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Abstract

In the field of synthetic biology, theoretical frameworks and software tools

are now available that allow control systems represented as chemical reaction

networks to be translated directly into nucleic acid-based chemistry, and hence

implement embedded control circuitry for biomolecular processes. However, the

development of tools for analysing the robustness of such controllers is still in

its infancy. An interesting feature of such control circuits is that, although the

transfer function of a linear system can be easily implemented via a chemical

network of catalysis, degradation and annihilation reactions, this introduces ad-

ditional nonlinear dynamics, due to the annihilation kinetics. We exemplify this

problem for a dynamical biomolecular feedback system, and demonstrate how

the structured singular value (µ) analysis framework can be extended to rigor-

ously analyse the robustness of this class of system. We show that parametric

uncertainty in the system affects the location of its equilibrium, and that this

must be taken into account in the analysis. We also show that the parameterisa-

tion of the system can be scaled for experimental feasibility without affecting its
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robustness properties, and that a statistical analysis via Monte Carlo simulation

fails to uncover the worst-case uncertainty combination found by µ-analysis.

Keywords: Synthetic Biology, Chemical Reaction Networks, Nonlinear

Systems, Robustness, Systems and Control Theory

1. Introduction

With the recent increase in the scope and industrial potential of synthetic

control systems for biochemical processes, it is appealing to try to exploit the

long-established tools and techniques of linear control theory for the synthesis

and analysis of biomolecular controllers.

This goal requires the development of molecular circuits that are suitable for

different biological contexts, and are capable of implementing analog computa-

tions [1] or the frequency descriptions underlying [2] linear feedback. With their

extensive computational capabilities [3, 4], chemical reaction networks (CRNs)

provide a convenient representation for implementing elementary arithmetic op-

erations [5] or the computation of polynomials [6], using any chemical system

with mass-action kinetics. They also provide an appropriate level of abstrac-

tion for designing complex circuits [7], and integrating the different elements

necessary to build linear feedback control systems [8].

One challenge in the representation of linear negative feedback control in this

context is the positivity of the CRNs, where the subtraction modules are usually

one sided [5, 9], and compute only the positive control error. An alternative is

the adoption of CRNs for dual-rail computation [8, 10], to extend the signals

into the real domain and enable negative control errors. Another challenge in

terms of implementation is retroactivity, where the CRNs must preserve the

modularity of the elementary CRNs when interconnected, either through insu-

lation devices [11] or by design [12]. The methodology from [8] facilitates the

implementation of embedded synthetic controllers due to the fact that linear

operations (e.g., integration, sum, gain, etc) can be implemented with networks

of elementary chemical reactions, i.e. catalysis, degradation and annihilation.
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Also, each signal in the system is represented as the difference between two

species concentrations, employing dual-rail computations that yield a two-sided

subtraction. This approach was exploited and extended in [13] to define config-

urable primitives, which can then be combined to realise any transfer function.

The resulting CRNs can then be mapped into chemistry based on deoxyri-

bonucleic acid (DNA) strands, through programmable DNA strand displace-

ment (DSD) reactions [14, 15]. The sequence design of DNA species provides

a mechanism to tag species and program the affinities in each reaction [16, 17].

It preserves modularity and can be scaled up to a very large number of chem-

ical species [18]. The available mapping between transfer functions, CRNs and

DSD reactions makes straighforward the use of classical control theory in the

synthesis and implementation of biomolecular control systems, [8, 17, 19, 20].

A significant complicating factor with the above approach is that even if

the starting point is a prescribed linear system, the corresponding CRN repre-

sentation introduces annihilation reactions whose dynamics are nonlinear [21].

These reactions typically operate on much faster time-scales than the rest of

the system, and are used to keep the concentrations of the different chemical

species required to a minimum. The mass action kinetics of these reactions

introduce nonlinear dynamics, which are not observed in the I/O linear sys-

tem, but are essential in determining its internal stability and positive equilib-

rium. In this work, we consider the impact of these issues on the analysis of

the robust stability properties of a prototype biomolecular reference tracking

controller for a single-input/single-output (SISO) dynamical process. Using its

CRN representation, we express the dynamics of the system in their positive

natural coordinates - species concentrations - where the nonlinear dynamics are

observable.

In the stablity analysis, we must account for inevitable uncertainty in the val-

ues of the reaction rates actually implemented in the biochemical network [22].

Our approach is similar to [23], where the nonlinear dynamics in the presence

of real parameteric uncertainties are analysed locally, and a stability margin is

defined and numerically computed for the linearisation around an equilibrium of
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the system. We show how a rigorous analysis of the robust stability properties

of the controller can be carried out using the structured singular value (SSV or

µ) framework [24, 25].

The dynamics are linearised around a fixed point, at the equilibrium of the

system, to represent the uncertain system with a Linear Fractional Transforma-

tion (LFT) [26]. The fixed point can change with parameteric variation, and the

movement of the equilibrium [27] with the uncertainty is included in the LFT.

In our case, we do not have an analytical solution for this dependency, and the

equilibrium variation is approximated by a function which can be represented

as an LFT. The µ framework can then be applied to the LFT representation

of the uncertain system, e.g., [28] applies the SSV with the LFT description to

assess how far the system is from bifurcation, and to compute boundaries on

the eigenvalues of the uncertain system. In this work, we use the SSV to ob-

tain a stability margin, which tells us how much the uncertain parameters can

vary before losing closed-loop stability, and allows us to identify the smallest

level of uncertainty (and corresponding parameterisation) which destabilises the

controller.

The value of developing a rigorous theoretical framework for this analysis is

demonstrated by the failure of a standard Monte Carlo simulation campaign to

find the worst-case uncertainty combination for our example system. Finally, we

discuss the applicability of our results to implementations using DSD reactions.

CRN-based representations of feedback systems can be unfeasible when mapped

into DNA chemistry, since large species concentrations deplete auxiliary DNA

fuel species, and even assuming as in [13] that these are replenished, there are

physical limits on the rates and concentrations that are achievable. This is ad-

dressed in [14] by scaling the magnitude of the concentrations and the response

time of the network to ensure a feasible DNA implementation. We show here

that robustness results for our CRN representation also hold when the system

is subsequently scaled for implementation in nucleic acid-based chemistry.
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2. CRN representation of a linear system

A CRN is composed of a set of reactions of chemical species Xj , where

the chemical reaction can be approximated by sets of Ordinary Differential

Equations (ODE) using mass action kinetics [29], i.e.

a1X1 + a2X2
γ−→ bX3 ⇒ ẋ3 = bγxa11 x

a2
2 (1)

The variations in concentration xj of each species Xj depend on the product

of the concentrations, the power of the stoichiometric coefficients aj and b, and

the rate γ.

If we take as an example the second order plant with a zero shown in Fig. 1

Y (s) =
k1

s+ k2

(
s+ k4 + k3
s+ k3

)
U (s) (2)

the first step is to obtain a chemical reaction network with matching dynamics.

For this case, take the set of catalysis and degradation reactions

p4
k1−→ p4 + p5 , p5

k2−→ ∅ (3)

p5
k4−→ p5 + p6 , p6

k3−→ ∅ (4)

p5
γ−→ p5 + p7 , p6

γ−→ p6 + p7, p7
γ−→ ∅ (5)

where ∅ represents degraded or inactive species. Using (1) and applying the

Laplace transform, we can write

P5(s) = k1 (s+ k2)
−1
P4(s) (6)

P6(s) = k4 (s+ k3)
−1
P5(s) (7)

Assuming timescale separation (as in the analysis of γ →∞ in [8]), the species

p7 is considered to be at quasi-steady state

ṗ7 =γp5 + γp6 − γp7 ≈ 0⇒ p7 ≈ p5 + p6 (8)

The time scale separation of (5) sets P7(s) as the sum of the previous transfer

functions and

P7(s) =

(
1 +

k4
s+ k3

)
P5(s) =

(s+ k4 + k3)

s+ k3

k1
s+ k2

P4(s) (9)
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From the CRN we recover the SISO transfer function where the zero depends

on the reaction rates k3 and k4, and the poles result from the two degradation

reaction rates k2 and k3.

2.1. Input-output linear system

The concentrations of species in the dynamics of the CRN (3)-(5) are limited

to nonnegative values, when in general we need the state to be real with pi ∈ R.

For a feedback with a Proportional-Integration controller as in Fig. 1, we need

to represent negative and positive errors p1. This limitation is overcome with

the dual rail representation in [8] and the methodology in [13], which can express

any SISO transfer function as a CRN.

In the dual rail decomposition [8], each signal is split into two contributions

pj = x+j −x
−
j , where x+j and x−j are chemical species concentrations. The CRN

for x±j is then used to define an Input-Output (I/O) linear system G(s) such

that for Fig. 1 we have

(
y+ − y−

)
= G(s)

(
r+ − r−

)
(10)

For our plant CRN (3)-(5), we define the dual sets of reactions as

x±4
k1−→ x±4 + x±5 , x

±
5

k2−→ ∅ (11)

x±5
k4−→ x±5 + x±6 , x

±
6

k3−→ ∅ (12)

x±5
γ−→ x±5 + x±7 , x

±
6

γ−→ x±6 + x±7 , x
±
7

γ−→ ∅ (13)

x+5 + x−5
η−→ ∅, x+6 + x−6

η−→ ∅, x+7 + x−7
η−→ ∅ (14)

With the superscript notation x±, we simultaneously represent reactions for

both x+ and x− where

x+
k−→ x+ + y+

x−
k−→ x− + y−

⇔ x±
k−→ x± + y± (15)

The parameters γ and η are the rates for the auxiliary reactions of catalysis,

degradation, and annihilation as defined in [8].
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The remaining linear operations in the feedback loop can be found in liter-

ature (see e.g., [8, 17, 30]). The CRN for the two-sided subtraction in signal

p1 = r − y = r − p7 is

r±
γ−→ r± + x±1 , x±7

γ−→ x±7 + x∓1 (16)

x±1
γ−→ ∅, x+1 + x−1

η−→ ∅ (17)

The CRN for the gain p2 = kP p1 is:

x±1
γkP−−→ x±1 + x±2 , x

±
2

γ−→ ∅, x+2 + x−2
η−→ ∅ (18)

For the integration ṗ3 = kIp1 we have

x±1
kI−→ x±1 + x±3 , x+3 + x−3

η−→ ∅ (19)

and finally the summation p4 = p2 + p3 is set with:

x±2
γ−→ x±2 + x±4 , x±3

γ−→ x±3 + x±4 (20)

x±4
γ−→ ∅, x+4 + x−4

η−→ ∅ (21)

Using (1), the complete set of ODEs is

ẋ±1 = −γx±1 + γx∓7 + γr± −ηx+1 x
−
1 (22)

ẋ±2 = γkPx
±
1 − γx

±
2 −ηx+2 x

−
2 (23)

ẋ±3 = kIx
±
1 −ηx+3 x

−
3 (24)

ẋ±4 = γx±2 + γx±3 − γx
±
4 −ηx+4 x

−
4 (25)

ẋ±5 = k1x
±
4 − k2x

±
5 −ηx+5 x

−
5 (26)

ẋ±6 = k4x
±
5 − k3x

±
6 −ηx+6 x

−
6 (27)

ẋ±7 = γx±5 + γx±6 − γx
±
7 −ηx+7 x

−
7 (28)

Finally, applying the transformations pj = x+j −x
−
j and r = r+− r−, we get

the I/O linear dynamics ṗj = ẋ+j − ẋ
−
j

ṗ = App +Bpr (29)
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with p =
[
p1 . . . p7

]T
∈ R7×1, r ∈ R, and

Ap =



−γ 0 0 0 0 0 −γ

γkP −γ 0 0 0 0 0

kI 0 0 0 0 0 0

0 γ γ −γ 0 0 0

0 0 0 k1 −k2 0 0

0 0 0 0 k4 −k3 0

0 0 0 0 γ γ −γ


, Bp =

 γ

06×1



This linear state space represents the I/O linear response from r to the

outputs pj , and it contains additional dynamics besides the controller and the

plant, introduced by the CRN representations of the algebraic operations.

However, the approximation to the feedback loop transfer function improves

with the assumption of timescale separation of the dynamics for the linear op-

erators, i.e., if the auxiliary reaction rates γ →∞ [8], some of the signals are at

quasi-steady state

p1 ≈ r − p7, p2 ≈ kP p1, p4 ≈ p2 + p3, p7 ≈ p5 + p6 (30)

and the remaining dynamics correspond to the initial SISO system

ṗ3 ≈ kIp1 (31)

ṗ5 ≈ k1p4 − k2p5 (32)

ṗ6 ≈ k4p5 − k3p6 (33)

3. Nonlinear model of the CRN

The linear system in (29) represents only the dynamics between the input

signal r and the signals pj , and the contribution from the nonlinear terms are

removed when we compute ṗj = ẋ+j − ẋ
−
j . Hence, the impact of the bimolecular

annihilation reactions in the dynamics is not observable in the I/O linear system.

To analyse the complete dynamics of the concentrations in the CRN, we

define instead the input vector r = [r+ r−]
T

and the state vector x ≥ 0 such
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that

x =
[
x+1 . . . x+N x−1 . . . x−N

]T
=

 x+

x−

 (34)

We can use the Hadamard element-wise product ◦ and a permutation matrix P

to express the bimolecular terms, and compact the ODEs into

ẋ = Ax +Br− η (Px) ◦ x (35)

where P =

 0 I

I 0

.

In its natural coordinates x±j the dynamics result in a positive system [31],

and contains nonlinearities. Furthermore, the I/O dynamics assumes that the

representation of the signals pj depends only on x+j or x−j at each instant, as

a result of very fast annihilation reactions x+j + x−j
η−→ ∅. However, for a finite

reaction rate η, the system can have a positive equilibrium in which both dual

species x+j and x−j coexist.

The dynamics (31-33) also depend on the assumption that k+j = k−j and

γ+j = γ−j . In the nonlinear model, we consider a possible mismatch between the

dual rates and consider independent rates for each reaction with

x±j
γ±
i−−→ x±j + x±i , x

±
j

γ±
i−−→ ∅ (36)

x±j
k±i−−→ x±j + x±i , x

±
j

k±i−−→ ∅ (37)

We account for the separate rates with the decomposition

A =

 A+
11 A−12

A+
12 A−11

 , B =

 B+
11 0

0 B−11
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where the submatrices are

A±11 =

−γ±3 0 0 0 0 0 0

(γ4kP )
± −γ±5 0 0 0 0 0

k±I 0 0 0 0 0 0

0 γ±6 γ±7 −γ±8 0 0 0

0 0 0 k±1 −k±2 0 0

0 0 0 0 k±4 −k±3 0

0 0 0 0 γ±9 γ±10 −γ±11


A±12 =

 01×6 γ±2

06×6 06×1

 , B±11 =

 γ±1

06×1


3.1. I/O and nonlinear dynamics

The connections between the I/O linear system and the nonlinear dynamics

can be seen more clearly with the change of coordinates p

q

 =

 Wp

Wq

x =

 I −I

I I

x = Wx (38)

such that p = x+ − x− and q = x+ + x−, see Fig. 2. This transformation

is a global diffeomorphism [32], it is continuously differentiable, its Jacobian

is non-singular ∀x ∈ R2N , and lim‖x‖→∞‖Wx‖ = ∞. The dynamics in these

rotated coordinates are given by ṗ

q̇

 =
1

2
WAWT +WBr +

η

2

 0

p ◦ p− q ◦ q

 (39)

=

 R11 R12

R21 R22

 p

q

+

 Wp

Wq

Br +
η

2

 0

p ◦ p− q ◦ q
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with

R11 =0.5
(
A+

11 +A−11
)
− 0.5

(
A+

12 +A−12
)

R22 =0.5
(
A+

11 +A−11
)

+ 0.5
(
A+

12 +A−12
)

R12 =0.5
(
A+

11 −A
−
11

)
− 0.5

(
A+

12 −A
−
12

)
R21 =0.5

(
A+

11 −A
−
11

)
+ 0.5

(
A+

12 −A
−
12

)
The coordinates p correspond to the states of the I/O dynamics, and the change

of coordinates reveals the underlying dynamics q̇, which are not observed in (29).

Let us first consider the nominal case, when A+
ji = A−ji = Āji and B+

11 =

B−11 = B̄11. In this case we recover the linear system (29) with Ap = 1
2WpĀW

T
p

and Bpr = WpB̄r. We have also that R12 = R21 = 0, the I/O dynamics are

independent of q, and

q̇ = R22q + B̄11

(
r+ + r−

)
+
η

2
(p ◦ p− q ◦ q) (40)

The system (40) is non-negative, and it can be shown that it is bounded. The

former derives from the system in the natural coordinates which is non-negative:

x ≥ 0, r ≥ 0, B̄ ≥ 0, and Ā is Metzler (off-diagonal elements are nonnega-

tive [31]). Since Ā is Metzler, then Ā11, Ā12 and R22 = Ā11 + Ā12 are also

Metzler. Hence, the system is nonnegative, because for a coordinate at the edge

of the octant R+
0 , i.e. qj = 0, it results that q2j = 0 and q̇j ≥ 0.

To conclude boundedness, consider the Lyapunov function V =
∑
qj (∀q>0 :

V > 0), and the dynamics q̇ = R22q− η
2q ◦ q + v, v ≥ 0. Then

V̇ =
∑

q̇j =
∑

[R22q]j −
η

2

∑
q2j +

∑
vj

≤ ‖R22q‖1 −
η

2
‖q‖22 + ‖v‖1

≤
√
N‖R22‖2‖q‖2 −

η

2
‖q‖22 + ‖v‖1

V̇ < 0⇒
(η

2
‖q‖2 −

√
N‖R22‖2

)
‖q‖2 > ‖v‖1

⇒‖q‖2 >
2

η

√
N‖R22‖2 +

2

η

‖v‖1
‖q‖2

For the unforced response, it is enough that ‖q‖2 > 2
η

√
N‖R22‖2 to have V̇ < 0.
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Even in the presence of a positive input v, there is always a q large enough so

that V̇ < 0.

This shows that the trajectories q are bounded for bounded inputs r and p,

and can be limited by increasing the reaction rate η. Hence, with the nominal

parameterisation the unobserved nonlinear dynamics do not pose a problem for

the CRN representation of the I/O linear dynamics.

However, in general, the parameterisation of the CRN will be affected by

variability in the reaction rates, causing mismatches between the submatrices of

A and B. The crossed terms become R12 6= 0, R21 6= 0, and create a feedback

loop between the linear and nonlinear dynamics. This motivates the inclusion

of the nonlinear dynamics in the stability analysis, since a stable R11 does not

guarantee the stability of the coupled nonlinear dynamics (39).

3.2. Linearisation and local stability

Both Lyapunov’s indirect method and robustness stability analysis provide

a local result around the equilibrium of the system. We choose the equilibrium

of the unforced non-linear dynamics, for a null input r0 = 0. We define then x0

as the solution to

Ax0 − ηPx0 ◦ x0 = 0⇔ Ax0 = ηPx0 ◦ x0 (41)

It is noteworthy that, from (41), we have at equilibrium

A+
11x

0+ +A−12x
0− = A+

12x
0+ +A−11x

0− = ηx0+ ◦ x0−

⇒
(
A−11 −A

−
12

)
x0− =

(
A+

11 −A
+
12

)
x0+ (42)

and half of the equilibrium vector is constrained by

x0− =
(
A−11 −A

−
12

)−1 (
A+

11 −A
+
12

)
x0+ (43)
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For a constant perturbation input re = r−r0 = r, the perturbation trajectories

around the equilibrium x0 are defined as xe = x− x0, with

ẋ =
dx0

dt
+ ẋe

⇒ ẋe =A
(
x0 + xe

)
− η

(
Px0 + Pxe

)
◦
(
x0 + xe

)
+Bre

=Ax0 − ηPx0 ◦ x0 +Axe +Bre

− η
(
Px0 ◦ xe + Pxe ◦ x0 + Pxe ◦ xe

)
=Axe − η

(
Px0 ◦ xe + Pxe ◦ x0

)
+Bre − ηPxe ◦ xe

=
(
A+ ηJ

{
x0
})

xe +Bre − ηPxe ◦ xe (44)

where

J
{
x0
}

=− diag
{
Px0

}
− diag

{
x0
}
P (45)

=−

 diag
{
x0−} diag

{
x0+

}
diag

{
x0−} diag

{
x0+

}
 (46)

Linearising the perturbation model around its equilibrium at the origin x0
e = 0

we then have

ṡ =
(
A+ ηJ

{
x0
})

s +Bre (47)

Even if A is not Hurwitz, the linearisation can still be stable if x0 > 0.

The linearisation relies on the solution to the equilibrium condition (41)

subject to the constraint (43), which is not trivial to solve. For the robust

stability analysis we need to compute at least the equilibrium for the nominal

parameterisation x̄0. We have seen that for that case, we only need to ensure

that by design the nominal I/O dynamics are stable, to have a stable nonlinear

system. We can then find x̄0 by integrating the nominal dynamics with r = 0

and x (0) > 0. The constraint (43) is respected with x̄0+ = x̄0−.

Since we wish to verify the robustness results by checking the local stability

with Lyapunov’s indirect method, we may need to linearise the dynamics around

unstable equilibria, which cannot be found by integrating the dynamics (35).

We are able to circumvent this difficulty by defining new dynamics based on

the rotated coordinates, where the dynamics for ṗ are replaced by their steady
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state solution as a function of q with p0 = −R−111 R12q
0. We then obtain the

reduced model

ċ =
(
R22 −R21R

−1
11 R12

)
c

+
η

2

(
R−111 R12c

)
◦
(
R−111 R12c

)
− η

2
c ◦ c (48)

which can be integrated to find the equilibrium c0, with c (0) = 2x̄0+. These

constrained dynamics share the same equilibrium as the rotated dynamics, but

the feedback interconnection with the I/O dynamics is replaced with a static

matrix. The rotated equilibrium is then given by q0 = c0 and p0 = −R−111 R12c
0.

The equilibrium in natural coordinates is finally recovered with x0± = q0 ±p0.

3.3. Uncertainty and equilibrium model

The implementation of the CRNs is limited by the predictability of the

affinities in the biomolecular network [33]. This leads to variability on the

reaction rates and uncertainty in the implemented network. Moreover, in the

case of the nonlinear system (35), the equilibrium moves depending on the

parameterisation [27]. Hence, the linearisation depends on the uncertainty both

through A and x0.

Since we do not have an analytical solution for the equilibrium we cannot

express explicitly this dependency in the linearised system. Instead, we model

the equilibrium variation as an approximate function of the uncertain state

matrix and the nominal conditions.

Let us define the nominal matrix Ā, where there is no uncertainty and A+
11 =

A−11 = Ā11, A+
12 = A−12 = Ā12 , and B+

11 = B−11 = B̄11. The nominal equilibrium

x̄0 is then defined such that

Āx̄0 − ηP x̄0 ◦ x̄0 = 0 (49)

Lemma. If the variation in the equilibrium e = x0−x̄0 is small with |x̄0j | > |ej |,

then the equilibrium x0 can be approximated by

x̂0 := −
(
A+ ηJ

{
x̄0
})−1

Āx̄0 (50)
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Proof. From the equilibrium condition

0 = Ax0 − ηP
(
x̄0 + e

)
◦
(
x̄0 + e

)
(51)

We extend the nonlinear product into

0 =Ax0 − η
(
P x̄0 ◦ e + x̄0 ◦ Pe

)
− ηP x̄0 ◦ x̄0 − ηPe ◦ e⇒

0 =Ax0 + ηJ
{
x̄0
}

e− ηP x̄0 ◦ x̄0 − ηPe ◦ e (52)

With small relative variations in the equilibrium |x̄0j | > |ej |, then |P x̄0 ◦ x̄0| �

|Pe ◦ e| and

0 ≈ Ax0 + ηJ
{
x̄0
}

e− ηP x̄0 ◦ x̄0 (53)

Replacing e = x0 − x̄0 we get

0 ≈ Ax0 + ηJ
{
x̄0
}

x0 − ηJ
{
x̄0
}

x̄0 − ηP x̄0 ◦ x̄0 (54)

⇒
(
A+ ηJ

{
x̄0
})

x0 ≈ ηJ
{
x̄0
}

x̄0 + ηP x̄0 ◦ x̄0 (55)

Furthermore,

ηJ
{
x̄0
}

x̄0 + ηP x̄0 ◦ x̄0 = −2ηP x̄0 ◦ x̄0 + ηP x̄0 ◦ x̄0 (56)

= −ηP x̄0 ◦ x̄0 = −Āx̄0 (57)

Since A+ηJ
{
x̄0
}

is always invertible, we arrive at the defined estimator x̂0.

The analysis including the moving equilibrium (ME) uses the linearised dy-

namics with

ṡ =
(
A+ ηJ

{
x̂0
})

s +Bre (58)

The definition in (50) respects the constraint

x̂0− =
(
A−11 −A

−
12

)−1 (
A+

11 −A
+
12

)
x̂0+ (59)

avoiding the introduction of conservatism with respect to (43). However, the use

of this model is limited by the assumption of small variations in the equilibrium.

The fitting error should be checked since for higher uncertainty intervals, the

assumption may be invalid.
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4. Robust Stability Analysis

For the simulation and analysis, the nominal parameterisation is k1 = k2 =

0.01 s−1, k3 = 0.0163 s−1, k4 = 0.185 s−1 for the plant, and kI = 0.01 s−1,

kP = 0.53 for the controller. The auxiliary rates were set at γ = 10 × k4 =

1.85 s−1, faster than the remaining dynamics, and the annihilation rate at η =

5 × 105 (Ms)
−1

, as in [8]. The time response of the nominal system in Fig. 3

shows the I/O system signal y tracking the reference input r. A positive initial

condition xj(0) > 0 causes the concentrations to converge and remain in the

nominal operating equilibrium even if r± = 0.

4.1. µ-analysis

The structured singular value (SSV) framework, or µ-analysis, is an estab-

lished validation method for uncertain LTI systems representing the infinite

family of G(s,∆) [25]. The structure of ∆ is typically a block diagonal of real

and normalised uncertainties such that |∆| ≤ 1, and µ is defined as the inverse

of the minimum possible value of ∆ that destabilises the system [24, 26]. The

value of µ is approximated by upper and lower bounds, and if the upper-bound

of 1/µ < 1 for all frequencies, then G(s,∆) is robust to all possible parameteri-

sations.

We used Matlab™ and the Robust Control Toolbox™ [34], to build and ma-

nipulate the uncertain systems, and the µ bounds are computed with the func-

tion robstab and its default options. To build the uncertain systems, each

reaction rate is set as an ureal object with a multiplicative real variation, e.g.,

δ1 ∈ R : γ+1 = γ̄+1

(
1 + δγ+

1

)
. This results in a total of 32 uncertain rates, which

are set as the elements of the uncertain matrices A and B used to build the

uncertain state space (uss object), Fig. 4.

The robustness analysis is carried for |∆| ≤ 7%, with:

• a) a linearisation around a fixed equilibrium (FE), using the nominal equi-

librium
(
A+ ηJ

{
x̄0
})

;
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• b) a linearisation around the moving equilibrium (ME) using the estima-

tion
(
A+ ηJ

{
x̂0
})

.

The linearisation around a FE results in a ∆FE matrix 32× 32, with diagonal

real uncertainties, where each uncertainty occurs only once. In the linearisation

with ME, the moving equilibrium x̂0 is computed with (50) and used to build

J
{
x̂0
}

. The matrix ∆ME also results real and diagonal, but becomes 452×452,

where each uncertainty occurs 15 times (except for γ±1 which are not used in

x̂0, and therefore occur only once). The structures can be represented by:

∆FE = {diag [δ1, δ2, . . . , δ32] : δi ∈ R}

∆ME = {diag [δ1, δ2, δ3I15, . . . , δ32I15] : δi ∈ R}

where I15 is the 15× 15 identity matrix. The structures of matrix M(s) for the

LFTs in both cases are detailed in Fig. 5. They show clearly the increase in

size but also complexity of the LFT in the ME case, where DME
11 is composed

of diagonals coupling all uncertainties.

Fig. 6 shows the normalised distributions of the equilibrium for 10000 sam-

pled systems and confirms a movement of 20% to 50% due to uncertainty. For

each sample, the true equilibrium x0 is compared with its estimation x̂0 in Fig.

7, showing a small relative difference to the nominal equilibrium.

The bounds for µ are shown in Fig. 8 and indicate that the linearisation

around the fixed nominal equilibrium (FE) is marginally stable, with stabil-

ity assured only up to |∆| = 6.763%. It identified a worst-case uncertainty

combination at |∆FE | = 9.037% which results in a pair of imaginary poles

−9.7×10−14±0.034064i. The bounds are lower for the µ-analysis with the mov-

ing equilibrium model (58), and the linearisation is robust up to |∆| = 7.016%.

The minimum destabilising |∆ME | = 9.720% is also higher than with a FE, and

results in the pair of poles 7.102× 10−15 ± 0.038551i.

Thus, using the moving equilibrium model includes more effects of the un-

certainty in the linearisation, hence reducing conservatism in the analysis.
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4.2. Verification with the nonlinear system

We carried out a Monte Carlo campaign for a variability in the reaction rates

of |∆MC | = 10%, where all elements of A and B were scattered 10000 times. For

each parameter vector, the equilibrium is solved using (48) and the local stability

is checked using the linearised system (47). All the sampled parameterisations

in this Monte Carlo campaign resulted in stable closed-loop systems, with the

eigenvalues closest to the imaginary axis at −0.00237686± 0.0325045i.

We also performed an iterative search for a destabilising parameterisation,

where for each level of |∆|, 212 out of 232 possible vertices of the parameter

space are randomly selected and evaluated for stability. The magnitude of the

uncertainty |∆| is updated heuristically, and in total, 34 144 cases were evalu-

ated. The history of tested magnitudes |∆| and the number of simulations for

each value of |∆| is presented in Fig. 9. The minimum destabilising amplitude

was found at |∆IT | = 11.118%.

Thus, both Monte Carlo simulation and a brute-force vertices search sug-

gest the system is robust for uncertainty levels up to 10%. This contradicts

the destabilising levels of uncertainty identified with the µ bounds, which are

now verified directly with the nonlinear system. For each set of destabilising

parameters, the dynamics are linearised around their true equilibrium, and the

respective poles are compared in Table 1.

The unstable parameterisation found with the FE actually results in a stable

system. Instead of poles on the imaginary axis, the critical poles around true

equilibrium are stable at −0.001073±0.03361i. On the other hand, the unstable

linearisation with the ME does correspond to an unstable nonlinear system with

poles close to the imaginary axis at +1.916× 10−6± 0.03855i, again confirming

that use of the ME more accurately captures the impact of the uncertainties on

the system, including loss of stability. Furthermore, the unstable parameterisa-

tion identified with the ME model is inside the parameter space covered in the

Monte Carlo campaign, showing that analysis based on sampling methods can

be unreliable since there is no guarantee of complete coverage of the uncertainty

space.
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5. Robustness levels are independent of scaling for feasibility of DNA

implementation

So far we have focused on the analysis of the CRN representation of the

biomolecular control system, without addressing the implementation using DSD

reactions, which has its own challenges. In particular, there is a physical limit for

the bimolecular rate η, which is usually set close to the maximum hybridisation

rate around 106 (Ms)−1 [33, 35]. This, together with limits in concentrations,

can impose constraints incompatible with the parameterisation of the CRN.

5.1. Scaling for feasibility with DNA chemistry

For the cases where the parameterisation of the CRN is not feasible for

an implementation with DSD reactions, the procedure in [14] scales down the

parameters to obtain feasible reaction rates and an accurate representation of

the CRN. It exploits the fact pointed out in [14] that, if z(t) is a solution to the

ODEs of the CRN, then given two scalars a, b > 0, the function bz( 1
a t) is also

a solution to the ODEs, where the unimolecular rates γi are scaled by a−1, the

bimolecular rate η by a−1b−1, and the concentrations get scaled by b.

Let us define a basis dynamics

ż =
dz

dt
= Azz +Bzr− ηzPz ◦ z (60)

with a bimolecular reaction ηz, and the unimolecular reaction rates in the

network are the elements of Az. Define z0 as the equilibrium solution of

Azz
0 = ηzPz0 ◦ z0, where z0 depends only on ηz

−1Az. Now define the scaled

version of the system with x = bz(τ) where τ = 1
a t. The scaled dynamics result

ẋ =
dx

dt
= b

dz

dτ

dτ

dt
= a−1bż (61)
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With A = a−1Az, B = a−1Bz, η = 1
abηz, this results in

a−1bż = a−1bAzz + a−1bBzr− a−1bηzPz ◦ z (62)

⇒ ẋ = a−1Azbz + a−1Bzbr− a−1bηzPz ◦ z (63)

= a−1Azx + a−1Bzbr− a−1b−1ηzPx ◦ x (64)

= Ax +Bbr− ηPx ◦ x (65)

For the scaled solution, we must also scale the input with br. If the unimolecular

rates are not scaled (a = 1) then b only scales the concentrations of the system,

without changing the poles and response time of the system.

Fig. 10 compares the time response of the system for scalings that result in

very large concentrations (a = 0.01, η = 0.5), and in very low concentrations

(a = 100, η = 5 × 108). If we reverse the scaling in the axes of time and

concentrations, the time histories are identical.

Scaling the dynamics A = a−1Az, the equilibrium solutions hold if x0 = bz0:

Azz
0 = ηzPz0 ◦ z0 ⇒ ab−1Ax0 = b−2ηzPx0 ◦ x0 (66)

⇒ Ax0 =
ηz
ab
Px0 ◦ x0 = ηPx0 ◦ x0. (67)

The dynamics of the perturbation ze = z− z0 are given by

że =
(
Az + ηzJ

{
z0
})

ze +Bre − ηzPze ◦ ze (68)

and its linearisation around the equilibrium z0 is given by

ḣ =
(
Az − ηzdiag

{
Pz0

}
− ηzdiag

{
z0
}
P
)
h +Bzre (69)

=
(
Az + ηzJ

{
z0
})

h +Bzre (70)

Defining the scaled perturbation xe = b
(
z− z0

)
and linearisation s = bh, then

ṡ = a−1bḣ with

a−1bḣ = a−1b
(
Az + ηzJ

{
z0
})

h + a−1bBzre (71)

⇒ ṡ = a−1
(
Az + ηzJ

{
z0
})

s + a−1Bzbre (72)

= a−1
(
aA+ ηzJ

{
b−1x0

})
s +Bbre (73)

=
(
A+ ηJ

{
x0
})

s +Bbre (74)
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While the concentrations of the input are scaled by b, the state matrix is scaled

directly in the new matrix A and the new equilibrium x0. For a fixed b, the

poles of the linearisation are scaled by a−1 changing the timescale of the system

dynamics without scaling the concentrations.

5.2. Robustness of scaled parameterisations

If the nonlinear dynamics (60) is locally robustly stable, is the scaled system

(65) also robustly stable? We now show how the scaling procedure does not

affect the robust stability, and the robustness of the original CRN is preserved

in the scaled CRNs.

In terms of stability, if
(
Az + ηzJ

{
z0
})

is Hurwitz, then the scaled matrix

a−1
(
Az + ηzJ

{
z0
})

=
(
A+ ηJ

{
x0
})

is also Hurwitz. This means that if the

system is locally stable at z0 then the scaled system is locally stable at x0. If ḣ

is stable for any |∆| < 1, then a−1
(
Az + ηzJ

{
z0
})

is Hurwitz for any |∆| < 1.

Hence, if ḣ is robust then ṡ is also robust, independent of the scaling used.

Consider Āz as the nominal dynamics of the original system, with the nom-

inal equilibrium solution z̄0. The same properties hold by scaling the estimator

of the moving equilibrium with x̂0 = bẑ0:

bẑ0 = −b
(
Az + ηzJ

{
z̄0
})−1

Āz z̄
0 (75)

= −
(
Az + ηzJ

{
z̄0
})−1

Āzx̄
0 (76)

= −
(
A+ ηJ

{
x̄0
})−1

Āx̄0 = x̂0 (77)

Hence, the results still apply if we replace the equilibria x0 and z0 with their

estimations x̂0 and ẑ0.

In Fig. 11, the robust stability was investigated for the same system, but

scaling the dynamics with a and the equilibrium with η. The bounds for both

ME and FE are in general very similar, apart from the shift in frequency due to

a. With ME, for very small b = 1/(aη) ≤ 5×10−8, the upper bound does change.

However, this may be due to numerical issues in the computation of J{x̄0}, with

the very small values of x̄0 in Fig. 12. Any numerical discrepancies are then
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amplified by a large η and the computation of the inversion
(
A+ ηJ

{
x̄0
})−1

in the estimator x̂0.

Nevertheless, the destabilising |∆IT | in Fig. 13, found by testing the vertices

of the parameter space, are comparable for all combinations of the scaling. This

suggests there are no changes to the upper bounds, including the numerically

difficult ones.

This invariance to scaling means that the robustness results with ż are ap-

plicable for any scaled system ẋ, and decouples the design and analysis of the

CRN from the scaled parameters used for implementation. In fact, scaling can

be used to avoid numerical issues, by carrying out the controller design and

performing the robustness analysis with possibly unfeasible but numerically

balanced parameterisations, before finally scaling the systems appropriately for

DSD implementation.

6. Conclusions

We have demonstrated how robust stability analysis based on the struc-

tured singular value technique can be applied to the CRN representation of a

biomolecular linear feedback system. We showed that it is critical to address

the nonlinearities resulting from the use of chemical reactions, and to operate

within the natural coordinates of the CRN, accounting for the positivity of the

system and the movement of its equilibrium due to uncertainty.

Our results indicate that it is possible to provide highly accurate guarantees

on robustness for such systems by applying µ-analysis on the linearisation of

the nonlinear dynamics. Although the use of µ-analysis around a fixed equilib-

rium is computationally cheaper, it provides a conservative uncertainty bound,

thus underestimating the level of uncertainty for which the closed-loop system

remains stable. Improving the linearisation model with a moving equilibrium

produced robustness results that showed better agreement with the behaviour

of the nonlinear system. Use of formal robustness analysis methods based on µ

was shown to provide more reliable results than sampling-based methods such
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as Monte Carlo campaigns and testing vertices of the parameter space.

Finally, we showed how the analysis of the CRN can be decoupled from the

parameterisation used to ensure a feasible implementation using nucleic acid-

based chemistry, since existing scaling procedures preserve the robustness of the

original CRN.
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Fig. 1: Closed loop system with second order transfer function.
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Fig. 3: Nominal time response of the reference input r and the tracking output y. The
reference signal r = r+ − r− is such that only one of the r± components exist at each given
time at steady state, resulting in the ideal sequence of reference steps. The concentrations
x±i converge to a positive equilibrium even if r± = 0, and the differences between the dual
concentrations represent the state of the I/O linear dynamics pi.
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Fig. 6: Distribution of the elements of the moving equilibrium x0j , for the 10000 uncertainty

samples. The deviations with respect to nominal equilibrium values x̄0j are ±20% to ±50%.
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Fig. 7: Comparison between the approximation and the numerically determined element j
of the equilibrium, for each of 10000 samples. In yellow are the true equilibria x0, in blue
are the approximated equilibria x̂0, and in red are the approximation errors. The axes are
normalised by the nominal equilibrium values, hence the nominal value of each element x̄0j is

mapped into coordinates (1, 1).
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Fig. 8: Comparison of µ bounds with fixed (FE) and moving equilibria (ME). The bounds
are lower for the ME case, which includes the equilibrium variation in the linearisation.
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Fig. 9: History of simulations per iteration in the search of a minimum destabilising bound,
and the history of tested levels of ∆.
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Fig. 10: Time histories of the scaled output and concentrations for two examples with
opposite values of b = (aη)−1 = 200 and b = (aη)−1 = 2× 10−11. The time is scaled by a−1

to adjust for the change in dynamics speed. The concentrations are scaled by b−1, and the
reference input is scaled in both cases b−1r = 5× 10−4 [M].
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Fig. 11: Robustness analysis for variations on scaling parameters a−1γj , a−1kj and η.
The bounds with ME, in black, are invariant for the changes in scale, except for cases where
b ≤ 10−7. With FE (in red) the results are independent of the parameterisation. The variation
in a shifts the response in frequency, but the bounds remain very similar.
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Fig. 12: Norm of the nominal equilibrium for variations on scaling parameters a−1γj , a−1kj
and η. In red are the cases (aη)−1 = b < 10−7.
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Fig. 13: Destabilising |∆IT | found for variations on scaling parameters a−1γj , a−1kj and η.
They are close for every variation of parameters, including for (aη)−1 = b < 10−7 (in red).
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Table 1: Verification of destabilising parameterisations with the nonlinear system: eigenvalues
of the linearisation around the true equilibrium for each identified parameterisation.

RS with x̄0 (k)
|∆FE | = 9.037%

RS with x̂0 (k)
|∆ME | = 9.720%

Vertice search
|∆IT | = 11.118%

−0.001073± 0.03361i
−2.296± 0.2353i
−2.268
−1.92± 0.3411i
−1.718± 0.2867i
−1.44
−0.1403
−0.07358
−0.03283
−0.02103

+1.916× 10−6 ± 0.03855i
−2.224± 0.2435i
−2.196
−1.795± 0.3598i
−1.652± 0.2821i
−1.344
−0.1486
−0.08013
−0.03356
−0.02551

+3.399× 10−5 ± 0.03242i
−2.261± 0.2204i
−2.265
−1.866± 0.3149i
−1.66± 0.253i
−1.4
−0.1311
−0.07016
−0.02978
−0.02375
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