(58)

We next evaluate the trace on the RHS of (55) for the value
of θ in (58), i.e.,

tr

{
E
[(

Inr + ρdSNR Ĥo,�Ĥ
†
o,�

nt + ρdSNR
∑nt

t=1 ε2
o,�(1, t)

)

×
(

Inr + ρdSNR Ĥo,�Ĥ
†
o,�

nt + ρdSNRε2
o,∗

)−1 ]}
. (59)

Since the two matrices

Inr + ρdSNR Ĥo,�Ĥ
†
o,�

nt + ρdSNR
∑nt

t=1 ε2
o,�(1, t)

and

Inr + ρdSNR Ĥo,�Ĥ
†
o,�

nt + ρdSNRε2
o,∗

are both Hermitian positive definite matrices, it can be shown
using the definition of trace operator and singular value
decomposition that

tr
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Inr + ρdSNR Ĥo,�Ĥ
†
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∑nt

t=1 ε2
o,�(1, t)
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nt + ρdSNRε2
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≥ tr

{
E
[(
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†
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nt + ρdSNRε2
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Inr + ρdSNR Ĥo,�Ĥ
†
o,�

nt + ρdSNRε2
o,∗

)−1 ]}
= tr

{
Inr

} = nr .

(60)

Inserting the value of θ in (58) to the RHS of (55) and (57),
combining the results with (53) and applying the inequal-
ity (60) yield a rate (in bits/channel use)

Ro = 1

L

L−1∑

�=nt

E

[
log2 det

(
Inr + ρdSNR

nt + ρdSNR ε2
o,∗

Ĥo,�Ĥ
†
o,�

)]

≤ I gmi. (61)

Since any rate R < I gmi is achievable, the result (61) implies
that Ro is a valid achievable rate.
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B. Superimposed Pilots

Building upon the same framework as in [33], [34], we
first consider GMI evaluation for any general time-invariant
channel estimator (23), which is not necessarily the single-gap
interpolator (25). Some basic setups from the channel model,
input symbols, noise and channel estimator directly satisfy [34,
Assumps. 1–3, 5 ] and [33, Assumps. 1–4, 6, 7], i.e.,

• Random coding with i.i.d. Gaussian inputs NCnt (0, �d
nt

Int ).
• Ergodic fading and noise processes. The fading, noise and

input sequences are independent.
• The noise has zero mean and identity covariance matrix.
• Equation (23) implies that the channel estimate Ĥs,k is a

time-invariant function of {(Hk, Zk, Xk)}, which further
implies the convergence of the decoder metric (29),
namely

lim
n→∞

1

n

n∑

k=1

∥∥∥yk − √
SNR Ĥs,k x̄k − √

SNR Ĥs,k p
∥∥∥

2

= E
[∥∥∥

√
SNR

(
Hk − Ĥs,k

)
(X̄k + p) + Zk

∥∥∥
2
]

a.s.

(62)

These key assumptions enable us to arrive at the following
GMI expression for the SP (in nats/channel use)

I gmi = sup
θ<0

[
κ(θ) − θT

]
(63)

where the scaled cumulant moment-generating
function (MGF) of the decoding metric (29) associated
with incorrect codewords is given by

κ(θ)

= E
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)
p + √

SNR Hk X̄k + Zk

)†

×
(

Inr − θ
�dSNR

nt
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(64)

and the parameter T is given by

T = E
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)
X̄k

×
(√

SNR
[
Hk − Ĥs,k
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. (66)

Simplifying the expressions of (64) and (66) for the channel
estimator (23) is generally intractable due to the estimate Ĥs,k
that depends on X̄k, Zk . In such an estimate, the lack of
closed-form expressions of correlation of (Ĥs,k, X̄k, Zk) and
correlation of any pair from (Ĥs,k, X̄k, Zk) conditioned on the
rest prohibits further evaluation of (64) and (66).

We circumvent this problem by considering a suboptimal
estimator, namely the single-gap interpolator (26) that decor-
relates the time-k estimate Ĥs,k from the time-k data and noise
X̄k, Zk . Let Es,k � Hk − Ĥs,k be the time-k estimation error
matrix, which is uncorrelated with Ĥk from the orthogonality
principle (see Appendix B). The estimator (26) ensures that
the correlation of the triplet (Ĥs,k, X̄k, Zk) and correlation of
any pair from (Ĥs,k, X̄k, Zk) conditioned on the rest are all
zero. We can thus simplify (64) and (66), and obtain

κ(θ) = −θ E
[
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Ê

†
s,k

+ Zk Z†
k

)
×
(

Inr − θ
SNR

nt
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and

T = E
[
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= nr + nrSNR(�p + �d )ε2
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where ε2
s,k(r, t) = ε2

s has been given in (27).
Remark that (68) and (71) are similar to the scaled

cumulant MGF and parameter T in [34] when the time-
independent decoder-weighting matrix of

√−θ Inr , θ < 0,
input with covariance matrix �d

nt
Int and “effective” noise vector

(
√

SNR Es,k p + Zk) are applied. It thus can be shown by
following [34, App. B] that the optimal θ maximizing the
GMI (63) is given by

θ = − 1

1 + (�p + �d )SNR ε2
s

= − 1

1 + SNR ε2
s

(72)

where the last equality is from the power constraint
�p + �d = 1 in (2). Inserting the optimal θ to the RHS
of (68), and then combining the result and (71) with (63)
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yield (in bits/channel use)

Rs = I gmi = E
[

log2 det

(
Inr + �dSNR

nt + ntSNR ε2
s

Ĥs,kĤ
†
s,k

)]
.

(73)

In Proposition 2 the index k has been removed due to the
stationarity assumption.

APPENDIX B
LMMSE OF THE SINGLE-GAP INTERPOLATOR

FOR SUPERIMPOSED PILOTS

Due to the symmetry of the fading processes among all the
transmit-receive antenna pairs, it suffices to consider fading
estimation for the antenna pair (r, t) = (1, 1). Let Vk = Yk(1)
be the observation at receive antenna 1 at time k. We have
from the channel model (1) that

Vk = Yk(1)

=
√

�p

nt

nt∑

t=1

Hk(1, t) +
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�d

nt

nt∑

t=1

Hk(1, t)xk(t) + Zk .

(74)

The fading estimate for transmit-receive antenna
pair (r, t) = (1, 1) at time k can be written as

Ĥs,k(1, 1) =
∞∑

k′=−∞
bk′ Vk+2k′−1. (75)

In order to evaluate the minimum MSE, we first invoke the
orthogonality principle [25] as

E
[
Hk(1, 1)V ∗

k+2τ−1

] = E
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Ĥs,k(1, 1)V ∗
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]
(76)

for some integer τ . Evaluating the expectation on the LHS
of (76) yields
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=
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�p

nt
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where AH (·) has been given in (4). Evaluating the expectation
on the RHS of (76) leads to

E
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By combining (77) and (80) with (76), we obtain
√

�p

nt
AH (−2τ + 1) =

∞∑

k′=−∞
bk′
(
�p AH [−2(τ − k ′)] +

(ρd + 1)δ f [−2(τ − k ′)]
)

(81)

which, as observed from [9], [13], [26], resembles to the
orthogonality condition of the OP-aided channel estimator
in Section III-A with modified effective pilot and noise power
when the training period is L = 2. Therefore, following the
steps in [9, App.], we can then obtain the MSE for the SP as

ε2
k (1, 1) = 1 −

∫ 1/2

−1/2

ρpSNR | f1(λ)|2
nt�pSNR f0(λ) + nt�dSNR + nt

dλ

(82)

where f0(λ) and f1(λ) follows from (12) for L = 2, i.e.,

f0(λ) = 1

2

1∑

ν=0

f̄H

(
λ − ν

2

)
,

f1(λ) = 1

2

1∑

ν=0

f̄H

(
λ − ν

2

)
eı2π λ−ν

2 . (83)

Due to the symmetry of fading observations, the interpolator
coefficients {bk′ }k′∈Z in (75) do not vary with k. This implies
that the estimation error incurred by (75) is wide-sense station-
ary. This is in contrast to the estimation error for the OP, which
is cyclostationary since the optimal coefficients {ak,k′ }k′∈Z
in (8) depends on k via � = k mod L [16].
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