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ABSTRACT 

Crop disease leads to significant waste world-wide, both pre- and post-harvest, with 

subsequent economic and sustainability consequences. Disease outcome is determined 

both by the plants’ response to the pathogen and by the ability of the pathogen to suppress 

defense responses and manipulate the plant to enhance colonization. The defense response 

of a plant is characterized by significant transcriptional reprogramming mediated by 

underlying gene regulatory networks and components of these networks are often targeted 

by attacking pathogens. Here, using gene expression data from Botrytis cinerea-infected 

Arabidopsis plants, we develop a systematic approach for mitigating the effects of pathogen-

induced network perturbations, using the tools of synthetic biology. We employ network 

inference and system identification techniques to build an accurate model of an Arabidopsis 

defense sub-network that contains key genes determining susceptibility of the plant to the 

pathogen attack. Once validated against time-series data, we use this model to design and 

test perturbation mitigation strategies based on the use of genetic feedback control. We 

show how a synthetic feedback controller can be designed to attenuate the effect of external 

perturbations on the transcription factor CHE in our sub-network. We investigate and 

compare two approaches for implementing such a controller biologically – direct 

implementation of the genetic feedback controller, and rewiring the regulatory regions of 

multiple genes - to achieve the network motif required to implement the controller. Our 

results highlight the potential of combining feedback control theory with synthetic biology for 

engineering plants with enhanced resilience to environmental stress.  
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Unfavorable environmental conditions during the growth of crop plants can cause significant 

yield loss and reduction in quality. These conditions include abiotic stresses, such as 

drought and extreme temperature, as well as the biotic stresses of disease and herbivory. 

Climate change is driving increasingly unpredictable and variable weather, and bringing 

associated change in pathogen (and hence disease) prevalence and incidence.1, 2 It is 

therefore important to develop crops that are resilient to varying conditions and able to 

maintain yield in suboptimal environments.3 The introduction and/or removal of single genes 

via genetic engineering has led to plants with enhanced tolerance to particular abiotic and 

biotic stresses,4 however, often such approaches have unintended consequences on other 

plant responses,5 and in the case of disease resistance they may not be durable. Recent 

increased understanding of how plant responses to different environmental conditions are 

controlled and integrated, together with the development of systems biology approaches, 

has opened up the possibility of designing stress resilient crops using engineering principles. 

In this work, we have focused on transcriptional regulation, as transcriptional reprogramming 

is a significant component of plant stress responses6-8 and a point of cross-talk between 

responses to different stresses.9  

In this paper we focus on the regulation of the defense response induced in 

Arabidopsis by the fungal pathogen, Botrytis cinerea.10 When pathogens infect plants, 

disease is the result of dynamic interactions between the two organisms. Pathogens secrete 

a range of proteins, small RNAs and metabolites to disrupt host defense and manipulate the 

extra- and intracellular environment to aid colonization.11-14 This is thought to explain why 

some positive regulators of defense are downregulated during infection, for example 

expression of TGA3 decreases during B. cinerea infection of Arabidopsis, yet plants lacking 

TGA3 expression are more susceptible to this pathogen.10 In this study, we use a control 

engineering approach to counteract such potentially pathogen-mediated perturbations of 

positive regulators of defense. Constitutive overexpression of such positive regulators would 

be an obvious approach, but this brings significant drawbacks; the positive regulator of 

defense may have other roles in the plant which are disrupted due to constitutively high 

levels of expression, and constitutive activation of plant defense responses is known to often 

impact on growth.15 Our proposed approach, which seeks to dynamically respond to 

perturbations of expression over the time-course of infection, should overcome these 

drawbacks.  

From the perspective of control engineering, this scenario can be naturally 

formulated mathematically as a disturbance attenuation problem. For such problems, control 

engineers have developed a variety of powerful theoretical tools and techniques that allow 

the design of feedback controllers that can attenuate the effects of external perturbations on 

the functioning of a system or network (see ref 16 and references therein). The application of 
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these tools to the analysis and design of complex biological networks is now attracting 

significant interest within the synthetic biology community.17, 18 To date, however, the 

potential usefulness of such approaches for engineering more resilient plants has not been 

investigated.  

Here, we explore how combining control engineering design tools19-21 with synthetic 

biology techniques could be used to enhance resistance against B. cinerea in Arabidopsis by 

preventing downregulation of a positive regulator of defense during infection. We design and 

test our controller using a model of the Arabidopsis gene regulatory sub-network underlying 

the transcriptional response to B. cinerea infection. This network model is formulated using 

ordinary differential equations (ODEs) and constructed from experimental data using 

network inference and system identification techniques. It is then validated against different 

time-series transcriptome datasets capturing the response of the plant’s regulatory network 

to pathogen attack. Simulation results show the capability of the proposed approach to 

significantly reduce the perturbation of a positive regulator of plant defense in response to 

infection. We propose a novel strategy for implementing the controller experimentally, which 

avoids the need for the incorporation of any exogenous synthetic control circuitry. This 

strategy is based on the insight that the network motif required for the controller can be 

implemented by rewiring the regulatory regions of existing genes in the plant’s stress-

response network. We show how this can be done through the addition of gene coding 

sequences under the control of alternative regulatory regions.  

 

RESULTS 

Inferring the regulatory sub-network containing a positive regulator of defense. We 

previously generated a high-resolution time series of the Arabidopsis transcriptome during 

the first 48 hours after inoculation by the pathogen B. cinerea.10 Nearly 10,000 genes were 

identified as being differentially expressed in infected leaves compared to mock-inoculated 

leaves, including 883 TFs (Supplementary File 1a). We used the time-series transcriptome 

data for the differentially expressed TFs as input for network inference algorithms, to 

generate causal directed network models of the regulatory events underlying changes in 

expression of these TF genes. The algorithms chosen for this purpose (GENIE322, 

TIGRESS23 and Inferelator24), were highly ranked in a recent assessment of network 

inference algorithms.25 GENIE3 approaches network inference as a tree-based regression 

problem and came first in the DREAM4 in silico multifactorial network inference challenge.25 

Inferelator and TIGRESS both use feature selection and least angle regression to rank the 

potential regulators of a gene. The outputs from these three algorithms were used to 

generate a consensus network model, as a robust way of generating high confidence 

networks.26   A threshold (edges ≤ 10 times the number of nodes) was applied to this 
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consensus network to limit it to 8,830 edges. Furthermore only the top three regulators of 

each node were kept based on the highest probability score. From this final network, we 

looked for sub-networks surrounding positive regulators of defense against B. cinerea that 

were downregulated during infection. This led us to focus on a 9-gene regulatory network, 

termed 9GRN (see Figure 2) containing the TF CHE, which includes predicted upstream 

regulators of CHE.  

 

CHE is a positive regulator of defense against B. cinerea.  Expression of the 

transcription factor (TF) CCA1 HIKING EXPEDITION (CHE) is downregulated during B. 

cinerea infection (ref 10 and Figure 1a).  Rhythmic expression of CHE is clear in the mock-

inoculated samples (reflecting the role of CHE within the circadian clock27) with 

downregulation due to infection beginning around 22 hours post inoculation. A mutant with 

significantly reduced expression of CHE, che-1,27 shows increased susceptibility to B. 

cinerea compared to wildtype indicating CHE plays a positive role in defense against this 

pathogen (Figure 1b). In addition to CHE, two other genes in the 9GRN are important in 

defense against B. cinerea: ORA59 and at-ERF1. ORA59 is a positive regulator of defense28 

and at-ERF1 is a negative regulator of defense (Figure S1).   

 

Validating edges in the 9GRN model. To increase our confidence in the validity of the 

inferred 9GRN sub-network model, we used yeast-1-hybrid (Y1H), a partial Arabidopsis 

cistrome map29, and gene expression data from RAP2.6L overexpressors30 to test regulation 

predicted by the model. A set of pair-wise Y1H had been carried out testing binding of 75 

TFs to the promoter regions of 34 of the same TFs. Within this set, there were 4 edges in our 

model (RAP2.6L to ANAC055; ANAC055 to RAP2.6L, ANAC055 to ORA59 and at-ERF1 to 

ORA59) that had been tested. For two of these edges, strong binding was seen in the Y1H 

experiments; RAP2.6L could bind to the promoter of ANAC055 and at-ERF1 could bind to 

the promoter of ORA59 (Figure S2).  In addition, the Y1H data suggested two additional 

edges that were missing from our model (RAP2.6L to ORA59, and ORA59 to ANAC055), 

however, expression data from RAP2.6L overexpressors30 and knockout mutant of ORA5928 

do not show any evidence for these regulatory edges. Additional interactions in the 9GRN 

were verified using data from an Arabidopsis cistrome map.29 The cistrome is the complete 

set of cis-elements or TF binding sites in an organism, and a partial map was generated by 

O’Malley et al.29 using DNA affinity purification sequencing (DAP-seq) to identify TF binding 

sites for 349 TFs (including CHE, ORA59, ANAC055 and MYB51 from our network). This 

analysis revealed that ANAC055 can bind to the promoters of ORA59 and RAP2.6L. Finally, 

the RAP2.6L overexpressing mutant showed increased expression of AT1G79150, providing 
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evidence for this regulatory interaction.30 Edges with supporting experimental data are 

shown in green in Figure 2. 

 

A validated dynamic model of the CHE regulatory sub-network. The network inference 

algorithms used to infer the large consensus network model are able to predict regulatory 

relationships between the genes in the 9GRN but the type of regulation (i.e. activating or 

inhibiting) cannot be determined. Since these are essential features of any model that can 

be used for controller design, we next determined the direction of the regulatory edges in the 

9GRN using standard four-step system identification techniques: data collection, model 

structure selection, parameter estimation and model validation (see chapters 1 and 7 of ref 

31). Previous studies that utilized this technique to identify regulation types in GRNs used 

linear models 31-33, and there is now strong evidence that the underlying dynamics of GRNs 

can be accurately described using such models (we define accurate as a model able to 

recapitulate experimental data within a single standard deviation of error).34, 35 Moreover, as 

the model is subsequently to be used to design perturbation mitigation strategies, a linear 

model facilitates the use of linear control design techniques that are more established than 

their nonlinear counterparts. In system identification terminology, black box models refer to a 

set of ready-made models with no physical structure or biological interpretation. On the other 

hand, gray box models refer to models that are tailor-made given some prior information 

about the system. Since we have prior knowledge of the direction of regulation between the 

genes obtained from the inferred network above, we use a linear gray box model comprising 

nine ODEs (Equation 4 in the Methods section) for the 9GRN, and thus only need to identify 

the regulation type and dynamics within the 9GRN.  

The values of the model parameters were estimated from the available mRNA time-

series data10 using a nonlinear least squares algorithm36, 37 (Equation 5 in Methods section) 

and the estimated parameters are given in Table 3 in Methods section. As these mRNA 

time-series measurements are normalized using an intensity-dependent normalization 

method,38, 39 the resulting measurements are dimensionless and are reported as relative 

expression. Figure 2 indicates the regulation types identified in the 9GRN sub-network, 

where positive and negative values of production rate given in Table 3 in the Methods 

section denote transcriptional activators and inhibitors respectively. In addition, all the 

estimated degradation rates had the expected negative sign, and had numerical values 

within the range expected.40 We validated the dynamic model by comparing its response 

against another mRNA time-series data set (see Methods section) that was not used in the 

parameter estimation process as well as two mutant behaviors. As shown in Figures 3 and 

S3, the identified model is able to accurately predict the expression behavior of the network. 
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Additionally, the model shows good predictive capability against two mutant datasets (see 

Figure S4). 

 

Design of a feedback controller for perturbation mitigation. As outlined above, our 

control objective is to employ feedback to prevent the reduction in CHE levels when the plant 

is subjected to pathogen attack. There are several frameworks available for designing 

genetic controllers.19, 21, 41 In refs 19 and 41, the authors proposed and extended a 

framework for implementing an integral controller using a negative feedback of a two-

promoter gene network. In ref 21, the authors analyzed the dynamics of gene regulation 

using frequency domain tools from control theory and proposed the implementation of a 

genetic phase lag controller. Here, we based our design on the framework proposed in 

Harris et al.21, where the proposed genetic controller is made up of a combination of genes 

and the regulatory relationships between them. In ref 21, these gene regulations are 

modeled using nonlinear Michaelis-Menten type functions and these functions are then 

linearized such that the controller design and analysis can be done using standard frequency 

domain methods. In this study, since we have used a linear model to describe the 9GRN, we 

also model the gene regulations in the controller using linear functions.  

Figure 4a shows the genetic circuit diagram of the proposed feedback controller. The 

controller architecture is modified from the framework suggested in ref 21, whereby for the 

purposes of implementation in plants we replace the protease degradation component with a 

transcriptional inhibitor component. The modified circuit contains three genes and their 

associated proteins: genes X, Y and E giving proteins X, Y and E.  

Let X denote an arbitrary gene that can be regulated by E, and its translated protein 

X denotes the TF that can regulate the output gene, Y, whose levels we ultimately want to 

control. E denotes the protein whose function is to regulate gene X and calculate the error 

signal. Here the error signal is the difference between the desired reference level and the 

output signal Y (see Section S1 of the Supporting Information). The ODE for the regulation 

of X by E is given by: 

XSXEX bXE
dt

dX
,, +−= βα        (1) 

Here, α, β and bS represent production rate, degradation rate and basal expression level 

respectively. With Y being the output of the process that we want to control, then the ODE 

describing the regulation of Y by X and E can be written as: 

dY

dt
=αY ,XX +αY ,EE − βYY + bS ,Y       (2) 

Taking Laplace Transforms of Equations 1 and 2, and after some algebraic manipulation, we 

obtain the following transfer function (see Section S1 of the Supporting Information): 
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Equation 3 is the open-loop transfer function from E to Y. In control theory, an open-loop 

transfer function is defined as the ratio of the output signal to the input signal in the absence 

of feedback and it is usually composed of the product of the transfer functions of the 

controller and the process. In a transfer function, the solutions making the numerator to zero 

are called the zeros of the system while the solutions making the denominator zero are 

called the poles of the system. Since Y is the output of the process, its transfer function is 

given by ( )( )YEY s βα +/,
. Thus, the transfer function of the controller is then given by

)/())/(( ,,, XEYXYEXX ss βαααβ +++ , where the zeros and poles of the controller are 

)/))((( ,,, EYXYEXXz αααβ +−=
 
and Xp β−= , respectively. Since |p| < |z|, we obtain a 

phase lag controller. In control engineering, phase lag controllers are commonly used to 

improve disturbance rejection and reduce steady-state error,42 and thus they are well suited 

to our control objective of achieving perturbation mitigation. Interestingly, based on the 

schematic diagram of the phase lag controller as shown in Figure 4a, we note that this 

controller structure is equivalent to a coherent feedforward loop type-I network motif,43, 44 but 

with an added feedback loop. The role of this network motif in natural biological systems has 

been subjected to extensive studies and one of its key roles includes perturbation 

attenuation.45, 46  

We illustrate here in simulation the use of the genetic phase lag controller in 

mitigating the perturbation affecting CHE in the 9GRN. The configuration for perturbation 

mitigation using the genetic phase lag controller is shown in Figure 4b. In 9GRN, the output 

gene Y is CHE and the feedback is delivered by CHE’s transcriptional repressor activity on 

gene E. As with standard perturbation mitigation strategies in feedback control theory, when 

a perturbation causes the output level to deviate from its desired level, the controller upon 

detecting this deviation will react in order to restore the output to its desired level.  

As CHE is a circadian gene, its expression level is not constant but oscillatory 

(ATML1 is also light regulated). In the absence of perturbations, the CHE expression levels 

oscillate around the relative expression value of 12.44 (black line in Figure 4c). In our 

simulations, the perturbation (B. cinerea inoculation) is introduced at time 120 hours. Upon 

infection by B. cinerea, the average expression level of CHE drops from 12.44 to 9.77 as 

indicated by the yellow solid line in Figure 4c. The phase lag controller upon detecting this 

drop in the expression level of CHE should exert an appropriate control action to restore the 

level of CHE to its original level. When the phase lag controller is implemented (blue solid 

line), the controller almost completely attenuates the effect of the perturbation with the level 

of CHE oscillating around 12.33. Moreover, this control strategy is shown to be robust 
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against variation in model and controller parameters through a Monte Carlo simulation (see 

Methods section), where we randomly varied the parameters within 20% of their nominal 

values. 

 It is known from control theory that to exactly restore the output to the desired 

reference level after a step disturbance requires an integral-type controller.47 In terms of the 

controller transfer function, an integral-type controller has a pole at s = 0. The transfer 

function of the phase lag controller given in Equation 3 has a pole at s = –βX, and therefore 

the slower the degradation rate for X (which corresponds to a longer mRNA half-life), the 

more closely the controller will implement an integral-type control action that exactly restores 

the output to the desired reference level after a disturbance. In Arabidopsis, the longest half-

life reported for mRNAs is approximately 26 hours,40 which corresponds to a degradation 

rate of 0.026 /hour (calculated using the standard equation for exponential decay, β = ln(2)/T 

) and therefore we have used this value in our simulations (blue solid line in Figure 4c). Full 

details of all the equations and parameter values underlying the simulations shown in Figure 

4c can be found in Section S2.1 of the Supporting Information. 

 

Controller implementation using regulatory network rewiring. The direct implementation 

of the proposed controller in Arabidopsis presents a number of challenges, largely due to the 

choice of TFs for E and X and associated binding sequences. In ref 21, the suggested genes 

for E and X are RhaS (E in Figure 4a) and XylS (X in Figure 4a). RhaS activates the 

production of XylS and CHE through a coherent feedforward loop, and XylS also acts as a 

regulator for the production of CHE. However, orthogonal TFs may not function in plants 

whilst using endogenous TFs is likely to have unintended consequences on other processes.  

To get around these problems we propose an alternative approach for implementing 

the proposed controller, based on network rewiring. As shown in Figure 4a, (and Section S6 

of the Supporting Information) the structure of a genetic phase lag controller is composed of 

a coherent feedforward loop type I motif with negative feedback. Thus, if we are able to 

realize this network motif through the rewiring of the 9GRN, we can obtain a genetic phase 

lag controller without the need to introduce new non-endogenous genetic circuitry. 

For the 9GRN network shown in Figure 2, there are 46 potential rewiring 

combinations that can realize the network motif of a phase lag controller. However, not all 

genes within the 9GRN can be used in the rewiring exercise, due to functional constraints. 

Genes ATML1, LOL1 and AT1G79150 are not suitable for rewiring, as during B. cinerea 

infection, their expression levels decrease and to use them as part of the positive regulation 

of the network motif would lead to further decrease in the level of CHE. Another constraint is 

due to the gene at-ERF1, which is a negative regulator of plant defense (see Figure S1), and 

hence we would not wish to increase its expression further. Using at-ERF1 as part of the 
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positive regulation of the network motif, however, would lead to an increase in its expression. 

In addition, the gene ORA59 is a positive regulator of defense, so decreasing its levels 

would negatively affect the defense response to B. cinerea. The gene RAP2.6L is highly 

responsive to stress hormones30, 48 and while its involvement in infection with B. cinerea has 

not been conclusively proven, we have also chosen to discard rewiring combinations that 

decrease its levels. Taking these constraints into account, we are left with 11 possible 

rewiring combinations (see Section S3 of the Supporting Information). Further analysis of 

these 11 rewiring combinations (see Section S3 of the Supporting Information) reveals that 

the rewiring strategy that requires the least amount of experimental modification involves the 

pathway from MYB51 (E) to ORA59 (X) to CHE (Y). Note that we have included the 

equivalent function of the genetic phase lag controller in brackets.  

Figure 5a shows the rewiring configuration using the pathway from MYB51 to ORA59 

to CHE. To realize the required network motif, CHE must inhibit expression of MYB51, and 

MYB51 and ORA59 must activate CHE expression. Implementing this in simulation, with the 

perturbation introduced at time 120 hours, we notice only a small recovery in the expression 

level of CHE from around 9.77 to 10.31 after the perturbation (Figure 5a). Why is the 

increase in the level of CHE small given that we have implemented a phase lag controller 

through network rewiring? From Equation 3, we note that the pole of the phase lag controller 

is given by the degradation rate of X, and in this network motif, this corresponds to the 

degradation rate of ORA59. From Table 3, the value of the degradation rate of ORA59 is 

38.0062, which corresponds to placing the pole at s = -38.0062. From our previous 

discussion, it is desirable to have the pole of the controller to be as close to 0 in order for the 

controller to restore the output to its desired reference level. To move the pole associated 

with ORA59 closer to 0, we use positive autoregulation19, 21, 49, i.e. we further rewire the 

network so that ORA59 activates itself. As expected, with the addition of auto-activation of 

ORA59, we observe that the expression level of CHE begins to show a significant increase 

at around 140 hours. However, instead of returning to its original level, it increases by an 

extra 15% compared to its original value (Figure 5b). A detailed look at the plot of MYB51 

reveals that the error computed by MYB51 is higher than expected. The reason for the 

incorrect error computation is that there is unmodeled regulation affecting MYB51 (see 

Equation 4 in Methods section and Section 5 of Supporting Information). As a result, the 

controller ‘sees’ a larger error than actually exists, and thus exerts a higher control action to 

mitigate this error, resulting in the observed further increase in the expression level of CHE. 

To address this issue, a mechanism to negate the effect of unmodeled regulation on 

MYB51 is required. This can be achieved by rewiring another gene, for example ANAC055, 

to regulate MYB51 (see Section S4 in the Supporting Information). As the negation is 

independent of the process output, this is equivalent to using a feedforward controller. With 
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the addition of autoregulation and feedforward control, the simulation results in Figure 5c 

show that the phase lag controller implemented via rewiring is now able to significantly 

attenuate the effect of the perturbation on CHE and return it to its original expression level. 

Additionally, the Monte Carlo simulations (see Methods section) show that the proposed 

strategy is robust against parameter variations. The details of the equations and parameter 

values underlying the simulations shown in Figure 5c can be found in Section S2.2 of the 

Supporting Information.  

 

DISCUSSION 

We have presented a novel strategy, based on the use of feedback control, for mitigating the 

effects of pathogen attack on plant gene regulatory networks, and demonstrated via 

simulation the ability of this approach to restore the levels of CHE, a key defense gene in 

Arabidopsis, after infection by B. cinerea. The use of simple rewiring such as negative 

autoregulation of CHE and direct regulation from ANAC055 was found to be insufficient for 

restoring the level of CHE, therefore we employed a coherent feedforward type I motif with 

negative feedback. In order to develop the strategy, we employed system identification 

techniques to build and validate a new dynamical model of the infected gene regulatory sub-

network that accurately predicts the type of regulation between each node of the network. 

Then, using this model, we designed perturbation mitigation strategies using feedback 

control theory. In the proposed approach, we applied a combination of two positive and one 

negative regulatory interactions to implement genetic circuitry realizing a phase lag 

controller. Phase lag controllers are widely used in engineering systems to reduce the 

effects of disturbances on system performance, and have been proposed as a useful motif 

for implementing synthetic biological control systems.21 To date, however, practical 

strategies for implementing such controllers in vivo remain to be elucidated. Here, based on 

the observation that this control architecture resembles a coherent feedforward loop type-I 

with negative feedback, we propose a novel controller implementation strategy based on 

identifying groups of genes within the 9GRN whose regulation can be rewired to realize this 

network motif. Within the 9GRN, rewiring the pathway from MYB51 to ORA59 to CHE was 

shown to provide the most straightforward implementation of the phase lag controller. When 

suitably augmented with rewired autoregulation and feedforward components, this 

implementation of the controller was shown to deliver almost perfect perturbation mitigation 

without the need for any non-endogenous synthetic circuitry.  

The regulatory network rewiring described above can be carried out experimentally 

through the insertion of constructs expressing the desired TF from the appropriate promoter 

region or TF binding sites combined with a minimal promoter sequence. Given that there are 
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multiple TF binding sites in a typical promoter sequence (see e.g. ref 50), it is preferable to 

use specific TF binding regions. For the rewiring we propose for the 9GRN, regulation of 

MYB51 by CHE, CHE by ORA59, and ORA59 regulation of its own expression, could be 

achieved using specific promoter regions that have been shown to confer the necessary 

regulation to drive expression of copies of the target TF coding sequence. CHE binds to the 

promoter of its target gene CCA1 at the sequence GGTCCCAC.27 Both the region -363 to -

192 bp of the CCA1 promoter encompassing this sequence and a trimer of the CHE binding 

sequence have been shown to be bound by CHE.27 ORA59 binds to two GCC boxes 

(GCCGCC and GCAGCCGCT) in the PDF1.2 promoter and a tetramer of one of these 

boxes is sufficient for ORA59 activation of expression.51 The other regulatory edges required 

for rewiring (MYB51 activation of CHE expression and ANAC055 inhibition of MYB51) would 

currently require using the full length promoter sequences and potentially fusion of 

transcriptional repression domains. Rewiring using full-length promoter sequences could be 

achieved relatively quickly (1-2 years) and methods to insert multiple gene constructs into 

Arabidopsis are available (for example, Golden gate cloning52). However, the site of insertion 

of the necessary transgenic constructs (which is not controlled) may also influence resulting 

levels of expression and hence further optimization/selection of lines with appropriate levels 

will no doubt be necessary.  

The main premise of this paper is to demonstrate potential application of the phase 

lag controller motif in preventing pathogen-induced perturbations of gene expression. Our 

9GRN model is used to demonstrate how a phase lag controller could function. We have 

provided some evidence for edges in our network, but the presence of additional edges we 

have not modelled or false positive edges could have a significant impact on the 

performance of this controller in vivo. Strategies such as DAP-seq29 are making significant 

improvements in our knowledge of plant TF-promoter interactions but, particularly given the 

expansion of TF families in plants,53 greater mapping of plant gene regulatory networks 

under multiple environmental and developmental conditions will be necessary to drive 

successful plant synthetic biology strategies. Clearly, in all non-orthogonal rewiring 

strategies the new edges may have unintended consequences on plant physiology through 

changing regulatory interactions. In our in silico implementation, the controller is only 

triggered by a significant reduction in CHE levels (such as that driven by pathogen infection, 

not the daily circadian oscillations), and levels of CHE and MYB51 quickly return to normal. 

The intention of the controller is to maintain oscillating expression levels of CHE given its key 

role in the circadian clock (regulating CCA1, a core transcriptional regulator,27). We also 

ensured that expression of positive regulators of defence was not compromised. However, 

the genes with new rewired links (MYB51, ORA59 and ANAC055) are involved in response 

to other environmental conditions. For example, MYB51 promotes expression of indolic 
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glucosinolate biosynthetic genes54 in response to mechanical stimuli and ANAC055 is 

induced by drought, salt and abscisic acid stress.55 Changes in the expression of these 

genes due to other stimuli could prevent the controller from operating during B. cinerea 

infection (for example, induction of ANAC055 would lower levels of MYB51 and indicate a 

lower level of error to the controller, leading to the controller not reacting properly). Our 

controller is not designed to handle more than one perturbation (environmentally induced 

shift in gene expression) and this limitation raises another key challenge in plant systems 

biology. The development of novel approaches to model and simulate dynamic networks of 

sufficient size to capture environmental stress cross-talk will significantly improve our ability 

to rationally engineer stress resilient plants. 

 

METHODS 

Transgenic Arabidopsis line. The CHE T-DNA insertion line, SALK_143403c, was 

obtained from the SALK collection56 and confirmed to be homozygous. Expression of CHE in 

this line is significantly reduced compared to wildtype (Col-0).27 The coding region of at-

ERF1 was cloned into the pB7WG2 vector57 and stable transgenic Arabidopsis lines 

generated in a Col-4 background. The coding region of at-ERF1 was cloned into the 

pB7WG2 vector57 and stable transgenic Arabidopsis lines generated in a Col-4 background. 

 

Infection assay. Arabidopsis plants were grown and B. cinerea strain pepper58cultured as 

described in ref 10. Leaves from 5-week-old plants were detached and placed on 0.8% agar 

in propagator trays. Each leaf was inoculated with a single 10µl droplet of B. cinerea 

inoculum, or a 10µl droplet of sterile grape juice diluted in a 1:1 ratio with sterile water. Each 

tray contained 9 control leaves and 81 infected leaves, with control and infected leaves in 

each row. The trays were covered with lids and kept in a growth cabinet under a 16:8 hour 

light:dark cycle at 22°C, with 90% humidity. Lesion area was assessed from photographs 

using ImageJ. Mean lesion area of leaves from WT and T-DNA insertion lines were 

compared using a Student’s two-tailed t-test, which assumed equal variance. 

 

Yeast-1-Hybrid assay. Yeast-1-Hybrid assays were performed as previously described.50 

Three overlapping promoter regions (of approximately 400 bp) spanning 800 to 1200 bp 

upstream of the transcription start site were used as bait for transcription factors fused to a 

GAL4 activation domain in pDEST22 (Invitrogen). Yeast strain AH109 (Clontech) was 

transformed with these individual TF clones. The promoter fragments were amplified using 

two-step PCR and cloned into a pDonrZeo vector (Invitrogen) using Gateway cloning. Yeast 

strain Y187 (Clontech) was transformed with the individual vectors to create the bait strain. 
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The promoter strain was spotted onto YPDA (yeast, peptone, dextrose, adenine) plates, 

overlaid with the TF strain, and incubated for 24 hours at 30°C. The diploid cells were replica 

plated onto selective plates and incubated overnight. This was followed by replica-cleaning 

and incubation for 4 days, after which growth was scored. Each interaction was tested twice. 

Primer sequences for the promoter fragments are given in Table 1. 

 

Table 1: Primer sequences for cloning promoter fragments for Y1H. 

Gene Forward Primer Reverse Primer 
AT1G06160 AAAAAAGCAGGCTTCGTGCAAT 

TGATCACTATATTAGTTGAACTG 
CAAGAAAGCTGGGTCGTGTCTAA 
GTGGCACTAAGTTTGGG 

AT1G06160 AAAAAAGCAGGCTTCCCGCCTT 
AGTTTCTGACAGAGTTTCGACTC 

CAAGAAAGCTGGGTCGAGTGTA 
TGACGTACGGCGGCGTATTCCCG 

AT1G06160 AAAAAAGCAGGCTTCCTGTTCTG 
TCGAGTTGTTGCTTGTTGAGCC 

CAAGAAAGCTGGGTCTGTGGGCA 
AAATAGGTCAAACATGCGGC 

AT3G15500 GGGGGAATTCATAAGAGGAGGT 
ACAGTCACACA 

GGGGAAGCTTACGCGTCGAAG 
CTCTGCTACTCGTGTATGTAT 

AT3G15500 GGCCGAATTCATCCCATCATTC 
ACTTACAC 

GGGGAAGCTTACGCGTGATCAA 
TTAGAGCGTCGTGATTTATGC 

AT3G15500 GGGGGAATTCGTTTGTTGTTTG 
TCCCTCTCTCTGA 

GGGGAAGCTTACGCGTTGAGTT 
ACATAACAGTGACAATCTACGA 

AT3G15500 GGGGGAATTCGAGAAGCGTGT 
TTGTGTTATACGGACTTA 

GGGGAAGCTTACGCGTTGTGTC 
TATTGGTTGAGTTAGGC 

 

Accession numbers. Arabidopsis gene names and AGI locus codes referred to in this 

article are shown in Table 2. 

 

Table 2: Associated AGI to Arabidopsis gene names. 

Gene name AGI 
ORA59 AT1G06160 
MYB51 AT1G18570 
LOL1 AT1G32540 
AT1G79150 AT1G79150 
ANAC055 AT3G15500 
at-ERF1 AT4G17500 
ATML1 AT4G21750 
CHE AT5G08330 
RAP2.6L AT5G13330 

 

Generating the TF network. An Arabidopsis TF list was generated by combining lists from 

ThaleMine59, DATF60, ref 61, and homology searches using DNA binding domains, followed 

by manual curation of genes only identified in one list. The final list of 2,534 genes is given in 

Supplementary File 1b. The list of Arabidopsis genes differentially expressed during B. 

cinerea infection was obtained from ref 10, which included 883 differentially expressed TFs 

(Supplementary File 1a). 
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Generating a dynamic model of the CHE regulatory sub-network. Traditionally, a model 

of a gene regulatory network comprises both transcription and translation mechanisms. 

However, in our case, given that only mRNA accumulation time-series data are available10, 

the following two assumptions are made in building the 9GRN model. Firstly, the translation 

of the protein from mRNA follows a linear relationship and secondly, the behavior of the 

translated protein follows its mRNA closely. With these two assumptions, we can group 

together the protein translation rate with the mRNA transcription rate resulting in the entire 

9GRN being modeled using only mRNA data. Based on the above assumptions, the model 

of the 9GRN shown in Figure 2 can be described by the following ODEs: 

WcbNN
dt

dN

LbNNaNN
dt

dN

LWcbNN
dt
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dt
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(4) 

where αi,j ∈ (–∞,+∞), βi > 0, γCHE > 0, bS,i ∈ (–∞,+∞), and ci ∈ (–∞,+∞) are the unknown 

parameters that represent the production rate, degradation rate, scaled light effect, basal 

level and effect of the unmodeled regulation, respectively, with i and j denoting the 

appropriate indices describing the parameters given in Equation 4. Ni represents the gene. 

W represents the effect of the unmodeled regulation (e.g. direct regulation as a result of B. 

cinerea infection, noise and other regulations not identified by the network inference 

algorithms), where W = 0 (resp. W = 1) is used when the effect is absent (respectively 

present). In the experiments from which our data were generated10, the time-series data 

from the control and infected experiments are treated as a continuous dataset where the 

infection starts at the halfway point, i.e., time 48 hours. Thus, the transition of W from 0 to 1 

is not modeled as an instantaneous change but as a gradual increase. L represents the 
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effect of light and CHE follows a sinusoidal rhythm as known.27 For details on the 

mathematical representation for W and L see Section S5 of the Supporting Information.  

The values of the model parameters were estimated from the available mRNA time-

series data using a nonlinear least squares algorithm and the estimated parameters are 

given in Table 3. 

 

Table 3: Estimated parameters of the linear model 

Gene Name Values 
ORA59 αORA,1 = 14.3800, αORA,2 = -0.7359, αORA,3 = 21.5714, βORA = -38.0062,  

bS,ORA = 15.2355 
MYB51 βMYB = -0.6658, bMYB = 5.6277, cMYB = 1.1890 
LOL1 βLOL = -0.0485, bS,LOL = 0.4874, cLOL = -0.1241 
AT1G79150 αAT1,1 = 0.7577, αAT1,2 = -0.7408, βAT1 = -2.4088, bS,AT1 = 23.863, cAT1 = 

0.91809 
ANAC055 αANA,1 = 25.6935, βANA = -28.4685, bS,ANA = 0.0517, cANA = 82.5415 
at-ERF1 βERF = -0.2051, bS,ERF = 1.8699, cERF = 0.8735 
ATML1 αATM,1 = -0.7945, βATM = -1.1142, bS,ATM = 19.3684, cATM = 0.0040,  

γATM = 0.5000 
CHE αCHE,1 = 24.5024, αCHE,2 = 3.3801, αCHE,3 = 17.6771, βCHE = -40.1258,  

bS,CHE = 3.7167, γCHE = 16.8001 
RAP2.6L αRAP,1 = 0.4186, βRAP = -0.7933, bS,RAP = 3.7046, cRAP = 0.0045 

 

All the simulations of the ODE models, phase genetic controller and network rewiring 

are done using MATLAB built-in solver ode45, and the initial condition for each gene to solve 

the ODE is the first data point of the mRNA time-series for each respective gene. For the 

simulation using the genetic phase lag controller (Equation S2.1), the initial conditions for 

solving the ODEs for X and E are set to 0. 

 

Parameter estimation. For the 9GRN linear model, the values of the unknown parameters 

are estimated from the available mRNA time-series using nonlinear least square, given by 

[ ]∑∑
∈ =

−=
ψθ

θθ
i

N

t

ii

L

L

tNtN
N 1

2

),(ˆ)(
1

minargˆ      (5) 

where θ = [αi, βi, bS,i, ci] with i ∈ ψ = [ORA, MYB, LOL, AT1, ANA, ERF, ATM, CHE, RAP],  

NL is the length of the time-series data, N̂ is the simulated data from Equation 4 and N is 

the experimental data, which are the mRNA time-series taken from ref 10. There are four 

sets of mRNA time-series and we use the average mRNA expression from the first three 

sets for parameter estimation and use the fourth data set as an independent data set for 

validating the ODE model. Equation 5 is solved using MATLAB function fminsearch which 

uses the Nelder-Mead simplex algorithm.  
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As a quantitative measure of the model performance, we compute the Mean Square 

Error (MSE) for each gene between the experimental data and the model given by Equation 

4. The MSE for each gene is computed as follows: 

[ ]∑
=

−=
LN

tL

tNtN
N 1

2

),(ˆ)(
1

MSE θ       (6) 

The total MSE, MSET is computed by summing the MSE for all nine genes in the 9GRN. 

Table 4 shows the MSE values for both the training and validation data sets. 

 

Table 4: MSE for both training and validation data sets. 

Gene Name MSE 
(Training) 

MSE  
(Validation) 

ORA59 0.7730 1.9828 
MYB51 0.3910 0.6949 
LOL1 0.3703 0.6582 
AT1G79150 0.1829 0.3587 
ANAC055 0.9889 2.3849 
at-ERF1 0.4394 1.0583 
ATML1 0.3746 0.6682 
CHE 0.8759 1.0819 
RAP2.6L 0.3452 0.6366 
MSET 4.7410 9.5245 

 

Performance and robustness analysis. To analyze the performance and robustness of the 

proposed strategies, we perform a Monte Carlo simulation where we randomly draw all the 

parameters from a uniform distribution. Then, we vary the parameters within ranges of 20%, 

around their nominal values. Mathematically, we have p(1 + ∆P(x)), where p denotes the 

model and the controller parameters, P(x) is the probability distribution and ∆ = 0.2. Using 

the Chernoff bound and associated guidelines for Monte Carlo simulation, a total number of 

1060 simulations is required to achieve an accuracy level of 0.05 with a confidence level of 

99%.62, 63   
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Figure 1. Expression and role of CHE during infection with B. cinerea. (a) Expression of the 

TF CHE is downregulated during B. cinerea infection of Arabidopsis leaves. Leaves were 

drop-inoculated with B. cinerea spores or mock-inoculated, and genome-wide gene 

expression determined every 2 hours for both mock treatment (blue) and B. cinerea infection 

(red). Open circles are the average of four biological repeats with bars representing standard 

deviation. This data is extracted from Windram et al.10. (b) CHE is a positive regulator of 

defence against B. cinerea. Lesion size of Arabidopsis leaves (n = 17) drop-inoculated with 

B. cinerea spores were measured 36 and 72 hours post infection. che-1 is an Arabidopsis 

mutant with significantly reduced CHE expression. WT is the wildtype Col-0 Arabidopsis 

accession. Error bars represent standard deviation, ** represents p ≤ 0.01 and *** represents 

p ≤ 0.001. 

 

Figure 2. Network model of gene regulatory events mediating transcriptional response to 

Botrytis cinerea. The nine-gene network (9GRN) is a sub-network of the initial network 

model inferred from time series transcriptome data. The direction of regulation is indicated 

by the arrow. Red stars represent unmodeled regulation (e.g. direct regulation from B. 

cinerea, noise and other unidentified regulation, see also Section S5 of the Supporting 

Information). The yellow circle represents circadian regulation. Green edges represent 

interactions that are supported by experimental data. The regulation types (arrow-head and 

bar-head) in 9GRN are identified through system identification. 

 

Figure 3. Validation of the linear model against an experimental data set that was not used 

in the parameter estimation exercise. The experimental data sets in ref 10 are composed of 

two time series, one mock-inoculated and one B. cinerea-inoculated. Here, these two time 

series are joined (denoted by the vertical dashed line) to illustrate a transition from pre- to 
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post-infection, with B. cinerea infection starting at time 48 hours. There are four sets of such 

joined time-series data; we used the average of the first three data sets for parameter 

estimation (see Figure S3), leaving the fourth data set for model validation shown above. We 

have also included the unmodeled regulation, W described by Equation S5.1. Line with dots: 

Experiment data, Solid line: Linear model. 

 

Figure 4. Perturbation mitigation using a genetic phase lag controller. (a) Genetic circuit of 

the proposed controller. X is the output of the controller, Y is the output of the process and E 

computes the error signal. This genetic circuit is equivalent to a coherent feedforward loop 

type-I with feedback network motif that yields the transfer function of a phase lag controller 

plus process dynamics. (b) Implementation of the phase lag controller motif for perturbation 

mitigation in the 9GRN. (c) Simulation results of phase lag controller in mitigating 

perturbation in the 9GRN. The solid black line is the desired average expression of CHE, the 

solid yellow line is the expression of CHE during infection with B. cinerea without any control 

action, and the solid blue lines represent gene expression during infection with B. cinerea 

with control action. The gray shaded regions represent the expression level with uncertainty 

obtained through Monte Carlo simulation. In our simulations, the parameter values for the 

phase lag controller are αX,E = 3.00, αY,X = 5.00, αY,E = 5.00, βX = 0.026, while the parameter 

values for the error computation are bS,E = 6.21 and γ = βE = 0.50. For more details on the 

choice of these values, see Figures S6 to S8. 

 

Figure 5. Simulation results for genes in the 9GRN with proposed network rewiring. Black 

line: reference value, Blue line: gene expression level in response to B. cinerea infection 

after rewiring. Yellow line: gene expression level in response to B. cinerea infection without 

network rewiring. Perturbation (inoculation) is given at time 120 hours. (a) Rewiring a 

controller by adding activation of CHE by MYB51 and ORA59 and inhibition of MYB51 

expression by CHE. (b) Addition of positive autoregulation to ORA59. (C) Addition of 

feedforward component; inhibition of MYB51 by ANAC055. The gray shaded regions 

represent the expression level with uncertainty obtained through Monte Carlo simulation. 
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Figure 1. Expression and role of CHE during infection with B. cinerea (a) Expression of the 

TF CHE is downregulated during B. cinerea infection of Arabidopsis leaves. Leaves were 

drop-inoculated with B. cinerea spores or mock-inoculated, and genome-wide gene 

expression determined every 2 hours for both mock treatment (blue) and B. cinerea infection 

(red). Open circles are the average of four biological repeats with bars representing standard 

deviation. This data is extracted from Windram et al.10 (b) CHE is a positive regulator of 

defence against B. cinerea. Lesion size of Arabidopsis leaves (n = 17) drop-inoculated with 

B. cinerea spores were measured 36 and 72 hours post infection. che-1 is an Arabidopsis 
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mutant with significantly reduced CHE expression. WT is the wildtype Col-0 Arabidopsis 

accession. Error bars represent standard deviation, ** represents p ≤ 0.01 and *** represents 

p ≤ 0.001. 

 

 

 

Figure 2. Network model of gene regulatory events mediating transcriptional response to 

Botrytis cinerea. The nine-gene network (9GRN) is a sub-network of the initial network 

model inferred from time series transcriptome data. The direction of regulation is indicated 

by the arrow. Red stars represent unmodeled regulation (e.g. direct regulation from B. 

cinerea, noise and other unidentified regulation, see also Section S5 of the Supporting 

Information). The yellow circle represents circadian regulation. Green edges represent 

interactions that are supported by experimental data. The regulation types (arrow-head and 

bar-head) in 9GRN are identified through system identification. 
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Figure 3. Validation of the linear model against an experimental data set that was not used 

in the parameter estimation exercise. The experimental data sets in ref 10 are composed of 

two time series, one mock-inoculated and one B. cinerea-inoculated. Here, these two time 

series are joined (denoted by the vertical dashed line) to illustrate a transition from pre- to 

post-infection, with B. cinerea infection starting at time 48 hours. There are four sets of such 

joined time-series data; we used the average of the first three data sets for parameter 

estimation (see Figure S3), leaving the fourth data set for model validation shown above. We 

have also included the unmodeled regulation, W described by Equation S5.1. Line with dots: 

Experiment data, Solid line: Linear model.  
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Figure 4. Perturbation mitigation using a genetic phase lag controller. (a) Genetic circuit of 

the proposed controller. X is the output of the controller, Y is the output of the process and E 

computes the error signal. This genetic circuit is equivalent to a coherent feedforward loop 

type-I with feedback network motif that yields the transfer function of a phase lag controller 

plus process dynamics. (b) Implementation of the phase lag controller motif for perturbation 

mitigation in the 9GRN. (c) Simulation results of phase lag controller in mitigating 

perturbation in the 9GRN. The solid black line is the desired average expression of CHE, the 

solid yellow line is the expression of CHE during infection with B. cinerea without any control 

action, and the solid blue lines represent gene expression during infection with B. cinerea 

with control action. The gray shaded regions represent the expression level with uncertainty 

obtained through Monte Carlo simulation. In our simulations, the parameter values for the 

phase lag controller are αX,E = 3.00, αY,X = 5.00, αY,E = 5.00, βX = 0.026, while the parameter 

values for the error computation are bS,E = 6.21 and γ = βE = 0.50. For more details on the 

choice of these values, see Figures S6 to S8. 
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Figure 5. Simulation results for genes in the 9GRN with proposed network rewiring. Black 

line: reference value, Blue line: gene expression level in response to B. cinerea infection 

after rewiring. Yellow line: gene expression level in response to B. cinerea infection without 

network rewiring. Perturbation (inoculation) is given at time 120 hours. (a) Rewiring a 

controller by adding activation of CHE by MYB51 and ORA59 and inhibition of MYB51 

expression by CHE. (b) Addition of positive autoregulation to ORA59. (C) Addition of 

feedforward component; inhibition of MYB51 by ANAC055. The gray shaded regions 

represent the expression level with uncertainty obtained through Monte Carlo simulation. 
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Figure 1. Expression and role of CHE during infection with B. cinerea (a) Expression of the TF CHE is 
downregulated during B. cinerea infection of Arabidopsis leaves. Leaves were drop-inoculated with B. 

cinerea spores or mock-inoculated, and genome-wide gene expression determined every 2 hours for both 

mock treatment (blue) and B. cinerea infection (red). Open circles are the average of four biological repeats 
with bars representing standard deviation. This data is extracted from Windram et al.10 (b) CHE is a positive 

regulator of defence against B. cinerea. Lesion size of Arabidopsis leaves (n = 17) drop-inoculated with B. 
cinerea spores were measured 36 and 72 hours post infection. che-1 is an Arabidopsis mutant with 

significantly reduced CHE expression. WT is the wildtype Col-0 Arabidopsis accession. Error bars represent 
standard deviation, ** represents p ≤ 0.01 and *** represents p ≤ 0.001.  
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Figure 2. Network model of gene regulatory events mediating transcriptional response to Botrytis cinerea. 
The nine-gene network (9GRN) is a sub-network of the initial network model inferred from time series 
transcriptome data. The direction of regulation is indicated by the arrow. Red stars represent unmodeled 

regulation (e.g. direct regulation from B. cinerea, noise and other unidentified regulation, see also Section 
S5 of the Supporting Information). The yellow circle represents circadian regulation. Green edges represent 
interactions that are supported by experimental data. The regulation types (arrow-head and bar-head) in 

9GRN are identified through system identification.  
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Figure 3. Validation of the linear model against an experimental data set that was not used in the parameter 
estimation exercise. The experimental data sets in ref 10 are composed of two time series, one mock-
inoculated and one B. cinerea-inoculated. Here, these two time series are joined (denoted by the vertical 

dashed line) to illustrate a transition from pre- to post-infection, with B. cinerea infection starting at time 48 
hours. There are four sets of such joined time-series data; we used the average of the first three data sets 
for parameter estimation (see Figure S3), leaving the fourth data set for model validation shown above. We 
have also included the unmodeled regulation, W described by Equation S5.1. Line with dots: Experiment 

data, Solid line: Linear model.  
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