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Abstract 

Nowadays, more than half of the world’s web traffic comes from mobile phones, and by 2020 

approximately 70 percent of the world’s population will be using smartphones. The unprecedented 

market penetration of smartphones combined with the connectivity and embedded sensing capability 

of smartphones is an enabler for the large-scale deployment of Intelligent Transportation Systems 

(ITS). On the downside, smartphones have inherent limitations such as relatively limited energy 

capacity, processing power, and accuracy. These shortcomings may potentially limit their role as an 

integrated platform for monitoring driver behaviour in the context of ITS. This study examines this 

hypothesis by reviewing recent scientific contributions. The Cybernetics theoretical framework was 

employed to allow a systematic comparison. First, only a few studies consider the smartphone as an 

integrated platform. Second, a lack of consistency between the approaches and metrics used in the 

literature is noted. Last but not least, areas such as fusion of heterogeneous information sources, Deep 

Learning and sparse crowd-sensing are identified as relatively unexplored, and future research in 

these directions is suggested.  
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Introduction 

Nowadays, the use of smartphones is, indisputably, a part of our lives. The fact that everything is 

becoming more portable is among others a result of this interaction (Shuib et al., 2015). In the late 

1990s and within a few years the use of mobile phones completely changed the way of communication 

both in social and professional level (Comer and Wikle, 2008). A few years later, mobile Internet 

technology enabled us to exchange data, emails and mobile browsing giving us access to more 

information in our everyday life. Fast mobile Internet in combination with more advanced smartphone 

operating systems (i.e. Android, iOS) generated further opportunities for applications in multimedia, 

cloud-based services and mobility (Khan et al., 2013). At the end of the 2010s, the embedment of 

sensors facilitated the use of smartphones as flexible mobile measurement devices, see Table 1 (Ganti 

et al., 2011). Furthermore, from 2014 onwards, the operating system of smartphones improved 

significantly bringing energy savings and enhanced connectivity, see Table 2. Different fields of 

research investigated the new sensing and communication capabilities, including health monitoring 

(Ben-Zeev et al., 2015), commerce (Shaikh and Karjaluoto, 2015), education (Merchant, 2012), and 

well-being (Morillo et al., 2015). 

Table 1: Embedded sensors in a modern smartphone per Android version. In brackets the release 

date of the Android platform. 

Sensor Android 

1.5 

[04/2009] 

Android 

2.3 

[12/2010] 

Android 

4.0 

[10/2011] 

Android 

4.3 

[7/2012] 

Android 

5.0 

[11/2014] 

Android 

6.0 

[10/2015] 

Android 

7.0 

[08/2016] 

Temperature ☺ ☺ ☺ ☺ ☺ ☺ ☺ 

Camera ☺ ☺ ☺ ☺ ☺ ☺ ☺ 

GPS ☺ ☺ ☺ ☺ ☺ ☺ ☺ 

Microphone ☺ ☺ ☺ ☺ ☺ ☺ ☺ 

Accelerometer ☺ ☺ ☺ ☺ ☺ ☺ ☺ 

Ambient 

temperature 

− − ☺ ☺ ☺ ☺ ☺ 

Gravity − ☺ ☺ ☺ ☺ ☺ ☺ 

Gyroscope − ☺ ☺ ☺ ☺ ☺ ☺ 

Light ☺ ☺ ☺ ☺ ☺ ☺ ☺ 

Linear 

acceleration 

− ☺ ☺ ☺ ☺ ☺ ☺ 

Orientation ☺ ☺ ☺ ☺ ☺ ☺ ☺ 
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Pressure − ☺ ☺ ☺ ☺ ☺ ☺ 

Proximity ☺ ☺ ☺ ☺ ☺ ☺ ☺ 

Relative 

humidity 

− − ☺ ☺ ☺ ☺ ☺ 

Rotation 

vector 

− ☺ ☺ ☺ ☺ ☺ ☺ 

Game rotation 

vector 

− − − ☺ ☺ ☺ ☺ 

Tilt detector − − − − ☺ ☺ ☺ 

Gesture sensor − − − − ☺ ☺ ☺ 

 

Table 2: Operating system changes per Android version. In brackets the release date of the Android 

platform. 

 Communication Battery management 
Android 

5.0 

[11/2014] 

 New multi-networking features allow 

apps to query available networks such 

as Wi-Fi and cellular. 

 Allows apps to perform concurrent operations with 

Bluetooth Low Energy (BLE), allowing both 

scanning and advertising. 

Android 

6.0 

[10/2015] 

 Allows association of an app with a 

web domain. 

 Allows users to directly share content.  

 Allows voice interaction 

 

Android 

7.0 

[08/2016] 

  Improved battery life by deferring CPU and network 

activities when device is unplugged, stationary, and 

with the screen turned off. 

 Removal of implicit broadcasts and therefore 

unnecessary apps operation.  

 

This survey focuses on the use of smartphones as integrated platforms for monitoring driver 

behaviour, specifically the strategic and manoeuvring levels (Michon, 1985). The strategic and 

manoeuvring levels are interrelated and useful for the evaluation of Intelligent Transportation 

Systems (Chong et al., 2013). The driver behaviour at the reactive level was omitted, as it refers to 

actions with a span of only a few milliseconds. Modern cars have much more powerful computing 

capacity on board compared to smartphones for real-time and safety-critical applications1 . The 

theoretical framework of this review is the Cybernetics model, (Simpkins and Simpkins, 2012), see 

                                                 
1 https://www.engadget.com/2018/01/07/nvidia-xavier-soc-self-driving-cars/, accessed on 10/03/2018 

https://www.engadget.com/2018/01/07/nvidia-xavier-soc-self-driving-cars/
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Fig. 1. According to Cybernetics, driver behaviour depends on the iterative execution of a loop 

comprising five elements: sensing, information processing, decision-making, feedback and action. 

 

 

 

 

 

 

Fig. 1: Cybernetics paradigm: Driver behaviour depends on the iterative execution of sensing, 

information processing, decision-making, feedback and action.  

 

The survey mainly considered scientific contributions that were comprehensive and self-contained, 

to allow theoretical comparison. We used the Scopus online database for this purpose. The survey did 

not cover non-smartphone-based publications. Driver behaviour was considered in a multi-modal 

context; for example, it is of interest to know the transportation mean used by the driver for the last 

mile coverage (park and ride schemes). Fig. 2 depicts a schematic of the review. 
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Fig. 2: Conceptual scheme of the review. A survey on smartphone-based methods for integrated 

monitoring of driver behaviour.  

 

Smartphones have several shortcomings that may pose limitations to their use as integrated platforms. 

First, the low accuracy of smartphone signals, as smartphone sensors are usually from the lowest 

commercial grade. Second, the need to drain as little battery energy as possible. Although it is possible 

to charge the smartphone inside the vehicle, the drivers may use different transportation means in 

their journey. Third, the limited processing power compared to the one available on board of a vehicle. 

The latter was one of the main reasons why reactive driver behaviour was not covered. On-board 

vehicle systems are more suitable for this. On the other hand, smartphones facilitate crowd sensing, 

not possible for the majority of the current vehicle fleet. Hence, the research questions that drove this 

survey are: a) How was information fused and what was the role of connectivity? b) Which are the 

best practices that overcome smartphone shortcomings? 

The paper is organised into five sections: Section 2 discusses sensor fusion methods for improving 

smartphone positioning accuracy and reducing battery drain. Smartphone-based driver behaviour 

monitoring at the strategic and manoeuvring levels is the focus of Section 3. In Section 4, a critical 
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analysis of the publications reviewed is given. The conclusions and future research directions are 

given in Section 5. 

 

2 Smartphone-based vehicle positioning 

Smartphone-based vehicle positioning solutions upturned around 2008 when GPS antennas and 

navigation maps commenced in smartphones. Smartphone-based positioning suffers mainly from 

relatively low positioning accuracy and high battery drain (Menard et al., 2011a, Menard et al., 

2011b, Chowdhury et al., 2016, Humphreys et al., 2016;).  

2.1 Battery drain reduction 

Smartphones can achieve long battery autonomy by frequently entering and exiting the so-called 

“sleep” mode. During GPS operation smartphones cannot enter the sleep mode, and significant 

amounts of energy are consumed. This happens because they communicate for an extended period 

with some satellites and perform computationally intensive calculations to determine the vehicle 

position. Different solutions have been proposed to reduce GPS usage and therefore energy 

consumption. From a sensor fusion point of view, three main approaches were identified, and typical 

examples are summarised in Table 3. The first approach combines the accelerometer and GPS speed 

signals to infer vehicle motion. During standstill the acceleration and the respective noise level are 

considerably smaller. The energy consuming GPS signal is requested only when the vehicle is moving 

(Lin et al., 2014; Oshin et al., 2012).  

Fig. 3 illustrates the longitudinal acceleration and its noise level of a vehicle, measured using a 

smartphone, during a naturalistic driving field trial in Coventry, U.K. (Christopoulos, et al., 2018). 

As observed the periods at which the vehicle is not moving are relatively small. However, during 

traffic congestion, the proportion can become more substantial. The second approach combines 

cellular, Wi-Fi networks, and GPS (Anagnostopoulos et al., 2016; Bareth and Kupper, 2011). The 
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coordination is performed hierarchically, based on the energy efficiency and positioning accuracy of 

each technology. The relative energy efficiency and positioning accuracy of each technology is 

reported in the review study by Wahlström et al. (2017). The particular solution depends on the 

available infrastructure, for example, Wi-Fi has much lower accuracy in rural compared to urban 

areas. The third approach reduces battery drain by transferring the computationally intensive 

calculations from the smartphone to the cloud (Liu et al., 2016). Prerequisite for this type of solution 

is the reliable and continuous communication between the smartphone and the server. 

 

a) 

 

b) 

Fig. 3: a) Vehicle longitudinal acceleration measured using a smartphone during a naturalistic drive 

in Coventry city, U.K. b) Estimated noise level in the acceleration signal using wavelet 

decomposition (Christopoulos, et al., 2018). 

 

Table 3 lists the energy savings reported in the publications reviewed. The energy savings refer to the 

reduction of smartphone battery drain. The experiments were not standardised, so a direct comparison 

was not possible. Differences in the values reported should be expected if the experiments were 

repeated in an environment with different infrastructure. In any case, it is still possible to appreciate 

the order of magnitude of the potential energy savings. The hierarchical approach reports the best 

results. This outcome is very encouraging as with the proliferation of 5G networks, performance and 

energy savings will further improve. On the other hand, this solution can be implemented only in 
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particular geographic areas. For example, 5G network coverage is expected only in urban areas2. 

Considerable energy savings were reported also with mobile cloud computing. There, the GPS 

computationally and energy-intensive calculations are performed in the cloud. Mobile cloud 

computing is dependent on the mobile network capacity and available bandwidth (Akherfi et al., 

2018). The lowest reported energy saving potential was achieved when the smartphone signals were 

fused locally. The energy savings were approximately 25%, which is still a considerable amount.  

Table 3: Comparison of smartphone battery energy savings using different sensor fusion methods 

Reference Short description Sensors Energy 

savings  

Oshin et al., 2012 GPS signal acquired only when vehicle is 

moving 

GPS, accelerometer 27.0% 

Lin et al., 2014 Accelerometer-based positioning. 

Absolute position correction at frequent 

intervals using GPS signals and map 

information. 

GPS, accelerometer, compass, 

Navigation maps 

24.7% 

Bareth and Kupper, 

2011, 

Anagnostopoulos et 

al. 2016 

Hierarchical approach utilizing either the 

cellular network, WiFi network or GPS. 

 Cell-ID, WiFi, GPS 90.0% 

Liu et al., 2016 Energy consuming calculations are 

performed on the cloud 

GPS 66.6% 

 

2.2 Positioning accuracy improvement 

GPS positioning accuracy is a function of GPS signal quality, which depends on several factors 

including the number of visible satellites, weather and surroundings such as buildings and trees. The 

latter is also known as the urban canyon effect (Groves, 2011; Wang et al., 2012; L. Wang et al., 

2013). Fig. 4 shows the typical accuracy of the smartphone GPS position signal during a naturalistic 

driving field trial in the area of Coventry, U.K. (Christopoulos et al., 2018). Positioning accuracy is 

on average 3 m, however, degrades significantly in some areas, depending on the situation. Two use 

cases dominate the literature on smartphone-based vehicle positioning. The first aims to maintain 

positioning accuracy when the GPS signal is weak or lost. The second is focused on achieving lane 

level accurate positioning.  

                                                 
2 https://5g.co.uk/coverage/, accessed on 10/03/2018 

https://5g.co.uk/coverage/
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Fig. 4: a) Route followed during a naturalistic driving field trial in the U.K. (indicated with red 

colour) b) Corresponding smartphone GPS positioning accuracy. Degradation while crossing 

bridges and entering the urban area (Christopoulos, et al., 2018). 

 

Table 4 summarises the performance of the different sensor fusion methods.  The Input Delay Neural 

Network (IDNN) method achieves better positioning accuracy compared to the Radial Basis Neural 

Networks and Kalman Filter (Noureldin et al., 2011). Table 5 provides details of the comparison 

between them. Notably, the performance of Kalman Filter is worse for more extended GPS outages. 

Input Delay Neural Networks have a higher dependency on past sampling instants than Radial Basis 

Neural Networks and Kalman Filter. The average positioning error using IDNN was 2.7 m in the 

Longitude and 3.8 m in the Latitude. It is noted that the accuracy using IDNN was better than the one 

in Zirari et al. (2010), where a hierarchical approach combining cellular, WiFi and GPS positioning 

was used. It was also better than the one in Wang et al. (2012), where a virtual model of the city was 

employed to compensate the effects of the urban canyon on GPS signal quality. 

 

On the other hand, the level of accuracy using Input Delay Neural Networks is not that of lane level. 

The latter seems to be feasible only when cameras and maps that include lane information are 

employed. As a means to reduce battery drain, Dabove et al.( 2015) and Song et al. (2014) explored 

the possibility to achieve lane-level accuracy by intermittently using the camera. A potential way to 

improve GPS position accuracy is by sharing the GPS information between smartphone road users 

and other infrastructure objects of known GPS location. Unfortunately, this idea has been studied 
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only in simulation or using DSRC (Dedicated Short-Range Communications) vehicle to vehicle 

communication (Bento et al., 2017; Espada et al., 2014).  

 

Table 4: Comparison of smartphone-based positioning accuracy using different sensor fusion 

methods 

Reference Short description Sensors Accuracy 

Zandbergen, 

2009 

Switch between Cell-ID, WiFi and 

GPS 

GPS, Wi-Fi, Cell-

ID 
 GPS: Median error value 8 m 

 WiFi: Median error value 74 m 

 Cell-ID: Median error value 600 m 

Zirari et al., 

2010 

WiFi position when GPS signal is 

weak or lost 

GPS, WiFi Maximum positioning error below 100 m 

Noureldin et 

al., 2011 

Input Delayed Neural Networks to 

estimate the speed and position of 

the vehicle during GPS outage 

GPS, 

accelerometer, 

gyroscope 

For a GPS outage 100s: 

 Average positioning error - 

Longitude: 2.7 𝑚 

 Average positioning error - Latitude: 

3.8 𝑚 

 Maximum positioning error: 7.9 𝑚 

Radial Basis Function Neural 

Networks to estimate the vehicle 

position during GPS outage 

GPS, 

accelerometer, 

gyroscope 

GPS outage 100s 

 Average positioning error - 

Longitude: 4.7 𝑚 

 Average positioning error - Latitude: 

7.1 𝑚 

 Maximum positioning error: 12 𝑚  

Kalman filter to estimate the 

vehicle position during GPS outage 

GPS, 

accelerometer, 

gyroscope 

GPS outage 100s 

 Average positioning error - 

Longitude: 6.8 𝑚 

 Average positioning error - Latitude: 

8.5 𝑚 

 Maximum positioning error: 18 𝑚 

Bierlaire et 

al., 2013 

Probabilistic method for fusing 

GPS data and map trajectories 

GPS Not reported 

Guido et al., 

2014 

Probabilistic method for estimating 

speed confidence intervals in 

relation to signal strength 

GPS Speed intervals as a function of GPS 

signal quality 

Song et al, 

2014 

- Camera to identify the lane in 

which the vehicle is driving.  

- Inertial Measurement Unit to 

identify the lane changes. 

accelerometer, 

gyroscope, 

camera, map 

88.5% accurate in detecting the correct 

lane (maximum positioning error ≈ 1.5 

𝑚) 

Espada et 

al., 2014 

- Nearby smartphones share 

GPS position. 

- Smartphone with best GPS 

position accuracy is used as a 

reference. 

GPS, Wi-Fi direct  Not reported 

Dabove et 

al., 2015 

- Inertial Measurement Unit to 

provide the relative position of 

the vehicle.  

- Camera to capture the position 

of the vehicle in relation to the 

environment (eliminate drift 

using map information). 

accelerometer, 

gyroscope, 

camera 

 Maximum positioning error: 0.5 𝑚 

for an update frequency 2 𝑠 

 Maximum positioning error: 2.2 𝑚 

for an update frequency 5 𝑠 

Wang et al., 

2012, Wang 

et al., 2015 

City buildings 3D virtual model 

estimates signal strength and 

multipath error at different 

positions 

GPS Average cross-street positioning error 

below 5 m  
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Aly et al., 

2016 

- Lane and lane changes 

detection using lateral 

accelerometer and map 

information 

- Detection of lane anchors 

using accelerometers and 

crowdsourcing 

Accelerometer, 

camera 

Accurate detection of lane position 84% 

of the time 

 

Table 5: Positioning error during GPS outage using Input Delay Neural Networks (IDNN), Radial 

Basis Function Neural Networks (RBFNN) and Kalman Filter (KF) (Noureldin et al., 2011)  

  Positioning error [m] 

GPS outage  IDNN RBFNN KF 

40 s Longitude 1.8  2.5 1.9 

 Latitude 3.8 3.5 3.6 

100 s Longitude 2.7 4.7 6.8 

 Latitude 3.8 7.1 8.6 

 

3 Smartphone-based monitoring of driver behaviour 

Driver behaviour can be distinguished in three levels depending on its time scale: strategic, tactical 

and reactive. The strategic defines the general planning stage of a trip including the determination of 

trip targets, route selection, and transportation mode choice (Michon, 1985). The time scale at this 

level is the longest one and decisions may influence driver behaviour for a period of a few minutes 

up to several hours. 

3.1 Transportation mode classification 

Smartphone-based transportation mode classification has attracted the interest of academia and 

industry. Table 6 compares relevant scientific contributions. The comparison is based on the 

Cybernetics model. In this context, the signals, decision-making method, sensor fusion level, noise 

rejection, feedback level, and performance are reported. The symbol “LS” refers to sensor fusion at 

the smartphone, while “CS” refers to uploading the raw data to a server and then combining the 
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signals centrally. In case the method provides a probabilistic formulation (one that can be tuned) for 

rejecting noise and outliers embedded in the signal the check symbol “✓” is used. In the opposite case 

we use the dash symbol “–”. Feedback is distinguished between “Compared to me” and “Compared 

to all”. We choose the first option when driver behaviour is evaluated only based on its performance. 

The latter is used when the driver behaviour is compared to others performance. The metrics used in 

different studies in general vary. 

 

A crowd-sensing method employing Support Vector Machines reported the best performance, 99% 

classification accuracy (Semanjski and Gautama, 2016). Several parameters were fused to perform 

the classification including the GPS position, duration of the trip, distance covered, user i.d. and time 

of the day. When signals were combined only at the smartphone level, the best performance was 97% 

(Martin et al., 2017). Only speed and acceleration were fused in that case. 

 

Some studies suggest that the acceleration signal is not that informative because a similar range of 

values is obtained for a variety of transportation modes (Biljecki et al., 2013). Because of this the 

classification of specific transportation modes, for example that of a bicycle, is particularly difficult. 

A variety of rule based and probabilistic methods were developed to compensate for the ambiguity in 

the data (Eftekhari and Ghatee, 2016; Xiao et al., 2015, Martin et al., 2018). Bayesian networks, 

random forests and fuzzy expert systems were among those reviewed. 

 

Table 6: Comparison of sensor fusion methods for smartphone-based classification of transportation 

mode 

Transportation 

mode 

classification 

Signals  Method Fusion  Noise Feedback Performance 

Byon et al., 2009 

 

Speed, acceleration,  

number of satellites, 

Horizontal Dilution 

of Precision 

Neural Networks LS − Compared 

to me 

60-98%  

Xiao et al., 2012/ 

 

Speed, acceleration Rule based 

 

LS − Compared 

to me 

n/a 

Biljecki et al., 2013 Speed, map 

information 

Fuzzy expert LS ✓ 

 

Compared 

to me 

92% accuracy 
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Feng and 

Timmermans, 2013 

Speed, acceleration Bayesian Network LS ✓ 

 

Compared 

to me 

92%  

 

Byon and Liang, 

2014 

Speed, acceleration, 

number of satellites 

in view, 

magnetometer 

Neural Networks LS − Compared 

to me 

74-83%  

Xiao et al. 2015  Speed, acceleration, 

travel distance 

Bayesian Network 

 

LS ✓ 

 

Compared 

to me 

93-95%  

 

Assemi et al., 2016 Speed, acceleration, 

orientation, distance 

Multinomial 

Logistic Regression 

Model 

LS − Compared 

to me 

95%  

 

Eftekhari and 

Ghatee, 2016 

Speed, acceleration, 

orientation 

Rule based 

 

LS − Compared 

to me 

95% 

Semanjski and 

Gautama, 2016  

 

User ID, duration, 

distance, 

transportation mode, 

start and end time, 

GPS position 

Support Vector 

Machines  

CS − Compared 

to all 

99%  

Martin et al., 2018 GPS position, 

accelerometer 

Movelets, k-nearest 

neighbors, feature 

extraction 

CS − Compared 

to me 

89% 

 GPS position, 

accelerometer 

Movelets, random 

forests, feature 

extraction 

CS ✓ 

 

Compared 

to me 

97% 

Dabiri and Heaslip, 

2018 

GPS position Outlier removal, 

Convolutional 

Neural Networks 

CS − Compared 

to me 

85% 

S: Smartphone based fusion 

CS: Crowd sensing based fusion 

Noise: The method provides a probabilistic framework for rejecting noise and outliers contained in the signal 

Compared to me: Feedback is provided to the driver using absolute metrics 

Compared to all: Feedback is provided to the driver using relative metrics (compared to peers or drivers using the same 

routes) 

 

For the classification task several machine learning approaches have been tried out. It was not 

possible to derive general conclusions by directly comparing the results of the different studies 

because details on the implementation, tuning and data used for the training task were usually not 

reported. However, it was possible to derive conclusions based on some comprehensive papers.  In 

Xiao et al. (2015) Bayesian Networks performed better than Support Vector Machines (SVM) and 

SVMs better than Neural Networks. Table 7 lists the performance achieved for the training and test 

sets separately. The latter is a measure of the generalisation capability of the method. Bayesian 

Networks outperformed SVMs by 2.5% in the training set and 7% in the test set. In Eftekhari and 

Ghatee (Eftekhari and Ghatee, 2016) Neural Networks, k-Nearest Neighbours and Naïve Bayes 

performed similarly, achieving 95% classification accuracy. The precision and accuracy of Support 
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Vector Machines was less than 90%, Table 8. The first measure refers to the number of accurate 

positive value predictions, while the second one is the number of correct predictions overall. 

 

Table 7: Comparison of transportation mode classification performance using smartphones and 

machine learning techniques. Bayesian Network (BN), Support Vector Machines (SVM) and 

Neural Networks (NN) (Xiao et al., 2015). 

 Classification performance 

 Training set Test set 

SVM 92.32% 85.65% 

NN 91.95% 82.07% 

BN 94.74% 92.74% 

 

Table 8 : Transportation mode classification performance using smartphones and machine learning 

techniques. Neural Network (NN), K-Nearest Neighbour (KNN), Naïve Bayes (NB) and SVM 

classifiers (Eftekhari and Ghatee, 2016). 

 Classification performance 

 Precision Accuracy 

Eftekhari and Ghatee, 

2016 

93 95 

NN 93 95 

KNN 94 95 

NB 92 95 

SVM 82 89 

 

3.2 Travel time prediction 

Accurate and reliable travel time prediction is crucial for drivers and ITS evaluation3,4,5. Traffic can 

                                                 
3 https://ops.fhwa.dot.gov/publications/tt_reliability/TTR_Report.htm#overview  
4 https://citymapper.com/, accessed on 10/03/2018 
5 http://www.zipabout.com/, accessed on 10/03/2018 

https://ops.fhwa.dot.gov/publications/tt_reliability/TTR_Report.htm#overview
https://citymapper.com/istanbul
http://www.zipabout.com/
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influence travel time heavily (Polson and Sokolov, 2017). Up to the end of the 2010s, the standard 

way of capturing traffic data was by fixed vehicle inductive loop presence detectors, a costly and 

inflexible solution (Vlahogianni et al., 2014, Vlahogianni, 2015).  

Table 9 lists recent contributions on smartphone-based travel time prediction. The metrics used by 

the authors were not consistent, and a direct comparison of the methods was not possible. Notably, 

most contributions used crowd-sensing to build the travel time prediction model. In the majority, only 

the speed and GPS position were fused. Some authors highlighted the importance of weather and time 

at which travel takes place (Dobre and Xhafa, 2014 Amirian et al., 2016). In a comparison between 

least squares, K nearest neighbours, LARS, LASSO, Adaboost, gradient boosting and random forest 

methods, the last one showed the best performance (Amirian et al., 2016).  

Table 9: Sensor fusion methods for smartphone-based prediction of travel time 

Travel time 

prediction 

Signals  Method Fusion  Noise Feedback Performance 

Campolo et al., 

2012 

GPS position, 

speed 

n/a LS − Compared 

to me 

n/a 

Tao and 

Manolopoulos, 

2012 

Position, speed Simulation-

based, 

Kalman 

filtering 

CS ✓ 

 

Compared 

to me 

- 85% correct 

allocation of road 

links and 

- 1.8 m/s mean 

absolute speed error 

Tostes et al., 

2013 

Map 

information 

Image 

processing, 

logistic 

regression 

CS − Compared 

to me 

8% wrong classification 

of traffic flow  

Ansar et al., 

2014 

 

GPS position, 

speed 

SVR and 

Vector Matrix 

multiplication 

CS − Compared 

to me 

3.36-8.02% root mean 

distortion error 

Dobre and 

Xhafa, 2014 

Speed, GPS 

position, time, 

date 

Linear 

interpolation 

CS − Compared 

to me 

80% accurate for 20% 

allowable error  

Amirian et al., 

2016 

Change of 

elevation, age, 

time of day, day 

of week, gender, 

weather 

condition 

Least squares  CS − Compared 

to me 

Prediction accuracy 

based on correlation R2 : 

0.64 

  K nearest 

neighbours 

CS − Compared 

to me 

accuracy R2 : 0.62 

  LARS CS − Compared 

to me 

accuracy R2 : 0.68 

  LASSO CS − Compared 

to me 

accuracy R2 : 0.69 
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  Elastic net CS − Compared 

to me 

 accuracy R2 : 0.69 

  Adaboost CS − Compared 

to me 

accuracy R2 : 0.70 

  Gradient 

boosting 

CS − Compared 

to me 

accuracy R2 : 0.71 

  Random forest CS − Compared 

to me 

0.73 

Woodard et al., 

2017 

Speed, GPS 

position 

Markov 

process 

CS ✓ 

 

Compared 

to me 

10% accurate travel time 

prediction 

LS: Smartphone based fusion 

CS: Crowd sensing based fusion 

Noise: The method provides a probabilistic framework for rejecting noise and outliers contained in the signal 

Compared to me: Feedback is provided to the driver using absolute metrics 

Compared to all: Feedback is provided to the driver using relative metrics (compared to peers or drivers using the same 

routes) 

LARS: least-angle regression 

LASSO: lasso (least absolute shrinkage and selection operator) 

R2: linear correlation coefficient 

 

3.3 Route choice prediction 

Traffic regulators and local authorities can tremendously benefit by predicting commuters route 

choices. Multi-modal and flexible transportation solutions can be built based on this knowledge 6,7. 

For the prediction, the GPS trace and map information are required (Shi and Liu, 2010, Sile et al., 

2016). For high sampling frequencies (1 Hz) and good quality of GPS signal, the task is rather 

straightforward. However, due to the urban canyon effect or due to low sampling frequencies − for 

energy saving purposes − the GPS data acquired may be sparse. Sparsity can make the route choice 

identification and prediction more challenging. Table 10 compares different methods for identifying 

route choices.  The metrics employed in the various studies differ.  Hierarchical clustering based on 

crowd-sensing reported the best performance, 100% accuracy (Ciscal-Terry et al., 2016). For sensor 

fusion applied locally, the best performance was 91.3% with a combined Hidden Markov and 

Multinomial Logit Models (Jagadeesh and Srikanthan, 2017).  

Table 10: Sensor fusion methods for smartphone-based identification of route choices 

Route choice 

prediction 

Signals  Method Fusion  Noise Feedback Performance 

                                                 
6 http://www.flexiroute.net/, accessed on 10/03/2018 
7  https://www.livetrekker.com, accessed on 10/03/2018 

http://www.flexiroute.net/
https://www.livetrekker.com/
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Miwa et al., 2012 

 

GPS position, map 

information 

Map 

matching 

LS − Compared 

to me 

90% accuracy 

ratio of plot match 

Brazil et al., 2013 Drive Time, Drive 

Emission, Driving 

Habit, Drive Age, 

Drive Live, Rail 

Time, Rail Habit, 

Rail Age, Bus-

Rail Time 

Linear 

regression, 

rules 

LS − Compared 

to me 

R2: 0.2379 

Ciscal-Terry et al., 

2016 

Speed, GPS 

position, map 

information 

Hierarchical 

cluster 

analysis 

CS − Compared 

to all 

100% 

Fard et al. 2017 

 

GPS position Wavelets LS − Compared 

to me 

99% elimination 

of negative inter-

vehicle distance  

Jagadeesh and 

Srikanthan, 2017 

GPS position, map 

information 

Hidden 

Markov 

Model and 

Multinomial 

Logit Model 

LS ✓ 

 

Compared 

to me 

91.3 % accuracy 

  Hidden 

Markov 

Model 

LS ✓ 

 

Compared 

to me 

89.6% accuracy 

  Newson-

Krumm 

LS ✓ 

 

Compared 

to me 

81.2% accuracy 

LS: Smartphone based fusion 

CS: Crowd sensing based fusion 

Noise: The method provides a probabilistic framework for rejecting noise and outliers contained in the signal 

Compared to me: Feedback is provided to the driver using absolute metrics 

Compared to all: Feedback is provided to the driver using relative metrics (compared to peers or drivers using the same 

routes) 

R2: linear correlation coefficient 

 

 

3.4 Driver aggressiveness classification 

Behaviour at the tactical level refers to driver actions that last a few seconds, such as car following, 

lane change and overtaking (Michon, 1985). Tactical driving behaviour can influence heavily road 

safety, traffic flow smoothness and fuel consumption. Two main aspects of tactical behaviour were 

reviewed: driver aggressiveness and eco-friendliness. Studies showed that aggressiveness and eco-

friendliness are interrelated, though not identical (Alessandrini et al., 2009; Sivak, M. & Schoettle, 

2012). Some smartphone applications were developed for improving tactical driving behaviour8,9.  

There are no standards for characterising tactical driving, and to this end, some metrics (and their 

combination) have been proposed. The most popular ones are listed in Table 11 (Handel et al., 2014).  

                                                 
8 https://www.aviva.co.uk/car-insurance/drive/, accessed on 10/03/2018 
9 https://motormate-by-confused-com.soft112.com/, accessed on 10/03/2018 

https://www.aviva.co.uk/car-insurance/drive/
https://motormate-by-confused-com.soft112.com/
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Table 11: Features for characterising driver tactical behaviour (Handel et al., 2014) 

Metric Description 

Acceleration (positive 

longitudinal acceleration) 

Number of rapid acceleration events and harshness 

Braking (negative longitudinal 

acceleration) 

Number of harsh braking events and harshness 

Speeding (absolute) Amount of absolute speeding 

Speeding (relative) Amount of speeding relative to a location dependent limit 

Smoothness (variance of 

acceleration) 

Long-term speed variations around a nominal speed 

Swerving (lateral acceleration) Number of abrupt steering manoeuvres and their harshness 

Cornering Number of events when turning at too high speed and their harshness 

Eco-ness Instantaneous or trip-based energy consumption or carbon footprint 

Elapsed time Time duration of the trip 

Elapsed distance Distance of the trip 

Time of day Actual time of day when making the trip 

Location Geographical location of the trip 

 

Due to the arbitrary position of a smartphone inside a vehicle, it is required to re-orient the smartphone 

signals along the vehicle’s coordinate system. This should be done at the beginning of each route and 

each time the smartphone changes orientation. Re-orientation is achieved by fusing the accelerometer, 

gyroscope and magnetometer signals and calculating the Euler angles. Re-orientation can also be 

achieved by fusing only the accelerometer and magnetometer signals10. Because the accelerometer 

and gyroscope signals are noisy, it has been suggested to re-orient the signals using the average values 

of the Euler angles (Vlahogianni and Barmpounakis, 2017).   

The variety of driving styles and the fact that smartphone sensor signals are noisy, make difficult to 

distinguish ordinary events from dangerous ones. Table 12, provides a summary of approaches found 

in our literature review. For the classification task various machine learning methods were proposed 

including rough set theory, decision tree C4.5, Neural Networks, Support Vector Machines, Random 

Forrest and Bayesian Networks (Ferreira et al., 2017). Rough set theory and Random Forrest methods 

achieved the best performance with 99.4% event detection and Area Under Curve (AUC) in the 

Receiver Operating Characteristic graph higher than 0.98, respectively. 

Table 12: Sensor fusion methods for smartphone-based monitoring of aggressive driver behaviour 

                                                 
10 https://www.nxp.com/docs/en/application-note/AN3461.pdf, accessed on 10/03/2018 

https://www.nxp.com/docs/en/application-note/AN3461.pdf
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Aggressive 

driving 

classification 

Signals  Method Fusion  Noise Feedback Performance 

Fazeen et al, 

2012 

Acceleration  LS − Compared 

to me 

 

Zeeman and 

Booysen, 2013 

Speed, acceleration Rule based LS − Compared 

to me 

n/a 

Zhu et al. 2013/  Speed, acceleration,  Clustering LS − Compared 

to me, 

Compared 

to all 

n/a 

Castignani and 

Derrmann, 2015 

Acceleration, 

orientation, GPS 

speed, GPS heading 

Fuzzy 

logic 

LS − Compared 

to me 

TPR>90% 

Daptardar et al., 

2015 

Acceleration, 

gyroscope 

Hidden 

Markov 

Model, 

Jerk 

Energy 

LS − Compared 

to me 

95% accuracy 

Predic and 

Stojanovic, 

2015 

GPS position, 

acceleration 

Decision 

trees, 

clustering 

CS − Compared 

to all 

80-100% precision 

Saiprasert et al., 

2015 

GPS position, speed, 

orientation, 

acceleration 

Rule-based LS − Compared 

to me 

Detects 8 out of 12 

driving event types 

  Dynamic 

Time 

Warping 

LS − Compared 

to me 
 Detects 11 out of 12 

driving event types 

 Detection rate 

between 37.5-100%.   

  Self-

Triggered 

Dynamic 

Time 

Warping 

LS − Compared 

to me 
 Detects 8 out of 12 

driving event types 

 Detection rate 

between 0-80%.   

Vlahogianni and 

Barmpounakis, 

2017 

 

Acceleration, speed, 

speed variance, GPS 

position, map 

information 

Rough set 

theory 

LS ✓ 

 

Compared 

to me 

99.4 % event detection 

accuracy 

TPR: 88.1% 

FPR: 0.3% 

Júnior et al., 

2017 

 

Accelerometer, 

gyroscope, 

magnetometer 

Random 

Forrest 

CS ✓ 

 

Compared 

to me 

AUC>0.98 in ROC 

Meng et al. 

2014 

 

Accelerometer, map 

information 

Speed 

estimation 

using 

crowdsour

ced data 

CS − Compared 

to all 

>94% accuracy 

Singh et al., 

2017 

Accelerometer, 

gyroscope 

Dynamic 

Time 

Warping 

LS − Compared 

to all 

100% braking events 

97% normal turns 

87% aggressive turns 

LS: Smartphone based fusion 

CS: Crowd sensing based fusion 

Noise: The method provides a probabilistic framework for rejecting noise and outliers contained in the signal 

Compared to me: Feedback is provided to the driver using absolute metrics 

Compared to all: Feedback is provided to the driver using relative metrics (compared to peers or drivers using the same 

routes) 

TPR: True Positive Rate 

AUC: Area Under Curve 

ROC: Receiver Operating Characteristics diagram 

3.5 Driver eco-friendliness classification 
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The largest contributor to global warming, by subsector, is road transport11. From the current vehicle 

fleet, only a small percentage is equipped with a technology that can inform drivers about their driving 

behaviour and how eco-friendly it is. Instead, numerous smartphone applications are available for 

this purpose12,13,14. Eco-friendly driving is mainly dependent on vehicle speed, acceleration profiles 

and the engine’s efficiency at the operating points (Ehsani et al., 2016). 

Table 13 summarises various smartphone-based approaches for detecting and improving eco-friendly 

driving. Central to the accurate fuel consumption estimation is the correct estimation of gear changes, 

because this determines the engine speed and thus engine efficiency. Most of the trials that tried to 

achieve this without using On Board Diagnostic (OBD) information deemed unsuccessful. More 

accurate approaches were developed combining smartphone measurements and OBD signals such as 

mass flow sensor, manifold absolute pressure, and intake air temperature (Magana and Munoz-

Organero, 2016). To retrieve the additional OBD information it is currently necessary to install 

additional hardware. This requirement restricts scalability. Although it is not expensive it is not handy 

and may pose a threat from a Cybersecurity point of view (Cheah et al., 2017).  

According to the literature, the potential fuel consumption savings by improving driver eco-

friendliness using smartphones are significant, ranging between 3-30%. A recent study using in-

vehicle data recorders reported potential energy savings in the range 3-10% (Toledo and Shiftan, 

2016). Apparently, the improvement depends on the driver behaviour and estimation accuracy. The 

latter depends on the vehicle model. In case, a validated vehicle model is used the error can be 

negligible. In the opposite, the error was approximately 10% of the actual value.  

Table 13: Sensor fusion methods for smartphone-based classification of eco-friendly driver 

behaviour 

Eco-friendly 

driving 

classification 

Signals  Method Fusion  Noise Feedback Performance 

                                                 
11 http://www.who.int/sustainable-development/transport/health-risks/air-pollution/en/, accessed on 10/03/2018 
12 http://ecodrive.driveuconnect.eu/, accessed on 10/03/2018 
13 https://www.geco-drive.fr/, accessed on 10/03/2018 
14 http://www.play-ecodriver.ch/en,  accessed on 10/03/2018 

http://www.who.int/sustainable-development/transport/health-risks/air-pollution/en/
http://ecodrive.driveuconnect.eu/
https://www.geco-drive.fr/
http://www.play-ecodriver.ch/en
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Li et al., 2012 GPS position, speed, 

acceleration. jerk 

Wavelet 

denoising, 

decision 

tree, vehicle 

model 

LS ✓ 

 

Compared 

to me 

0.99 correlation,  

MAE≈0.08 kg fuel 

consumption 

estimation 

 

Tulusan et al., 

2012 

 

Acceleration, average 

speed, gear change 

Simulation-

based 

LS − Compared 

to me 

3.23% fuel 

consumption 

improvement 

Diaz et al., 

2014 

GPS position, speed, 

acceleration, jerk, 

acceleration, gyrometer 

Neural 

networks 

LS − Compared 

to me 

11.7% accurate fuel 

consumption 

estimation  

Skog et al., 

2014 

GPS speed, altitude, 

vehicle parameters 

Vehicle 

model based, 

polynomial 

regression 

models 

LS − Compared 

to me 
 root mean square 

error of ∼0.3 [g/s], 

 normalised mean 

square error ≈10% 

Astarita et al., 

2015 

Speed, acceleration, 

GPS position, fuel 

consumption 

Mapping CS − Compared 

to all 

9.5-13.5% fuel 

consumption error 

Orfila et al., 

2015 

Acceleration, speed 

variation, gear change 

Rule-based CS − Compared 

to all 

30% fuel consumption 

improvement 

Magana and 

Munoz-

Organero, 

2016 

 

Vehicle speed, engine 

speed, engine load, 

mass air flow, throttle 

position, travel 

distance, smartphone 

camera, GPS sensor, 

weather information  

Multilayer 

Perceptrons, 

Naïve 

Bayes, C4.5, 

fuzzy logic, 

clustering 

LS − Compared 

to all 

11.4% fuel 

consumption 

improvement 

Meseguer et 

al. 2017 

 

Acceleration, engine 

revolutions per minute, 

speed, mass flow 

sensor, manifold 

absolute pressure, and 

intake air temperature 

Neural 

networks 

CS − Compared 

to all 

15- 20% fuel 

consumption 

improvement 

LS: Smartphone based fusion 

CS: Crowd sensing based fusion 

Noise: The method provides a probabilistic framework for rejecting noise and outliers contained in the signal 

Compared to me: Feedback is provided to the driver using absolute metrics 

Compared to all: Feedback is provided to the driver using relative metrics (compared to peers or drivers using the same 

routes) 

MAE: Mean Absolute Error 

 

 

 

4 Discussion and critical analysis 

The literature survey confirmed the increasing academic and industrial interest in using smartphones 

for the development of personalised Intelligent Transportation Applications. Recent publications on 

monitoring driver behaviour using smartphones were compared using the Cybernetics paradigm. The 

analysis comprised three parts. The first part concerned the signals fused, the second the signal 

processing/classification method and the third one the scale at which sensor fusion took place (crowd 

sensing or smartphone based). As a general remark, the experiments conducted and the metrics used 

in the contributions were different and non-standard. Furthermore, many of the useful details on the 
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implementation of the classification methods were not reported. Therefore, a direct comparison was 

not possible. Nevertheless, Fig. 5 provides a qualitative assessment of the sensor fusion algorithms 

reviewed, with respect to the reported algorithmic complexity and infrastructure requirements. LS 

denotes local sensing and CS crowd-sensing. “Compared to me” refers to driver evaluation based 

solely on its own data, while “compared to all” when the comparison is made with respect to other 

drivers. To accelerate research in the field, it will be required to set up a standard framework that will 

allow direct comparison of the methods. As a first step, making the data and code used in a study 

publicly available will contribute significantly in this direction. 

Fig. 5: Qualitative assessment of reviewed smartphone sensor fusion algorithms with respect to 

algorithmic complexity and infrastructure requirements 

 

Interestingly, most contributions considered only one aspect of driver behaviour; an integrated 

approach is currently lacking. This may potentially lead to biased assessments. For example, the 

battery energy savings due to lower GPS sampling frequency for monitoring one element may not 

hold if the sampling frequency needs to be higher for monitoring another one. For an integrated 

approach, the most commonly used parameters are the position, speed and acceleration. Thus, it is 

crucial to estimate these variables as accurate as possible and appreciate their uncertainty. In general, 
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acceleration can be measured directly using the smartphone’s accelerometers or by differentiating the 

GPS speed. The position can be provided using the GPS signal or cameras and map information. The 

only variable for which a second source of information is not available is speed. Potentially this can 

be retrieved from the vehicle’s OBD, but currently, there is no method to achieve this without 

additional hardware.  

In sensor fusion, signals with low uncertainty should have more influence when fused compared to 

those that are more uncertain (Li et al., 2013).  Standard techniques like Kalman Filter require a priori 

the definition of a noise covariance matrix to take this into account. In general, it is difficult to build 

or tune the matrix if the sensor characteristics are not known or calibrated, which is the case with 

smartphones (Gibbs, 2011). Neural Networks, during the training phase, learn to ignore spurious data 

and therefore take data quality implicitly into account (Cao et al., 2018). Surprisingly, in most crowd-

sensing based ITS applications, the signal uncertainty is not taken into consideration. The signals are 

uploaded in raw form and then fused; with equal importance.  

In the following we highlight potential future research directions and refer to successful paradigms 

found in other domains.  

4.1 Fusion of heterogeneous information 

Advanced sensor fusion can lead to significant accuracy improvements without additional hardware. 

A possible direction is the fusion of infrastructure/roadside information. There, several opportunities 

exist, for example by exploiting fingerprinting techniques, Bluetooth detectors presence, magnetic 

sensing and information-rich satellite signal (Canciani and Raquet, 2016; Kulshrestha et al., 2017; 

Nurmi et al., 2017). Some of these techniques were proved useful in an indoor or controller 

environment, but it is necessary to examine how these techniques perform outdoors. Fusion of 

information-rich signals that include not just sensor signals but also contextual information, such as 

weather condition and social network semantic analysis, can improve traffic congestion estimates and 
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travel time prediction. Some approaches in this direction were developed but are more qualitative 

than quantitative (Tse et al., 2017a, 2017b; Wang et al., 2017).  

4.2 Sparse reconstruction & Deep learning 

The mobile data traffic is expected to reach 30.6 billion gigabytes by 202015. The explosion of data 

volume has a led to a problem which is also known as Garbage In – Garbage Out (GIGO) Big Data 

Analysis16 . For the transportation industry, this is an even bigger problem due to the associated cost 

of transmitting the data. There is a need to develop intelligent smartphone algorithms that can filter 

streamlined data and detect informative events.  It will reduce the requirement to transmit all the raw 

data centrally but the most informative features (Kanarachos et al., 2015; Martinez et al., 2017; 

Mirsky et al., 2017; Vasconcelos et al., 2017). In this context, a promising direction is compressive 

sensing and similar algorithms. Compressive sensing is a relatively new signal processing algorithm 

that allows the reconstruction of a signal using fewer samples than those suggested by the Shannon-

Nyquist frequency sampling theorem. (Z. Liu et al., 2016; Razzaque and Clarke, 2016).  

The implementation of  Deep Learning algorithms for processing smartphone data for ITS is expected 

to increase considerably as Deep Neural Networks are ideally suited for handling noisy sensor data 

and detecting underlying patterns. Successful examples not based on smartphone data or with a 

different scope were recently developed (Fang et al., 2017; Kanarachos et al., 2017; Munoz-Organero 

et al., 2017; Xiao et al., 2017; Xu et al., 2017).  

4.3 Data credibility & sparse crowd-sensing  

Currently, most ITS crowd-sensing approaches upload data in raw form to a central server and 

subsequently post processing takes place. Although this approach may be satisfactory for an 

application with a massive number of users, it is questionable whether it is a suitable when the input 

                                                 
15 https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-

c11-520862.html, accessed on 10/03/2018 
16 http://www.ibmbigdatahub.com/blog/garbage-garbage-out, accessed on 10/03/2018 

http://www.ibmbigdatahub.com/blog/garbage-garbage-out
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is sparse and infrequent. For example, this happens when deployment is at early stages (density of 

information is low) or in cases where quick response time is critical (long term accumulation of 

information is not acceptable). In these cases, also known as sparse crowd sensing applications, 

acknowledgment of the quality of information is extremely important for the quality of service. 

Paradigms found in other domains need to be investigated and transferred to smartphone-based ITS 

applications (Hao et al., 2017; Kang et al., 2017; Restuccia et al., 2017; Shao et al., 2015; Zamora et 

al., 2016).  

To this end, it will be also required to investigate and develop data management frameworks that 

guarantee or improve data credibility over time. Methods that can assess the credibility of information 

sources will increasingly gain importance (Miao et al., 2016; Ren et al., 2015; Zhou et al., 2017). In 

this context, it will be required to investigate flexible sensor fusion methods capable of selecting ad-

hoc sensor sets depending on the application requirements, costs and context (Francois Schnitzler et 

al., 2015; Shen et al., 2017).  

 

5 Conclusions  

The present survey reviewed recent scientific contributions in the field of smartphone-based 

monitoring of driver behaviour. The focus was on sensor fusion techniques and the use of 

smartphones as an integrated platform for monitoring driver behaviour. In particular, transportation 

mode classification, route choice prediction, travel time estimation, as well as aggressive and eco-

friendly driving identification were reviewed. The theoretical framework for the analysis was the 

Cybernetics model according to which actions depend on a repetitive cycle: sensing, information 

processing, decision making and feedback.  

 Smartphones and their sensors are increasingly used as devices for monitoring driver behaviour. 

However, an integrated approach comprising multiple aspects is currently missing.  
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 Smartphones present competitive advantages because of their high market penetration, Internet 

of Things connectivity and data sharing capability. The analysis revealed that these competitive 

advantages are not always exploited.  

 Various machine learning algorithms have been researched for fusing and discovering knowledge 

in smartphone data. However, Deep Learning methods have not been, up to now, exploited 

thoroughly. Deep Learning is particularly suitable for knowledge discovery and spatiotemporal 

correlation of multivariate data. 

 In crowd-sensing ITS applications, data are usually uploaded in raw form and centrally fused. 

This has two immediate negative consequences. First, the quality of service is severely reduced 

when the density of information is low or time criticality is high. Second, the volume of data is 

increased unnecessarily and thereby the communication and storage cost. In this context, it is 

expected that future research should be directed in developing smartphone-based methods that 

consider data source credibility, select optimal sets of sensor and information sources and 

intelligently exploit signal recovery methods that reduce data volumes. 
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