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A B S T R A C T

The microstructural degradation of a composite silicon electrode at different stages in its cycle life was
investigated in 3D using X-ray nano-computed tomography. A reconstructed volume of 36 mm � 27
mm � 26 mm from the composite electrode was imaged in its pristine state and after 1, 10 and 100 cycles.
Particle fracturing and phase transformation was observed within the electrode with increased cycling. In
addition, a distinct, lower X-ray attenuating phase was clearly resolved, which can be associated with
surface film formation resulting from electrolyte breakdown and with silicon particle phase
transformation. Changes in quantified microstructural properties such as phase volume fraction and
particle specific surface area were tracked. Electrode performance loss is associated with loss of active
silicon. These imaging results further highlight the capability of high resolution X-ray tomography to
investigate the role of electrode microstructure in battery degradation and failure.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The increasing demand for more energy-dense lithium-ion
batteries (LIBs), particularly in large scale applications such as
grid-scale energy storage and electric vehicles, has led to the
exploration of the use of alternative electrode materials. With a
theoretical specific capacity ten times higher than that of
conventional graphite electrodes – 3579 mAh/g –, silicon (Si) is
a promising electrode material [1]. However, silicon suffers rapid
capacity fade and short cycle life mainly as a result of the
significant volume changes (up to 280% [1]) that it experiences
upon lithiation, causing cracking and pulverisation within the
electrode, which leads to loss of electrical contacts [2,3].

In an attempt to improve the performance and lifetime of
silicon electrodes, significant research effort has been devoted
towards the use of nanostructured silicon materials [4–8].
However, issues such as significant solid electrolyte interphase
(SEI) formation, as well as the difficulty and high cost of
manufacturing scale-up prevent their application in commercial
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E-mail address: p.shearing@ucl.ac.uk (P.R. Shearing).

http://dx.doi.org/10.1016/j.electacta.2017.08.161
0013-4686/© 2017 The Authors. Published by Elsevier Ltd. This is an open access artic
lithium ion batteries [8,9]. These drawbacks show micron-sized
silicon particles to still be a favourable option as electrode
materials, since they are low-cost, commercially available and can
be used to create electrodes with higher volumetric energy density
compared with nano-sized silicon-alloy particles.

To overcome this challenge of designing a commercially-viable
silicon electrode, an improved understanding of the influence of
silicon microstructure on battery performance is required. X-ray
computed tomography (CT) is a powerful, non-invasive diagnostic
tool that has been used to elucidate the three-dimensional
microstructure of a wide variety of materials, including
lithium-ion battery electrodes [10–15], and the rapid proliferation
of X-ray imaging techniques over the past decade has enabled
characterisation of material microstructures with unprecedented
resolution at multiple length and time scales using both laboratory
and synchrotron sources [16–20].

Recently, X-ray CT has been used to study the lithiation-induced
evolution of Si electrodes, and has enabled investigation of
electrode delamination [21], bulk electrode volume expansion
and phase changes [22,23], and particle cracking and pulverisation
[24–27]. However, these 3D X-ray imaging studies on silicon
electrodes were performed at the early stages of electrode cycle life
(first half cycle or first full cycle), with spatial resolutions down to
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
X-ray CT image acquisition parameters.

Pristine 1st cycle 10th cycle 100th cycle

No. of radiographs recorded 1601 2001 2001 2001
Radiograph exposure time (s) 23 15 20 14
Effective voxel size (nm) 63.1
Photon energy (keV) 5.4
Field of view dimensions 65 mm � 65 mm
Detector binning 1
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ca. 2 mm being achieved [23,27]. Recent advances in laboratory
X-ray tomography have enabled even higher spatial resolutions to
be achieved, down to 50 nm [17]. Here for the first time, we study
the 3D morphological transformation of a Si electrode over several
charge-discharge cycles using high resolution laboratory X-ray
nano-CT at a spatial resolution of 150 nm.

2. Experimental

2.1. Electrode preparation and cell fabrication

Powdered Si (Elkem Silgrain e-Si, d50 3.1 mm, 99.7% purity) was
used as active material. Carbon black (Alfa Aesar, Acetylene Black,
purity, 99.9+ %) and graphite (TIMREX SF56, purity 99.93%) were
used as conductive agents and a sodium salt of polyacrylic acid
(Na-PAA) as binder. The binder was prepared by dissolving PAA in
de-ionised water and then partially neutralizing the solution with
sodium carbonate; details of the binder preparation can be found
in [28].

The powdered Si, carbon additives and the partially neutralized
Na-PAA solution (in a percentage weight ratio of 70:16:14,
respectively) were mixed with de-ionised water, and stirred using
a high shear mixer (Primix Homodisper Model 2.5) for 30 mins.
Electrode laminates were then created by casting the resulting
electrode slurry onto 10 mm thick Cu foil (Oak Mitsui, electro-
deposited) using a film applicator (RK PrintCoat Instruments, UK),
with partial vacuum applied to the Cu foil and a doctor blade gap
set to 100 mm. Slurry-coated Cu foils were dried on a hot plate at
80 �C for 2 mins followed by vacuum drying (7 mbar) at 70 �C for
12 h. The dried electrode laminates were cut into 10 mm diameter
discs, each of which was weighed in order to obtain the mass
loading of Si.

Half-cells were fabricated using PFA-type Swagelok hardware
(PFA-820-6, 0.5 inch diameter, Swagelok, USA) in an argon-filled
glove-box (oxygen and moisture levels in the glove-box were both
maintained at <0.5 ppm) with a metallic lithium foil counter
electrode (Pi-KEM Ltd, cut to 11 mm diameter), a borosilicate glass
fibre separator (Whatmann GF-D grade, GE, cut to 12 mm
diameter), and electrolyte containing 1 M LiPF6 in mixture of
ethylene carbonate (EC): ethyl methyl carbonate (EMC) in the ratio
3:7 by volume.

2.2. Electrochemical characterisation

Electrochemical cycling of assembled Swagelok cells was
performed between 1–0.005 V (vs. Li/Li+) at room temperature
using a Maccor 4300 series battery cycler. Cells were selected to be
cycled for 1, 10 and 100 cycles. A C/5 rate was used for Si electrodes
cycled for 1 and 10 cycles. For electrodes cycled for 100 cycles, the
first cycle was performed at a C/5 rate to promote SEI formation,
and subsequent cycles were performed at a C/2 rate. The C-rates
were calculated based on the theoretical capacity of Si at room
temperature (Q = 3579 mAhg�1).

After charge cycling, electrochemical impedance spectroscopy
(EIS) measurements were performed on each cell using an Ivium
CompactStat.e electrochemical workstation (Ivium Technologies,
Netherlands). Impedance spectra were acquired with the Si
electrodes in the de-lithiated state after 1, 10 and 100 cycles over
a frequency range of 100 kHz to 1 mHz, with an AC signal
amplitude of 5 mV.

2.3. Scanning electron microscopy (SEM) and X-ray nanotomography

After electrochemical testing, the cycled cells were then
carefully disassembled in an argon-filled glove box. The Si
electrodes (in de-lithiated state) were carefully extracted from
the disassembled cells and then thoroughly rinsed in pure diethyl
carbonate (DEC) solution for 6 h to remove traces of electrolyte.
The washed electrode was dried by storing it in the evacuated
antechamber of the glove box at room temperature to remove any
DEC present.

Both the pristine (uncycled) and the washed, cycled versions of
the Si electrode sample were then dissected under a visible light
microscope (into smaller sample sizes suitable for nanoscale X-ray
CT imaging (<500 mm length) and mounted onto the tip of
stainless steel needles using epoxy resin. Remaining portions of the
pristine and cycled electrodes were reserved for SEM characteri-
sation. Scanning electron micrographs of electrode sample in its
pristine and cycled states were captured with the aid of a ZEISS
EVO MA 10 microscope.

The electrode samples were then imaged in a laboratory-based
nano-scale X-ray microscope (ZEISS Xradia 810 Ultra, Carl Zeiss
Microscopy, Pleasanton, CA) using an absorption contrast tomog-
raphy setting [29]. For each investigated sample, X-ray radiographs
were acquired over a 180� sample rotation; details of the
tomographic imaging parameters for each sample are presented
in Table 1. The acquired radiograph images were then recon-
structed into a 3D volume using ZEISS XMReconstructor software
(Carl Zeiss X-ray Microscopy Inc., Pleasanton) which employs a
filtered-back projection algorithm [30].

2.4. 3D image analysis and quantification

Image processing and volume rendering of each of the
reconstructed electrode datasets was carried out using the Avizo
software package (v9.1, FEI VSG, France). From within each 3D
electrode dataset, a volume of interest (36 mm � 27 mm � 26 mm)
was extracted for further analysis. An anisotropic diffusion filter
[31] was applied to the cropped 3D greyscale image datasets to
minimize random image noise while preserving significant image
features, after which a segmentation procedure combining
thresholding and 3D region growing was implemented to
distinguish between the solid and pore phases based on their
greyscale intensity values.

3D quantification of the segmented datasets was also
performed in Avizo software; phase volume fraction and
volume-specific surface area values, which are important
morphological parameters that determine electrode performance,
were calculated. Phase volume fraction was calculated using a
voxel counting approach as the ratio of the total number of voxels
in a particular phase to the total number of voxels in the analysed
volume. For surface area calculations, triangulated surface meshes
were generated from the segmented image datasets using a
marching cubes algorithm [32], and then subsequently smoothed
using sub-voxel weights.

3. Results and Discussion

The discharge capacity and Coulombic efficiency profiles of the
Si electrode over a 100 cycle period are shown in Fig.1. At a C/5 rate,
a discharge capacity of ca. 2700 mAhg�1 was obtained in the first



Fig. 1. Discharge capacity and Coulombic efficiency versus cycle number for the Si
electrode.

Fig. 2. (a) Nyquist plots of the Si electrode in de-lithiated state after different cycles.
(b) Equivalent circuit used to model the impedance spectra in (a). (c) Surface film
resistance and charge transfer resistance as a function of cycle number.
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cycle but this sharply drops to ca. 1460 mAhg�1 in the second cycle.
This significant capacity loss after the first cycle can be attributed
to the formation of SEI on the surface of the silicon electrode
particles. The capacity slightly recovers to over 1600 mAhg�1 after
the fifth cycle, and remains relatively stable until the 15th cycle
after which a steady decline in electrode performance is seen with
progressive cycling. The Coulombic efficiency (CE) was calculated
as the percentage ratio of the electrode’s de-lithiation capacity to
its lithiation capacity. As the SEI layer on LIB electrodes matures
and its growth slows down with cycling, the CE is expected to
increase and then stabilize shortly after the first few cycles [33].
The CE of Si was 93.3% in the first cycle, and it is seen to increase
and then stabilize above 98% after 20 cycles.

To gain further insight into the capacity fade occurring in the Si
electrode, EIS measurements were performed on the cycled
electrodes. The changes in impedance spectra of the Si electrode
in the de-lithiated state after 1, 10 and 100 cycles are shown as
Nyquist plots in Fig. 2a. The Nyquist plots were fitted by the
equivalent circuit shown in Fig. 2b. The high-to-medium frequency
semi-circles generally reflect Li+ migration through multilayer
surface films (represented by RSEI and CPE1 in the equivalent circuit
model), the interphase electronic contacts between the conduc-
tive/binder matrix and the current collector (represented by Rint
and CPE2) and charge transfer resistance between the SEI layer and
the electrode interface (represented by Rct and CPE3) [34–36]. The
sloping linear curve in the low frequency region, referred to as the
Warburg impedance (Zw), corresponds to the solid state diffusion
of lithium through the Li-Si alloy material [34,37]. The
high-frequency intercept (Rs), which reflects the series resistance
of current collectors, electrodes, electrolyte, and electrical
connections [38], showed minimal change with cycling.

The high-to-medium frequency impedance spectra were
enlarged in the inset of Fig. 2a for more clear observation. The
magnitude of the high frequency semi-circle increased with cycle
number, suggesting an increase in surface film resistance of the
electrode and double-layer at the electrode-electrolyte interface.
This surface film resistance change is also evident from the
increase in RSEI values in Fig. 2c, and could be attributed to the
formation of a thicker SEI layer with progressive cycling. The Rct
value is seen to drop after the 10th cycle and then increase after
100 cycles. The lower Rct after 10th cycle compared with the 1st
cycle could be associated with the capacity drop and recovery
between the 2nd and 7th cycles. Following the 1st discharge-
charge cycle, the large volume change within the electrode may
have caused a disconnection of electronic contact between the Si
particles and the conductive additive/binder matrix leading to the
initial capacity drop in subsequent cycles. However, the repeated
expansion and contraction within the electrode may have restored
some electronic contact with the conductive matrix after the 7th
cycle, causing the slight capacity loss.

Fig. 3a–d shows the surface view scanning electron
micrographs of the morphology of the silicon electrode in its
pristine state (before cycling) and after the 1st, 10th cycle, and
100th cycles. In Fig. 3a, the individual silicon particles can be easily
identified by their sharp edges and flat faces. After 1 cycle (Fig. 3b),
the electrode still maintains its microstructural integrity; however,
the sharp edges and faces become less prominent as a result of the
SEI layer formation and lithiation-induced volume changes.
Surface film formation becomes significant after 10 cycles
(Fig. 3c), along with the occurrence of cracks propagating across
the electrode surface. The micrograph taken after 100 cycles
(Fig. 3d) shows severe pulverisation of electrode particles into
smaller fragments.

In order to gain further insight into the morphological evolution
of the Si electrode, 3D nano-scale X-ray tomography was
performed on the pristine and cycled electrodes. Fig. 4 shows
2D greyscale image cross-sections through the 3D X-ray



Fig. 3. SEM images of the silicon electrode (a) in its pristine state (b) after 1 cycle, (c) after 10 cycles, and (d) after 100 cycles.
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tomograms of the Si electrode before cycling, after 1, 10 and 100
cycles. To facilitate the comparison between the different tomo-
grams, the greyscale intensity histogram of each X-ray tomogram
was normalized with respect to the initial tomogram of the pristine
electrode. Within the pristine electrode (Fig. 4a), the Si particles
are clearly distinguished by their higher X-ray attenuation as the
bright, irregular-shaped regions with no visible cracks or
fracturing. The darker, less attenuating region surrounding the
Si particle corresponds to the porous matrix containing the
conductive material and binder phases.

Following the 1st cycle, (Fig. 4b), significant fracturing and
deformation can be seen to occur within the Si particles (denoted
by yellow arrows in the reconstructed cross section and observed
in the 3D particle rendering in Fig. 4b) as a result of volume change
caused by lithiation and de-lithiation processes. In addition to
particle fracturing, the Si particles begin to lose the (greyscale)
intensity around their edges, with the presence of a relatively low
intensity/low attenuation phase observed around the outer surface
of the particles. This decrease in greyscale intensity directly
correlates with a decrease in X-ray absorption or a change in
material density [24]. The formation of the low attenuating phase
can be attributed to the phase transformation that occurs due to
the alloying of Li and Si, as well as the significant formation of
SEI-based products from electrolyte breakdown. Excessive SEI
formation in Si electrodes can be controlled through the use of
electrolyte additives [35,39].

After 10 cycles (Fig. 4c) and 100 cycles (Fig. 4d), numerous Si
particles appear to have undergone further phase transformation
and fracturing, and this is accompanied by a significant increase in
the low attenuating phase surrounding the remaining Si
fragments. However, at 100 cycles, the region that was imaged
within the electrode appeared to have lower attenuating, void-like
regions (highlighted by blue arrows in Fig. 4d) which could be
attributed to the bulk fracturing and material displacement within
the electrode matrix as a result of repeated volume change during
progressive cycling. This could influence the electrical contact of
some Si particles within the bulk electrode, causing their isolation
from the conductive matrix and could contribute to the loss in
electrode capacity.
The evolution of the 3D structure of the Si electrode was also
visualized with the aid of 3D renderings of the electrode. Fig. 5
shows a 3D rendering of the Si phase within the electrode prior to
any electrochemical cycling. The crystalline Si particles (colored in
yellow) were rendered after threshold segmentation of the highly
attenuating Si particles shown in Fig. 4, while the rest of the
electrode matrix (conductive carbon, binder and pore phases) were
set to be invisible.

3D renderings of the electrode highlighting the Si and low
attenuating phases after 1, 10 and 100 cycles are presented in
Fig. 5b–d. 3D quantitative analysis of the electrode volumes
showed a significant reduction in the volume fraction of the
crystalline Si phase in the analysed electrode volume, from 21.30%
in electrode’s pristine state to 3.65% after 100 cycles (Table 2). The
decreased in crystalline Si phase fraction with cycle number can be
associated with particle pulverisation and irreversible phase
changes from crystalline Si (c-Si) to amorphous lithium silicide
(a-LixSi). The surface area-to-volume ratio of this Si phase is seen to
increase between the analysed 3D volumes from 2.86 mm2/mm3 in
the pristine electrode to 4.29 mm2/mm3 after 1st cycle; this change
can be associated with the increased Si surface area exposed due to
particle fracturing upon volume expansion. The surface area drops
slightly in the examined electrode volume at 100 cycles to
3.45 mm2/mm3 most likely due to a lower volume fraction of Si
particles or fragments present.

4. Conclusions

Upon cycling, Si electrodes experience significant degradation
in their electrochemical performance which can be related to
changes within the electrode microstructure. Here, for the first
time, X-ray nano-computed tomography was used to investigate
morphological evolution of the 3D microstructure of a Si-based
electrode over several charge-discharge cycles. Fracturing and
phase transformation of Si particles within the electrode material
were highlighted, and the evolution of morphological parameters
such as phase volume fraction and specific surface area as a result
of the electrode cycling were quantified in 3D. Such
high-resolution, nanometre-scale X-ray imaging, in combination



Fig. 4. Cross-sections through X-ray tomograms of the Si electrode (a) in its pristine state, (b) after 1 cycle, (c) after 10 cycles, and (d) after 100 cycles. 3D visualisation of
crystalline Si particles after the different cycle stages is shown on the right-hand side. The yellow arrows in (b) highlight fracturing in the bulk Si particles while the blue
arrows in (d) highlight what appear to be voids possibly formed from fracturing and material displacement due to repeated electrode volume changes.
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Fig. 5. (a) 3D rendering of the pristine Si electrode particles. (b–d) show 3D renderings of the electrode after 1,10 and 100 cycles respectively. Left: 3D rendering showing both
Si phase (yellow) and low attenuating phase (transparent green). Right: 3D rendering of Si phase only. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Table 2
Morphological parameters extracted from the 3D reconstructions of the electrode before and after cycling.

Cycle number Phase volume fraction (%) Pure Si specific surface area (mm2/mm3)

Pure Si phase Low-attenuating phase

0 21.30 – 2.86
1 5.84 44.10 4.29
10 5.48 79.92 4.36
100 3.65 46.01 3.45
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with impedance measurements, provides opportunities to obtain
better understanding of the electrochemically-induced degrada-
tion mechanisms in lithium-ion batteries.
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