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ABSTRACT Inspired from the idea that the contexts in which a word occurs are of different significance,
this paper proposes a novel method, called word representation with Salient Features (SaFe), to represent
words using salient features selected from the context words. The SaFe method employs the point-wise
mutual information (PMI) method with scaled context window to measure word association between a target
word and its context. Then, contexts having word associations will be selected as salient features, where the
number of salient features for a given word is decided by the ratio between the number of unique contexts
and the total counts of occurrences in the whole corpus. The SaFe method can be used with the positive PMI
matrix (PPMI), with each row representing a word, hence the name SaFe-PPMI. Moreover, the SaFe-PPMI
model can be further decomposed by using the truncated singular vector decomposition technique to obtain
dense vectors. In addition to efficient computation, the new models can achieve remarkable improvements
in seven semantic relatedness tasks, and they show superior performance when compared with the state-of-
the-art models.

INDEX TERMS Point-wise mutual information, salient features, singular vector decomposition, word
representation.

I. INTRODUCTION
Semantic relatedness is a metric estimating the degree to
which two terms are related, whereas semantic similarity is a
subclass of semantic relatedness, which aims to evaluate the
likeness of words’ meanings. Semantic relatedness includes
all kinds of relationships, such as meronymy (as part of),
as in tail-dog relationship, hyponymy (type-of), as in knife-
cutlery relationship, and hypernymy, as in fruit-orange rela-
tionship, while semantic similarity only refers to the ‘‘is-a’’
relationship, as claimed in [1]. Recently, a variety of semantic
relatedness measures have been proposed and widely used in
natural language processing (NLP) tasks, such as text clas-
sification [2], information retrieval [3], word sense disam-
biguation [4] and discovering word senses from text [5]. The
underlying factor that determines the efficiency of semantic
relatedness measures relies on word representation, which
can be classified into two types, i.e., the count-based distribu-
tional models and the neural-network-inspired models. Both
types of models intrinsically depend on a bag-of-contexts
architecture based on the hypothesis that words occurring in
the same contexts tend to have similar meanings [6].

The departure point of the count-based distributional
models is to extract statistical information from a large

corpus, aiming to build a term-document or a term-term
co-occurrence matrix [7], [8]. Apparently, the row vec-
tors of these matrices denote the contexts in which a tar-
get word occurs. In order to improve the performance,
some other reweighting transformations of co-occurrence
were proposed, where PMI can be a suitable choice for
the word association of a word-context pair [9]. Unlike
the count-based models, the objective of neural-network-
inspired models mainly concentrates on optimally predict-
ing the corresponding contexts in which a target word
tends to appear. Words are represented as real-valued
vectors embedded in a low-dimensional space, which is
also known as word embedding [10], [11]. A series of
papers published by Mikolov et al. [12]–[14] described an
efficient program, called word2vec, for word embedding,
where the proposed Skip-Gram with Negative Sampling
method (SGNS) achieved the state-of-the-art performance.
The training process of the SGNS method is targeted on indi-
vidual word-context pairs by predicting the log-probability
that a word appears in the context of a given word. Another
well-known model, called GloVe [15], was trained on the
non-zero entries in a global word-context co-occurrence
matrix, by optimizing a least squares regression formulation.
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Clearly, all co-occurrences of word-context pairs in a cor-
pus are observed and covered in the training processes of
both the traditional distributional models and the neural-
network-inspired models regardless of the various training
objectives. However, some papers demonstrated that using a
small portion of the word-context occurrences can obtain bet-
ter performance for word representation in terms of semantic
relatedness. For example, Islam and Inkpen [16] introduced
the Second Order Co-occurrence PMI (SOC-PMI) method,
which sorted the lists of contexts for two target words by PMI
values and then calculated the relative semantic similarity by
aggregating their positive PMI values (from the opposite list)
of the common contexts in both lists [16]. As an extension of
this research, Hassan and Mihalcea [17] made use of seman-
tic profiles constructed from salient encyclopedic features to
calculate semantic relatedness, where a profile was consisted
of salient concepts appearing within contexts across a very
large corpus.

Drawing inspiration from these works, it can be assumed
that not all features (namely, contexts for a given word)
can contribute to representing words for measuring seman-
tic relatedness. In other words, the meaning of a word can
be characterized by salient features, since certain features
may be redundant or harmful. In this paper, a new method
called Word Representation with Salient Features (SaFe) is
presented. After sorting the features for a target word descen-
dently by positive PMI values, a small number of features,
viewed as salient features, will be decided and selected from
all the contexts to represent the word. In addition, a novel
approach is proposed to determine the number of salient
features for each word, which is based on the ratio of the
number of unique contexts of a word and the total counts
of occurrences in the corpus. Moreover, two distributional
models are proposed, one of which is to apply the SaFe
method on the positive PMI (PPMI) matrix [18], named as
SaFe-PPMI; and the other one is to utilize the truncated Sin-
gular Value Decomposition (SVD) technique to decompose
the SaFe-PPMI model in order to obtain dense vectors for
words [19]. Despite the efficient computation, the perfor-
mance of the SaFe-PPMI model has dramatic improvements
on semantic relatedness tasks, and the SaFe-SVD model
can significantly outperform some state-of-the-art models,
including the SGNS and GloVe models.

This paper is structured as follows: Section 2 introduces
the related work and Section 3 describe the details of the two
distributional models based on the SaFe method; experiments
and analysis are presented in Section 4; and conclusions are
given in Section 5.

II. RELATED WORK
A. COUNT-BASED DISTRIBUTIONAL MODELS
Lexical co-occurrence is constantly being viewed as a crucial
indicator for semantic relatedness and has motivated a variety
of methods, such as Jaccard [20], Dice [21], Ochiai [22]
and PMI [23]. However, these early works only focus on

measuring word association but ignore the representation for
words.

The count-based distributional models aim to construct
co-occurrence matrix from a corpus to generate global rep-
resentations for words, where the forms of co-occurrence
matrix vary in different ways. The term-document matrix
proposed by Lund and Burgess [8] and the term-term matrix
introduced in [7] are two early forms. Intuitively, each cell
in the matrix denotes the context in which a target word
occurs, and thus each row can be viewed as the represen-
tation of a word. It can be noted that the sparse and high-
dimensional nature of such representations cannot efficiently
generalize global information and even add a burden on
computation. Therefore, the SVD technique was used to
perform dimensionality reduction by matrix factorization to
generate low-dimensional word representations. Suffering
from the disproportionate contribution of the most frequent
words like ‘‘the’’ or ‘‘is’’, it is necessary for these methods
to re-weight the co-occurrence counts. Obviously, PMI is
naturally regarded as a favorable choice [7], as shown in the
PPMI matrix. Some other methods benefiting from the trans-
formations of the co-occurrence counts matrix were subse-
quently proposed, such as the square root type transformation
in the form of Hellinger PCA (HPCA) [24] and the COALS
method, which transformed the co-occurrence matrix by a
correlation-based normalization [25].

B. NEURAL-NETWORK-INSPIRED MODELS
The neural-network-inspired models (also referred to as pre-
diction models) are designed to predict the corresponding
contexts in a fixed-sized window for a given word. The
word representations can be compressed into a semantically
low-dimensional space and be denoted as dense vectors,
i.e., word embeddings. The nature of word embeddings orig-
inates from the weights learned by language modeling. For
example, Bengio et al. [10] proposed a language model based
on a feedforward neural network (NNLM), where a linear
projection layer and a non-linear hidden layer were combined
to learn the word representations. As an extension of previous
research in [10], Collobert and Weston [11] defined a unified
architecture for multitask learning, including part-of-speech
tags, named entity tags, semantic roles, etc. However, the full
neural network used in the NNLMmodel suffers from expen-
sive computation cost on a larger corpus.

Nowadays, the newly proposed models formulate the
learning process of word representations as an optimiza-
tion problem, such as the SGNS and Continuous Bag of
Words (CBOW) models involved in the word2vec package.1

The idea underlying these two models relied on that the log
probability of a word appearing in the context of a given
word was proportional to the inner product between their
word vectors. Besides, the GloVe model was intrinsically
based on global log-bilinear regression, taking advantages
of both the global matrix factorization and the prediction

1https://radimrehurek.com/gensim/models/word2vec.html
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model. According to the analysis in [26], the objective of
the GloVe model was to explicitly factorize the word-word
PMI matrix, while SGNS model was a special case of GloVe
model, which implicitly factorized the samematrix. Theword
vectors learned by the SGNS and GloVe models are claimed
as distributed representations by [12], which can capture
both word similarity and word analogy properties. Recently,
the neural-network-inspired models have developed in var-
ious ways. For example, some authors focused on multi-
prototype representations by generating multiple vectors for
each word, aiming to solve the ambiguity existing in poly-
semy [27], [28]. Other researches made efficient use of exist-
ing structured lexical resources or knowledge graphs, e.g.,
WordNet and Freebase, in order to improve the performance
of word embeddings [29]–[31]. In terms of exploiting the
external linguistic constraints, current specialized methods
can be mainly classified into two groups: (a) joint mod-
els integrate the constraints into the learning objectives of
original distributional models [43], [45]; (b) post-processing
models retroactively adjust the pre-trained word vectors to
satisfy the external constraints [31], [44], [46]. For example,
the ELM-based model in [47] makes an efficient use of
a count-based approach described in the GloVe model for
text classification, where the main steps involve building a
word-context matrix and then applying matrix factorization.
Shi et al. [48] introduced a Skip-gram Topical word Embed-
ding (STE) model to jointly learn both words and topics,
thereby considering the correlations between multiple senses
of different words that occur in different topics.

According to the above description, the essence of these
models relies on efficiently leveraging the statistical infor-
mation extracted from the occurrences of word-context pairs.
However, not all context words can be considered to make
contributions for constructing word representations, since the
appearance of them may be occasional or useless, which will
be discussed later.

III. EFFICIENT WORD REPRESENTATION
MODELS WITH SALIENT FEATURES
A. MOTIVATIONS
1) MOTIVATIONS FROM THE NEURAL-NETWORK-INSPIRED
MODELS
Based on the hypothesis proposed by [32], the assembling
of all contexts in which a given word does and does not
occur provides a set of mutual constraints that largely deter-
mines the similarity of wordmeaning. Therefore, the previous
models, especially the neural-network-inspired models, are
preferable to use all occurrences of the word-context pairs.
There existed certain preconceived stereotypes, as claimed
in [33], that neural-network-inspired word embeddings had
an overwhelming superiority over the count-based distribu-
tional methods on variously semantic relatedness tasks. How-
ever, considering the inner commonality existing between
distributional and neural-networkmodels, Levy et al. claimed
that the advantages of word embeddings were primarily

due to the contribution of fine-tuned hyper-parameters and
sophisticatedly designed system. With the same modifica-
tions transferred to the distributional models, only local or
insignificant performance difference can be observed with no
global superiority biased to any single approach [34]. Sur-
prisingly, several modifications presented in [34], including
subsampling, deleting rare words, shifted PMI and context
distribution smoothing (cds), had something in common,
i.e., explicitly or implicitly reducing useless features. More
details and analysis are presented as follows:
a) Explicit reduction of features

Subsampling: It aims to randomly remove very fre-
quent words, like stop-words, according to a specific
probability distribution.
Deleting Rare Words: The goal is to ignore the rare
words in the corpus, which is performed before build-
ing word-context pairs.

b) Implicit reduction of features
Scaled Context Window: Intuitively, contexts that are
closer to the target are more important, thus, both
SGNS and GloVe adopt a weighting scheme that can
scale the context words according to their distance from
the target word, so that the effect of distant words can
be weakened. For the PPMI matrix, the PMI values of
these distant contexts may be relatively trivial or even
negative and be ignored in some extreme cases. Hence,
it can be viewed as a method of reducing features in
disguise.
Shifted PMI: The number of negative samples (termed
as k), is a significant hyper-parameter in SGNS, which
is essential for implicitly optimizing each word-context
pair: PMI (w, c) − log k , where w and c denotes the
word and the context, respectively. Levy and Goldberg
applied this shift value to the distributional methods
through the PPMI matrix [26]. Apparently, for some
pairs having low PMI values, the effect of them may be
neglected after the subtraction of log k .
Context Distribution Smoothing: Aiming to smooth
the distribution of contexts, all context frequencies are
raised to the power of α to enlarge the probability of
sampling a rare context, which conversely alleviates
the bias caused by PMI values towards rare words.
Thus, the distribution of features is further modified by
putting less focus on rare words.

Therefore, the reduction of features plays an important role
in the performance gain, so it is necessary to deeply analyze
the influence of the number of selected features for word
representation.

2) MOTIVATIONS FROM THE COUNT-BASED
DISTRIBUTIONAL MODELS
Two most well-known count-based distributional models
are the explicit PPMI matrix and its factorization using
SVD technique (PPMI-SVD) in Latent Semantic Analysis
(LSA) [42]. According to discussions in [9] and [34], these
two models rely heavily on the positive PMI values. In other
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words, the performance could deteriorate substantially on
semantic similarity tasks if the contexts with negative PMI
values are preserved in the matrix. From this view, a natural
question is how many distinct contexts with positive PMI
values a specific word has.

Herein, a matrix composed of PMI values is constructed,2

intending to calculate the percentage of the distinct contexts
with positive PMI values for each word in the vocabulary.
Experimental results are shown in Fig. 1, where ws = 2,
ws = 5 and ws = 10 denote that the context window sizes
(ws) are set as 2, 5 and 10 and the mean values are marked as
stars. Obviously, for a given word, the distinct contexts with
positive PMI values take a large portion, with percentages
varying in [96%, 99%] interval. It indicates that only a tiny
part of contexts with negative PMI values are neglected.
Considering the problem from another perspective, the scope
of reducing more redundant contexts should not be limited
to negative contexts, instead, more attention should be paid
on discovering and removing those ineffective contexts with
positive PMI values.

FIGURE 1. Percentages of the unique contexts with positive PMI values
with different window sizes on the Wikipedia corpus.

B. THE PROPOSED SELECTION OF SALIENT FEATURES
As discussed above, reducing insignificant features for the
distributional models can lead to substantial performance
improvements. Two factors should be analyzed for the selec-
tion of features. The first factor is the measure of semantic
relatedness between the feature and a target word, and the sec-
ond one is the way to determine the number of salient features
retained for word representation.

1) METHOD OF WORD RELATEDNESS: PMI WITH SCALED
CONTEXT WINDOW (PMI-SCALED)
On one hand, PMI, as the first and most frequently used
method, is employed here to evaluate the word relatedness,
where positive values indicate that the relationships between
two words are stronger than expected under an indepen-
dence assumption and negative values indicate that the two
words tend to appear independently. Specifically, for a given

2The corpus is an EnglishWikipedia dump (December 2017) downloaded
in https://dumps.wikimedia.org/, which contains 1.82 billion tokens. After
preprocessing (tokenization, lowercase, etc.), 206,000 most frequent words
that occur more than 100 times in the corpus are selected into the vocabulary.

word-context pair (w, c), the PMI is defined as the log
ratio between their joint probability and the product of their
marginal probabilities, which can be calculated by:

PMI (w, c) = log
P(w, c)

P(w) · P(c)
= log

f (w, c) · |D|
f (w) · f (c)

(1)

where P(.) represents the probability; f(.) represents the
co-occurrence counts; D denotes the corpus and |D| means
the number of all tokens contained in the corpus. In terms of
those word-context pairs that are never observed in the cor-
pus, i.e., f (w, c) = 0, PMI (w, c) is set as 0 for convenience.
It can be seen that the PMI method suffers from a high bias

towards the rare contexts, due to the fact that the probability
of a rare context, i.e., P̃(c), could be extremely low in Eq. (1),
and it results in a small denominator. Generally, the rare con-
texts can be divided into two types: (a) co-occurring with the
center word as specific collations, such as the company name
‘‘Apple Marine’’, where ‘‘Marine’’ is an unrelated context
for the word ‘‘Apple’’; (b) accidentally appearing within the
context window. For example, in the sentence ‘‘The girl is
reading an herbalist book’’, ‘‘herbalist’’ may be a context
word for the center word ‘‘girl’’, even though the relationship
between them could be negligible.

It is worth noting that the contexts used as specific col-
lations only account for a small portion of the surroundings
of a given word, and most of the rare contexts are likely
to be accidental occurrences, the negative impact of which
should be weakened. Fortunately, it can be observed that
since most of the rare contexts make no contribution to the
semantic/syntactic meaning of a particular word, they tend to
co-occur distantly or arbitrarily within the window of a center
word. For instance, ‘‘herbalist’’ is three tokens away from
‘‘girl’’ rather than being the closest neighbor. In this case,
the scaled context window approach based on a harmonic
function presented in the GloVemodel is implemented here to
decrease the influence of the rare words. Specifically speak-
ing, a context word that are k tokens away from the target
word will be considered as 1/k of a co-occurrence.

2) METHOD OF DETERMINING THE NUMBER
OF SALIENT FEATURES
According to the semantic relatedness methods described
above, the original number of features for a given word is
directly the number of unique words occurring in the con-
texts. In an extreme case, the maximum number of features
for a target word should be min(2∗ws ∗ f (w) , |V |) if every
word in the contexts is different from each other, where ws
and |V | denote the window size and the size of the vocabu-
lary V, respectively. Therefore, the ratio between the actual
number of features and its potentially maximum number of
features can be used as an indicator for the rareness of a
word. The calculation is shown in (2), where fpf (w) means
the number of distinct features having positive PMI values
for a given word w.

ϕ =
fpf (w)

2 ∗ ws ∗ f (w)
(2)
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Particularly, it can be assumed that the target word is
common and frequent in the corpus when the ratio is small,
or perhaps it is a rare word if the ratio is large. This assump-
tion can be proved in Fig. 2, where the ratios of all words in
the vocabulary along with the descendently sorted log ranks
of frequency are plotted. In Fig. 2, it is obvious that the most
frequent words showing in the initial phase are extremely low,
whereas the relatively rare words showing in the latter part
have high ratios.

FIGURE 2. The ratio between the number of unique features and its
occurrence for a given word.

From the above analysis, a question needs to be answered,
i.e., how to determine the number of salient features for
each word. Since the frequent words have low ratios, they
always occur in similar contexts. For example, ‘‘good’’, as a
common adjective, is always followed by multiple kinds of
nouns, referring to living creatures, objects, places, actions,
and ideas. The commonality of these nouns (i.e., contexts)
lies in that they can indicate the syntactic information of
‘‘good’’, however, they have limited effect on reflecting the
other aspects of word’s meaning. It can be assumed that such
ordinary contexts share a similar role when representing a
word, thus, most of them could be removed from the list
of salient features, while only those with highly scaled PMI
values could be retained. On the contrary, words with high
ratios are prone to appear in various contexts. The diversity
and rareness of features imply the high uniqueness of words’
characteristics; hence, more features should be maintained as
salient features. Based on the above analysis, the number of
salient features γ is determined as in Eq. (3), where α is a
real value. Eq. (3) can be further simplified as Eq. (4) with
δ = α

2∗ws .

γ = α · log (|V |)2 ·
fpf (w)

2 ∗ ws ∗ f (w)
(3)

γ = δ · log(|V |)2·
fpf (w)
f (w)

(4)

3) ANALYSIS OF THE SaFe METHOD
In order to analyze the properties of the SaFe method,
the number of selected features have been plotted along
with the descendendly sorted log ranks of the occurrence
counts of words in the vocabulary. For clarity, the vocabulary
is further equally partitioned into two parts, as shown in
Fig. 3. (a) and (b), respectively, where ‘‘original’’ means
the original number of features for a target words; and δ is
represented as ‘‘delta’’ ranging from 1 to 20 with step set as 2.

FIGURE 3. The number of salient features for words in the vocabulary.

With an eye to words with high frequency, as shown
in Fig. 3. (a), it can be observed that the number of salient
features can be considerably regulated by δ, while the number
of salient features for words with low frequency can be hardly
affected when δ > 1, as seen in Fig. 3. (b). In short, the pro-
posed SaFe method aims to reduce the redundant features of
frequent words, while it is inclined to preserve the unique
features of rare words.

C. THE APPLICATIONS OF THE SaFe METHOD
As mentioned above, two distributional models are proposed
in this paper, i.e. the SaFe-PPMI model and the SaFe-SVD
model. The SaFe-PPMI model uses the SaFe method to
help the PPMI matrix reduce the redundant features, and the
SaFe-SVD model employs the SVD technique to get low-
dimensional representations for words.

1) WORD REPRESENTATION BY THE SaFe-PPMI MODEL
The SaFe-PPMI model is to construct a high-dimensional
sparse matrix M ∈ R|V |∗|Ṽ |, where |Ṽ | is the size of the
context vocabulary in a corpus. The ith row of M represents
the ith wordwi in the vocabulary V and the jth column denotes
the jth potential context cj in Ṽ . Each entry of the matrix Mij
represents the word relatedness between wi and cj calculated
by the PMI-scaled method described above. Note that only
positive PMI values are preserved in the PPMI matrix, indi-
cating that the negative values and unobserved word-context
pairs in the corpus are all replaced by 0.

Then, the features for each word will be reduced by the
SaFe method. For each word, all contexts should be sorted
descendingly according to their PMI values, and only the γ
top features based on (4) will be selected as salient features
for word representation.

2) WORD REPRESENTATION BY THE SaFe-SVD MODEL
SVD, as a common dimensionality reduction method, tries
to find the rank-d decomposition regarding the L2 loss [19].
In particular, the sparse matrix can be factorized into the
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Algorithm 1 The Pseudocode of the SaFe-PPMI and the SaFe-SVD Models
1: Choose an appropriate corpus D;
2: Initialize the parameters, i.e., window size (ws), dimension (d), vocabulary size (|V |) and δ etc.;
3: Build the vocabulary V of the given corpus D;
4: Construct a co-occurrence matrix M ∈ R|V |∗|V | of the corpus D based on a scaled context window;
5: for i = 1 :|V | do

5.1 Calculate the scaled PMI values for each nonzero context of word wi in the ith row;
5.2 Set the scale PMI values to 0 if they are negative;
5.3 Calculate the number of salient features ϕ for word wi based on Eq. (4);
5.4 Sort the contexts of word wi in descending order according to their scaled PMI values;
5.5 Select the top ϕ contexts as salient features of word wi and set the other contexts to 0;
5.6 Represent word wi using the relative ith row in the matrix M with respect to the SaFe-PPMI model.

6: Use the SVD technique to factorize the matrix M into the product of three matrices U ·6 · V T ;
7: Remain top d elements of 6, and transform the sparse matrix M into Md = Ud ·6d · V T

d ;
8: Represent the word embeddings as W = Ud + Vd in terms of the SaFe-SVD model.

product of three matrices U · 6 · V T , where 6 is a diagonal
matrix of eigenvalues in decreasing order and U and V are
orthonormal. With only the top d elements of 6 preserved,
the sparse matrix will be transformed toMd = Ud ·6d · V T

d .
Notice that the dot-products of two random rows of thematrix
W = Ud · 6d are equal to the dot-product of the same rows
of Md , in other words, the high-dimensional rows of Md can
be replaced by the low-dimensional rows of W = Ud · 6d
for word representation, which can dramatically save the
computation.

In this paper, the idea of the SaFe-SVD model is directly
applying the SVD technique to the SaFe-PPMI model.
In most related papers [34], [42], the d-dimensional matrix
W = Ud · 6d is used as a common approach to represent
words. However, inspired by word representation employed
in the GloVe model, the word vectors are presented by W =
Ud . The detailed steps of the SaFe-PPMI and the SaFe-SVD
models are described in Algorithm1.

IV. EXPERIMENTS AND ANALYSIS
A. TEST SUITES
1) TRAINING CORPUS
English Wikipedia (December 2017 dump) corpus is used
in all experiments, which contains about 39.5 million sen-
tences and 1.82 billion raw words. The preprocessing steps
include removing non-alpha elements and sentence splitting,
and word tokenization. There are two sets of vocabularies.
One is a small vocabulary (termed as small_vocab) con-
taining the words that occur more than100 times, resulting
in 207,960 unique words and 1.79 billion tokens in the
corpus, and the other vocabulary is a large one (termed as
large_vocab), which contains words that occur more than
50 times, leaving 325,579 unique words and 1.80 billion
tokens in the corpus. In addition, for the comparisons between
the proposed models with other state-of-the-art models, two
other corpora are utilized, i.e., Amazon Fine Food Reviews3

3https://snap.stanford.edu/data/web-FineFoods.html

(Amazon-Fine-Food) and Amazon Product Data4 (Amazon-
Product). The former one contains only 568,454 reviews, and
the latter one has nearly 82.83 million reviews. In order to get
a large corpus, the Amazon-Product and Wikipedia corpora
are combined together for comparison purposes, termed as
Product-Wikipedia. After the same preprocessing as with
the Wikipedia dump and the removal of words appearing
less than 100 times in the corpora, the Amazon-Product
has a vocabulary of 308,181 unique words with 6.9 billion
tokens retained, and the vocabulary of the Product-Wikipedia
includes 439,041 unique words with 8.7 billion tokens left in
the corpus. Since the Amazon-Fine-Food is a small corpus,
only those words appearing less than 50 times are removed,
leaving 15,856 unique words and 44 million tokens.

2) TRAINING SETTINGS
ws, referring to window size, is set to 2, 5 and 10, and
the dimensions for the SaFe-SVD, SGNS and GloVe mod-
els are set as 300 and 600. The number of epochs for the
SGNS model is 5, while the number of iterations for the
GloVe model is set as 50 and 100, when the corresponding
dimensions are 300 and 600.With pre-extractedword-context
pairs supplied, the GloVe and SGNS models are trained
with pre-built modules called genism5 and glove-python,6

respectively. For the sake of clear expression, the percentage
of salient features selected for word representation is listed
in Table 1, where ‘‘num_features’’ denotes the total number
of salient features selected for all words. The percentages
span from 9.52% to 97.57%, with δ increasing from 1 to 400.
Note that each element in the PPMI matrix is computed by
using the PMI-scaled method.

3) EVALUATION DATASETS
Experiments are conducted on seven semantic relatedness
datasets, as ashown in Table 2. Each dataset contains a

4http://jmcauley.ucsd.edu/data/amazon/
5https://radimrehurek.com/gensim/models/word2vec.html
6https://nlp.stanford.edu/projects/glove/

30162 VOLUME 7, 2019



M. Zhang et al.: Word Representation With SaFe

TABLE 1. The percentages of salient features.

TABLE 2. Evaluation datasets used in the comparisons.

number of word pairs marked with human-annotated relat-
edness scores. For example, the relatedness scores of word
pairs listed in the SimLex-999 dataset range from 0 to 10; and
the unrelated pair (‘‘dirty’’, ‘‘narrow’’) is annotated as a low
value, i.e., 0.3, while the semantically similar pair (‘‘vanish’’,
‘‘disappear’’) is marked as a high value, i.e., 9.8. In this case,
the way to evaluate the performance of the proposedmodels is
to compare their measurements of relatedness on word pairs
with a gold standard, where the score for each word pair is
measured by the cosine similarity between the normalized
representations of words. Then, the general quality of a par-
ticular model can be obtained by computing the Spearman’s
rank correlation coefficient between the calculated related-
ness scores and the human judgments.

B. EXPERIMENTAL ANALYSIS OF THE SaFe-PPMI MODEL
Various hyper-parameter settings, including δ, ws, and vocab-
ulary size, will be discussed, aiming at fully analyzing the
properties of the SaFe-PPMI model. For all experiments con-
ducted on the SaFe-PPMI model, the range of δ is in [1]
and [20] with step set as 1, and the number of salient features
accounts for 9.52% to 54.21% of all the features contained
in the PPMI matrix. The window size is set as 2 and the
vocabulary used is small_vocab. Experimental results are
presented in Tables 3-5, and it is observed that the SaFe
method has substantial impact on the performance of the
PPMI model. Without complicated hyper-parameter turning,

the SaFe-PPMI model is capable of obtaining remarkable
advantages over the PPMI model.

1) MODEL ANALYSIS: THE NUMBER OF SALIENT FEATURES
The experimental results are listed in Table 3 with the last
column (i.e., PPMI) showing the results of the PPMI model.
Besides, the convergence curves with increasing δ are plotted
in Fig. 4.

FIGURE 4. Convergence curves of the SaFe-PPMI model based on various
δ across different tasks.

From Table 3, it is clear that the SaFe-PPMI model con-
sistently outperforms the PPMI model on all semantic relat-
edness tasks by a minimum margin of 5.2 percent, especially
for the improvements on the WS-353 andWSR-353 datasets,
where the margins have reached up to 12.3 and 12.6 per-
cent, respectively. The RG-65 and MEN-LEM datasets can
achieve the best performance when δ = 5, and δ = 6 is
the best setting for the SimLex-999 datasets. Three related
datasets, i.e. WS-353, WSS-353 andWSR-353, have the best
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TABLE 3. Performance comparisons across different tasks of the SaFe-PPMI model with the small_vocab (best results in bold with underline).

TABLE 4. Statistical results across different tasks of the SaFe-PPMI model with the small_vocab (best results in bold with underline).

TABLE 5. Statistical results across different tasks of the SaFe-PPMI model with large_vocab (best results in bold with underline).

performance when δ is 13. Although no specific δ value can
completely dominate the results, the curves in Fig. 4 show a
common tendency for a rising δ on different datasets. Except

for the minor difference in the beginning, the performance of
the SaFe-PPMI model improves dramatically until δ steadily
increases to a specific value, and then the performance will
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slightly deteriorate when δ becomes larger. In other words,
the efficiency of the SaFe-PPMI model is highly influenced
by the setting of δ. Particularly, the performance cannot be
satisfying if δ is too small, indicating that less features could
lose crucial information hidden in the corpus. On the other
hand, excessive features may be useless or even harmful for
improvements. In conclusion, the performance of SaFe-PPMI
matrix can dramatically benefit from the SaFe method.

2) MODEL ANALYSIS: WINDOW SIZE
This subsection aims to investigate the effect of window size
(termed as ws) on the SaFe-PPMI model. In order to save
space and elaborate clearly, the results of different δ values
for a given ws are presented in statistical forms, including the
worst value (SaFe-Worst), the mean value (SaFe-Mean) and
the best value (SaFe-Best), as shown in Table 4. With regard
to the best values on different datasets, the SimLex-999,
WSS353 and RW datasets can obtain the best performance
when ws = 2, and the other datasets perform the best when
ws = 5. Note that the best results on the RG-65, the SimLex-
999 and the RW-353 datasets depend on the ws to a large
extent, while there are no distinct gaps among the compar-
isons on other datasets in regard to the setting of ws.

To further provide contrasts regarding the number of
salient features, the δ values of the best results for each ws
are plotted in Fig. 5. Apparently, the δ values for ws = 2
are the highest with the exception of that on the SimLex-
999 dataset, inferring that more salient features are required,
when compared with other window sizes. Moreover, ws = 10
has the lowest δ values, with less salient features needed for
the best results, however, its performance is the worst among
all. The low δ value needed by a large window size implies
that there may be numerous superfluous and repetitive con-
texts extracted from the corpus, which can only partially
interpret the meaning of a word. Considering that the best
results obtained by ws = 5 outperforms those of ws = 2 and
ws = 10, and the corresponding δ values on different datasets
are moderate, ws = 5 can be considered as a suitable choice
for the SaFe-PPMI model.

FIGURE 5. δ values of the best results.

3) MODEL ANALYSIS: VOCABULARY SIZE
To further investigate the efficiency of the SaFe-PPMImodel,
this group of experiments are performed on the large_vocab.
Similar to Table 4, the results in Table 5 show that the
SaFe-PPMI model with ws = 2 reach the best performance
on the SimLex-999, WSS-353, and RW datasets, and the

other datasets have the best performance when ws = 5. Thus,
ws = 2 and 5 can achieve constant superiority over different
vocabularies. On the other hand, there is a consensus in
previous research that the rare words should be removed from
the vocabulary because of their negative impact on the perfor-
mance of the models. There are two ways to discard the rare
words; one is to retain a set of most frequent words in the
vocabulary [15], while the other way is to filter those words
that appear less than fixed times (e.g. 100) in the corpus [34].
As defined above, the large_vocab contains a large number
of infrequent words with frequency ranging from 50 to 100,
therefore, it is more likely to be interfered with the rare words,
comparing with the small_vocab. However, on the RG-65,
SimLex-999 and WSS-353 datasets, the best results obtained
by the large_vocab on the SaFe-PPMI model are better than
those of the small_vocab. It implies that the SaFe-PPMI
model has advantages on ignoring the interference caused
by the rare words, reflecting that the SaFe method has better
generalization ability of extracting valuable information.

Moreover, the curves of the worst, the mean and the best
results on six datasets with various ws settings across differ-
ent vocabularies have been presented in Fig. 6, where S2, S5,
S10 denotes the small_vocab with ws = 2, 5, 10; and L2, L5,
L10 denotes the large_vocab with ws = 2, 5,10. It is obvious
that the SaFe-PPMI model outperforms the PPMI model by
a large gap. In addition to the superiority of the best results
achieved by the SaFe-PPMI model, even its mean results can
overwhelmingly surpass the results of the PPMImodel across
all datasets.

FIGURE 6. The best performance with various window sizes across
different vocabularies.

C. EXPERIMENTAL ANALYSIS OF THE SaFe-SVD MODEL
The following experiments are conducted to investigate the
performance of the SaFe-SVD model, where three elements
will be probed, including the δ, ws and the dimensionality.
Considering the comparable performance between different
vocabularies, only the small_vocab will be analyzed for refer-
ence. Due to the observation in [26], SVD has been validated
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TABLE 6. Performance comparisons across different tasks for the SaFe-SVD model with ws set as 2 (best results in bold with underline).

to be an efficient choice for discovering semantic relatedness,
but less suitable for exploring analogies when compared to
neural-network-inspired models, thus, no consideration will
be given to the evaluation of word analogy.

1) MODEL ANALYSIS: THE NUMBER OF SALIENT FEATURES
Here, this group of experiments tends to explore the effect
of the number of salient features on the performance of the
SaFe-SVDmodel. Due to the fact that the a small δ represents
that excessive features will be filtered for each word and thus
results in a spare SaFe-PPMI matrix with most of the entries
being zeros, which is harmful for the generation ability of
the SVD technique used in the SaFe-SVD model. Under this
situation, the values chosen for δ are supposed to be bigger
than that used in the SaFe-PPMI model, ranging from 20 to
400 here, with step stride set as 20. The percentage of salient
features is from 54.21% to 97.59%. Besides, ws is set to 2 and
dimension is 300.

Table 6 reveals that the SaFe-SVD model has competitive
performance when compared to the SVD model. Precisely,
the SaFe-SVD model outperforms the SVD model on the
RG-65, WS-353 and WSS-353 datasets, and it has the same
performance on another three datasets, i.e., the WSR-353,
MEN-LEM and RW. The SVD model can only surpass the
SaFe-SVD model on the SimLex-999 dataset by a negligible
superiority. As seen from Table 6, two datasets, namely the
WS-353 and the WSR-353, can achieve the best performance
when δ reaches up to 200, and the SaFe-SVD model perform
the best on the RG-65, WSS-353 and RW datasets, when
δ = 280. The MEN-LEM dataset exhibits the best perfor-
mance when δ is 380. Although the large δ values for the
best results means that more salient features are required,
the better or at least competitive performance obtained by the
SaFe-SVD model demonstrates that there is a small number
of features in the corpus, which can have a negative effect on
the performance and can be removed by the SaFe method.

Moreover, the best results of the SaFe-PPMI model across
different datasets are also listed in the final column (‘‘SaFe-
PPMI’’) in Table 6. As declared above, the SaFe-PPMImodel
uses less features than the SaFe-SVD model, with δ merely
ranging from 1 to 20. However, it performs worse than the
SaFe-SVDmodel on 6 out of 7 datasets, and only has the best
performance on the RG-65 dataset. In general, the SaFe-SVD
model is better for applications on different NLP tasks.

The convergence curves of the SaFe-SVD model based
on increasing δ values across different evaluation datasets
are shown in Fig. 7. Similar to the SaFe-PPMI model, the
performance of the SaFe-SVD model also has an upward
trend when δ is rising. However, the degree of improvements
is not considerable, and the difference between the worst and
the best results is trivial, with the mean margin being merely
1.85 percent. It can be inferred from the results that the SaFe
method should be advocated for those models for which less
computation is preferable.

FIGURE 7. Convergence curves across different tasks of the SaFe-PPMI
model based on various δ.

2) MODEL ANALYSIS: WINDOW SIZE
With the purpose of examining the impact of window size,
ws is set to 5 and 10 for the SaFe-SVD model, and the cor-
responding results are listed in Tables 7 and 8, respectively.
The dimension is set as 300.
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TABLE 7. Performance comparisons across different tasks for the SaFe-SVD model with ws set as 5 (best results in bold with underline).

TABLE 8. Performance comparisons across different tasks for the SaFe-SVD model with ws set as 10 (best results in bold with underline).

As shown in Table 7, four datasets, i.e. the SimLex-999,
WS-353, WSR-353 and RW, can obtain the best performance
with δ set to 200 and 240, each of which performs the
best on two datasets. The RG-65, WSS-353 and MEN-LEM
datasets exhibit the best performance when δ is set to 40,
140 and 280, respectively. When compared with the SVD
model, the SaFe-SVD is better on the RG-65, WS-353 and
WSR-353 datasets, and there is no difference between their
performance on the other datasets. For the results of ws = 10
shown in Table 8, both of δ = 240 and 400 can obtain the best
performance on two datasets. The former performs the best on

the WS-353 and RW datasets, and the latter achieves the best
on the RG-65 andWSS-353 datasets. The other datasets show
the best performance on different δ values, containing 160,
320 and 340. The SaFe-SVDmodel with ws = 10 can surpass
the SVD model on four datasets, i.e. the RG-65, WS-353,
WSS-353 and WSR-353; besides, the same performance can
be found on the remaining datasets. Overall, the SaFe-SVD
model has superiority over the SVD model for both ws = 5
and 10.

In order to compare thoroughly, the best results and
their corresponding δ values for the SaFe-SVD model with

VOLUME 7, 2019 30167



M. Zhang et al.: Word Representation With SaFe

TABLE 9. Performance comparisons across different tasks for the SaFe-SVD model with dimension set as 600 (best results in bold with underline).

FIGURE 8. The best results of the SaFe-SVD model with various window
sizes.

FIGURE 9. The δ values of the best results of the SaFe-SVD model with
various window sizes.

ws = 2, 5, 10 are showed in Fig. 8 and Fig. 9, respectively.
As inferred from Fig. 9, the SaFe-SVD model with ws = 2
performs the worst, while ws = 10 shows the best perfor-
mance and have a slight advantage over ws = 5. In Fig. 9,
the SaFe-SVD model with ws = 10 requires the most salient
features on 4 out of 7 datasets, and ws = 5 needs the least
salient features on 5 datasets. Considering the comparable
performance of ws = 2 and 5, ws = 5 is recommended when
computation cost is a burden.

3) MODEL ANALYSIS: DIMENSIONALITY
This subsection is aimed at discussing the effect of dimen-
sionality on the SaFe-SVD model, where the dimension
here is set to 600. Due to the well-performed results listed
in Table 5, ws is set to 5.

Through the comparisons presented in Table 9, the SaFe-
SVD model can perform better than the SVD model in all
cases, except for the results related to the MEN-LEM dataset
on which the same performance is given. This indicates that
the SaFe-SVD model can consistently have superior perfor-
mance regardless of the dimensionality. More comparisons,
i.e., the difference between different dimensions, are shown
in Fig. 10, where dim = 300 and dim = 600 represent that
the dimensions are set to 300 and 600, respectively. The
curves show that dim = 600 can outperform dim = 300 on
six datasets by a significant margin.

FIGURE 10. The best results of the SaFe-SVD model with different
dimensions.

D. PERFORMANCE COMPARISONS OF THE SaFe-SVD
MODEL WITH STATE-OF-THE-ART MODELS
1) COMPARISONS OF THE PERFORMANCE
ON DIFFERENT CORPORA
The performance of the SaFe-SVD, SGNS and GloVe mod-
els across seven datasets using four corpora, including
the Amazon-Fine-Food, Wikipedia, Amazon-Product and
Product-Wikipedia, are listed in Table 10, where SaFe-SVD-
best, SaFe-SVD-mean and SaFe-SVD-worst denote the best,
average and worst results obtained by the SaFe-SVD model.
The SaFe-SVD model can keep continuous superiorities
over other models on three datasets, i.e. the SimLex-999,
WS-353 andMEN-LEMdatasets.With an eye to each corpus,
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TABLE 10. Performance comparisons among the SaFe-SVD, SGNS and GloVe models on different corpora.

TABLE 11. Performance Comparisons among the SaFe-SVD, SGNS and GloVe models with dimension set as 300.

the SaFe-SVD model can perform best on at least four
datasets. In particular, the SaFe-SVD model shows good per-
formance on the Amazon-Fine-Food and Amazon-Product
corpora, performing best on seven and six datasets, respec-
tively. Since such Amazon-related corpora collect numerous
online reviews that contain intricately affective states and
subjective information, such as personal opinions, attitudes
and emotions, they show biases towards sentiment charac-
teristics, which is different from the news pages included
in the Wikipedia. Thus, comparing with other two models,
the SaFe-SVD model is much more capable of discovering
the sentiment information involved in the short and concise
reviews.

2) COMPARISONS OF THE PERFORMANCE
ON VARIOUS WINDOW SIZES
This set of experiments are designed to validate the effective-
ness of the SaFe-SVD model when compared with the SGNS

and the GloVe models. The comparisons for dim = 300 and
600 are presented in Tables 11 and 12, respectively. Note that
the performance of the SaFe-SVDmodel is only related to the
best results achieved.

From Table 11 it can be noted that the GloVe model per-
forms the worst in all cases. Based on the analysis above,
the SaFe-SVD model performs the best when ws = 10,
obtaining the best performance on the WS-353, WSR-
353 and MEN-LEM datasets. On the contrary, the SGNS
model shows a downward trend when ws is increasing, and
it has the best performance on the RG-65, WSS-353 and
RW datasets when ws = 2. By the way, SimLex-999 dataset
achieves the best performance on the SaFe-SVDmodel when
ws = 2. In consideration of the various settings for the best
results, it seems that there is no apparent commonality among
the comparisons.

However, the above analysis indicates that the SaFe-SVD
model can perform better when dim = 600. According to the
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TABLE 12. Performance Comparisons among the SaFe-SVD, SGNS and GloVe models with dimension set as 600.

TABLE 13. Run-time of different models on various corpora.

FIGURE 11. The performance curves for the SaFe-SVD, SGNS and GloVe
models with dimension set as 600.

results listed in Table 12 the SaFe-SVD model can perform
the best on five datasets, ignoring the various window sizes.
The SGNSmodel can obtain the best performance on the RG-
65 and WSS-353 datasets when ws = 2. Besides, the GloVe
model has a decreasing trend when ws is rising, and it
continually performs the worst among all comparisons. For
full explanation, the results have been plotted in Fig. 11,
where the top half (i.e. Fig. 11. (a)) shows the comparisons
with the GloVe model and the below half (i.e. Fig. 11. (b))
presents the comparisons with the SGNS model. In addition,
SaFe-SVD-2 in Fig. 11 denotes that ws is set to 2 for the
SaFe-SVD model, and this naming rule is used for other
legends. Clearly, gaps between the curves of the SaFe-SVD
model and the GloVe model are large. Moreover, the general
performance of the SaFe-SVDmodel is better than the SGNS
model, especially on the SimLex-999,WS-353 andWSR-353
datasets.

3) RUN-TIME COMPARISONS
The run-time of the SaFe-PPMImodel depends on processing
the co-occurrence matrix based on the SaFe method, which
can be easily dealt with by parallel computing across multiple
machines, and the SaFe-SVDmodel needs to add the training
time consumed by the SVD technique. The run-time of differ-
ent models performed on diverse corpora is listed in Table 13,
corresponding to the experiments in Section IV.D.1, where
ws = 5 and dim = 300. Note that the SaFe-PPMI and the
SaFe-SVD models are performed on a single thread of an
Intel Broadwell CPU (128GB RAM), while the GloVe and
the SGNS models are conducted with ten threads. Since the
run-time of the proposed models vary due to the impact of δ,
the maximum times (i.e., δ = 200) are given in Table 13
where ‘‘h’’ and ‘‘m’’ represent ‘‘hours’’ and ‘‘minutes’’,
respectively. There is no doubt that the application of the
SaFemethod does not costmuch time, and the Safe-PPMI and
SaFe_SVDmodels can save plenty of time with less demands
for equipment, compared to other models.

E. EXPLANATION FOR THE UNSATISFYING
PERFORMANCE OF THE GloVe MODEL
Unfortunately, the GloVe model exhibits low performance
in most cases, especially on the RG-65, SimLex-999 and
RW datasets, which contradicts the results presented in the
original paper [15] . However, the hyper-parameters of the
GloVemodel in this paper are set as the samewith the original
paper, except that stop-words, such as ‘‘this’’, ‘‘is’’, ‘‘her’’
and ‘‘it’’ etc., are not removed from the corpora used here.
Since this paper mainly discusses the necessity of reducing
worthless features, thus, for authenticity and fairness, only
those contexts with extremely low frequency are cleared and
the stop-words are not removed for all experiments.
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TABLE 14. The performance of the GloVe model on the amazon food dataset with dimension set as 300.

TABLE 15. The performance of the GloVe model on the amazon food dataset with dimension set as 600.

In order to validate that the performance of the GloVe
model is influenced by the retention of the stop-words,
an experiment is performed on the Amazon-Fine-Food cor-
pus with the stop-words retained or removed. The results
are given in Tables 14 and 15 with the dimension set as
300 and 600, respectively, where ‘‘W’’ and ‘‘WO’’ denote
that the stop-words are included or not. Noticeably, without
the stop-words, the performance of the GloVemodel can have
remarkable improvements on almost all datasets, except for
the MEN-LEM dataset. It demonstrates that the good per-
formance of the GloVe model is obtained by the fine-tuning
of the hyper-parameters and well-selected contexts, imply-
ing that capturing salient features could be an essential step
before training the word embedding.

V. CONCLUSION
In this paper, a novel method called SaFe is presented to
select salient features for a target word, which is built on the
notion that the meaning of a word can be characterized by
significant contexts. Two models have been proposed to rep-
resent words, i.e. the SaFe-PPMI model and the SaFe-SVD
model, where the former model represents a word as a row in
the matrix and the latter one represents words as dense vec-
tors in a low-dimensional space. In terms of semantic relat-
edness tasks, the SaFe-SVD model outperforms the SaFe-
PPMI model, therefore, it is more suitable for many NLP
applications. Furthermore, the proposed SaFe method can
be further applied to other neural-network-inspired models,
such as the GloVe model, which can help eliminate the neg-
ative impact of useless contexts. The experiments reveal that
the SaFe method can significantly improve the performance
of the PPMI model on semantic relatedness tasks, and the
SaFe-SVD model can consistently outperform the state-of-
the-art models, such as the SGNS and GloVe models.
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