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Abstract— This letter presents first–ever 

fabricated GaN split-current magnetic sensor 
device. Device operation and key manufacturing 
steps are also presented. The measured relative 
current sensitivity is constant at 14 % T-1 for wide 
mT range of the magnetic field. Constant sensitivity 
of a fabricated sensor can be attributed to device’s 
2DEG nature, i.e. its high electron concentration and 
mobility, and very small layer thickness. 

 
Index Terms — GaN, HEMT, MagFET, Magnetic 

Sensor, Split-Current, Dual Drain 

I. INTRODUCTION 
he potential for superior performance of Gallium Nitride 
(GaN) Wide-Band-Gap (WBG) power devices in medium 

and high-voltage applications (600V – 1.2kV) is well 
recognised [1]. However, if this technology is to be used at its 
full potential, i.e. to switch faster at the higher power density 
at elevated temperatures, then real-time in-situ performance 
and condition monitoring is of crucial importance. One way 
of achieving this is to employ current monitoring techniques 
comprising of a magnetic sensor monolithically integrated 
with the power devices [2], [3], [4]. 

Magnetic sensing techniques exploit an extensive range of 
ideas and phenomena from the physics and material science 
fields [2], [3], [4]. The widely used magnetic sensors based on 
integrated circuit (IC) compatible sensing devices, such as the 
one based on complementary metal-oxide-semiconductor 
(CMOS) [5] and bipolar technologies [6] have modest 
sensitivity in the range of few mT comparing with the non-IC 
compatible magnetic sensors such as giant magnetoresistors 
and/or superconducting quantum interference device 

 
 

(SQUID) having a sensitivity bellow nT. The CMOS 
compatible Hall-effect sensors mostly rely on using either the 
p-n junction isolated diffused Hall plates or the split-drain 
magnetic sensitive (MS) metal-oxide-semiconductor field-
effect transistors (MagFETs) as magnetic sensitive elements 
[7], [8]. Both sensitive devices exploit a physical phenomenon 
that an electron moving through a magnetic field experiences 
a force, known as the Lorentz force, perpendicular to its 
direction of motion and to the direction of the field. It is the 
response to this force that creates the Hall voltage in 
semiconductor plates or a variation in electron current 
distribution detected as the current or voltage difference 
between two drain outputs of MagFETs.  

Nowadays, most of the semiconductor sensor technologies 
are silicon based [8], [9], [10]. Obviously, to fully unlock GaN 
technology potential, the GaN current sensing devices are 
needed [11]. In this letter we described operation, 
manufactured and tested first-ever GaN dual-drain magnetic 
sensitive device fully compatible with the current RF Power 
GaN HEMT technology. Device concept has been confirmed 
by employing industrial standard SILVACO TCAD toolbox 
[12]. Finally, this novel dual-drain split-current magnetic 
sensor is suitable for the employment within the very 
advanced current monitoring technique, i.e. Galvanic-
SenseFET current monitoring technique [13] comprising of a 
magnetic sensor monolithically integrated with the power 
devices. 

II. DEVICE FABRICATION AND OPERATION PRINCIPLE 

Microphotograph and 3D schematic of a fabricated magnetic 
sensor are shown in Fig. 1. A custom defined five-mask 
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(a)                                                            (b) 

Fig. 1. (a) The 3D schematics of novel split-current GaN magnetic sensor with 
2nm GaN cap, 25nm Al0.25Ga0.75N barrier and 2µm GaN buffer and (b) 
Microphotograph of a fabricated sensor showing the Ohmic contact pads and 
fabricated sensor in the middle. 
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process was used. Starting material was 6-inch GaN on 
silicon-substrate wafer. Firstly, to configure device’s active 
region, device mesas were etched using a dry etch process in 
an inductively coupled plasma (ICP) system. A lift-off process 
was used to pattern Ti/Al/Au metal stack Ohmic contacts, 
which were sputtered deposited and then rapidly annealed at 
temperatures above 750OC for a short period of time under N2 
ambient. Next, a standard SiN passivation layer was deposited 
via plasma enhanced chemical vapor deposition (PECVD). 
Finally, the passivation was removed from the contact areas 
using a fluorine based ICP etch. 

To operate the magnetic sensor device, source contact is 
kept at 0V. When positive voltage is applied at D1 and D2 
contacts, the drain electric field spreads throughout the device 
eventually reaching the source, thus allowing for the electric 
currents to flow between the source and the drains D1 and D2, 
IDS1 and IDS2 respectively. When no magnetic field is present, 
these two currents are identical (IDS1–IDS2=0). The presence of 
magnetic field will cause a deflection of electrons in the 
currents leading to current differences, IDS1–IDS2 = DI. By 
measuring DI one can determine the magnetic field value. 

III. MAGNETIC SENSITIVITY TEST, RESULTS AND DISCUSSION 

The probe station LA-150 bench-top system by INSETO 
was used to test the magnetic sensor sensitivity. It has a 
150mm chuck with full x-y-z movement and dual-mode optics 
for both microscope and digital video viewing. The probe 
station connects the device under-test to a Keithley 4200-SCS 
semiconductor characterisation system with 200V/1A DC, 
pulse and CV measurement capability. 

The magnetic field 𝐵#$$$$⃗  perpendicular to a chuck surface was 
produced by the coil embedded backside through the hole of 
chuck plate. By a precise control of coil supply current, the 
different field intensities &𝐵#$$$$⃗ &	from 0 to 30mT in 1.25mT steps 
were generated in-situ which was verified using a precise 
digital magnetometer. Owning to a coil diameter (2cm) that is 
much larger than sensor dimension (35x20µm), it is justified 
to assume that the homogenous magnetic field 𝐵#$$$$⃗  was applied 
over the device area. 

A common figure of merit of split-current magnetic sensors’ 
performance is current relative sensitivity 𝑆)	defined as 	𝑆) =
ΔI- ∙ /I-&B$$⃗ 1&2

34
∙ 100%, where 𝐼9 = 𝐼9:4 + 𝐼9:<	is the total 

drain current [2]. Fig. 2 shows the measured 𝑆=	versus 
&𝐵#$$$$⃗ &	extracted from testing a number of devices on the same 
GaN wafer, as well as simulated	𝑆=. A split-current magnetic 
sensor (Fig. 1) is simulated in this paper using drift-diffusion 
transport model. The magnetic field effect is modelled using 
3D MAGNETIC module of Silvaco Atlas [12]. The Fermi 
level at the surface of structure is pinned at EC =1.65eV. The 
unintentional oxygen and carbon impurity dopants resulting 
from precursor and carrier gases during the epitaxial growth 
are included into the GaN buffer layer at EC - ET = 0.11eV and 
EC - ET = 3.28eV, respectively [14]. The capture cross sections 
of electrons and holes are set to 𝜎?,A = 1 × 1034C cm2. The 
Shockley-Read-Hall (SRH) and Fermi-Dirac statistics are 
activated for all models. Nitrides mobility for low and high 

fields are employed in the 3D simulations. Nitride parameters 
used in this paper are extracted from the literature [15]. Self-
heating effects are neglected. 

The electrical current distributions at |𝐵#$$$$$$⃗ | = 0T (Fig. 3(a)) 
and |𝐵#$$$$$$⃗ |	= 30mT (Fig. 3(b)) are obtained at VDS = 0.5V where 
𝐵#$$$$⃗  is the magnetic field along the y-axis (direction 
perpendicular to the device surface). The simulated current 
distribution in presence of magnetic field is a result of the 
Lorentz force and asymmetrical accumulation of electrons at 
the device’s 2DEG channel. 

Different 𝑉9: biasing conditions were set to find optimal 
device sensitivity, for this particular device layout. Results 
shown in Fig. 2 were obtained for 𝑉9:4 = 𝑉9:< = 0.5𝑉	 
(source contact is kept at 0𝑉). A 𝑆=	with a value around 14% 
T-1 at a wide range of magnetic fields and at 1mA of supply 
current is extracted from magnetic sensor measurements (Fig. 
2). The outstanding constant sensitivity of a fabricated sensor 
across a wide range of the magnetic field values can be 
attributed to device’s 2DEG nature, i.e. its high electron 
concentration and mobility, and very small layer thickness. 

In split-current sensors, similar to Hall sensor devices, a 
sensor response time is determined by the time needed by 
moving electrons to spatially relocate inside the 
semiconductor in order to respond to a time varying magnetic 
field. Sensor response time is very important device parameter 
determining potential sensor applications.  It strongly depends 
on the resistivity of 2DEG, while the magnetic field density 
has a negligible effect on the response time [16]. Since the 
resistivity of the 2DEG is very low, in the region of 0.2 W×cm 
[17], the response time of the GaN sensor presented in this 
work can be estimated to be below nano-second [16]. Its 
potential applications can vary from the machine control 
purposes (kHz range) to current monitoring in the very-high 
frequency (VHF) power converters (hundreds of MHz range) 
[1].	

 

 
Fig. 2.  Measured and simulated dependences of  𝑆=	versus &𝐵𝑦$$$⃗ & at total drain 
current 𝐼9 = 𝐼9:4 + 𝐼9:<=1mA. Squares are sensitivity results obtained from 
measurements, crosses are sensitivity calculations from simulation results and 
triangles are average of current imbalance in 12 fabricated GaN split-current 
magnetic sensors for various applied magnetic fields. The error bars are 
standard deviations of sensitivities calculated for 12 fabricated devices. 
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Fig. 3.  Simulated current distribution of split current magnetic sensor at 
VDS= 0.5V (a) no presence of external magnetic, 2DEG channel showing the 
symmetry in the current density; (b) external magnetic field perpendicular to 
the 2DEG channel is present, 2DEG channel showing current asymmetry. 

IV. CONCLUSIONS 
The operation, fabrication and sensitivity measurement 

results of the first-ever GaN technology-based split-current 
dual-drain magnetic sensor that is fully compatible (no extra 
materials or micromachining needed) with the GaN RF Power 
technology is described. Owning to high mobility of 2DEG 
electrons the fabricated prototype of 35µm×20µm magnetic 
sensing device exhibited 𝑆=	with the constant value of 
14 % T –1 at 1mA of supply current. The constant sensitivity 
can be attributed to the 2DEG’s nature (high electron 
concentration, high mobility and very small layer thickness). 
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