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models, with the majority of studies being conducted on animal models 
that are unable to fully mimic the human PD pathophysiology. 

Hence, in this short preliminary study, we aimed to create Parkinson-
like conditions in a human neuronal cell system and analyze iron-related 
parameters in these cells to assess whether the cells resembled iron 
accumulation, as observed under Parkinsonian conditions and thereby 
evaluate whether these cells would be suitable for further iron-related 
studies on Parkinsonism. In addition, we aimed to examine the pattern 
of subcellular iron accumulation. 

Accordingly, human neuronal progenitor cells were differentiated 
into dopaminergic neurons and then treated with 6-hydroxy dopamine 
(6-OHD). Total cellular iron accumulation was measured at different 
time points. Crucial iron-related genes were examined; HAMP (gene 
encoding the iron-hormone hepcidin), TFRC (encoding cellular iron-
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Introduction
With millions of sufferers world-wide, Parkinson’s disease (PD) is 

characterized by the gradual death of dopamine- producing neurons, 
which clinically manifests in impaired motor function and mobility. 
In the advanced stage, it progresses to dementia and presents a wide 
spectrum of neuro-psychiatric problems [1]. Presently, treatment 
with the dopamine-precursor L-DOPA is widely used to alleviate the 
symptoms of the disease. Unlike dopamine, this can cross the blood brain 
barrier [2], but it does not rescue the continuous loss of dopaminergic 
neurons, and eventually fails to serve its purpose in the advanced stage 
of the disease. So far, there is no cure for PD; a major hindrance being 
the inability to identify the cause of death of dopaminergic neurons.

A hallmark of PD is the selectively increased iron deposits in the 
substantia nigra pars compacta (SNPC), a region in the mid-brain 
[3]. Such accumulation of iron in the brain of PD patients is well 
established [4]. This unexplained elevation in the labile iron pool is 
believed to participate in oxidative damage and iron deregulation, which 
contributes towards dopaminergic degeneration [5]. Whereas in the 
haemochromatotic patients, a 10-20-fold increase in iron stores seem to 
be necessary before clinical manifestations are observed, only a 2-fold 
increase in iron content in SNPC of PD patients have been proposed 
to be sufficient for disease progression [5]. While this highlights the 
significance of iron content variation in the brain, the severity of its 
impact and the progression of PD in human are incompletely understood. 
This lack of understanding is partly due to the lack of human-relevant 
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uptake protein transferrin receptor 1), SLC40A1 (encoding cellular 
iron-exporter protein ferroportin) and SLC25A37 (mitochondrial iron-
importer protein mitoferrin-1). The relative iron distribution in cytosol 
and mitochondria was assessed. Comparisons were drawn between 
differentiated dopaminergic neurons (untreated control) and 6-OHD-
treated dopaminergic neurons.

Methods and Materials 
Cell culture

ReNCell VM (Millipore, UK), the human neural progenitor cells 
were supplemented with 20 ng/ml epidermal growth factor (EGF) 
and 20 ng/ml basic fibroblast growth factor (bFGF) and maintained in 
serum-free ReN cell NSC maintenance medium (Millipore, UK). 

Treatments 

The cells were differentiated into dopaminergic neurons (dDCNs) 
(untreated control cells). Then, these cells were treated with 100 
µM 6-OHD for 2 hours (h) to induce oxidative stress and create 
Parkinson-like conditions, as described previously [6]. After this, 
cell culture medium was replaced with fresh medium, and cells were 
either harvested immediately (0 h) or left in incubator at 37oC and 
harvested at different time intervals. These cells are referred as treated 
cells in this study. Mitochondrial and cytosolic fractions were isolated 
using mitochondrial isolation kit (Thermo Scientific, USA), as per 
manufacturer’s instructions and as described previously [6]. Essentially, 
cells were collected and pelleted at 850 X g for 2 min. Reagent A was 
added to cells. Following incubation on ice for 2 minutes, reagent B 
and reagent C (1/100) were added and the samples were centrifuged 
at 700Xg for 10 min at 4oC. The supernatant was centrifuged again at 
12,000Xg for 15 min at 4°C. This supernatant was the cytosol fraction. 
The pellet was treated with reagent C and centrifuged at 12,000Xg for 
5 min. This was the mitochondrial fraction. To ensure the purity of 
cytosolic and mitochondrial fractions, western blot analyses using 50 
microgram proteins isolated from control cytosolic and mitochondrial 
fractions were carried out as described previously [6]. The following 
specific marker antibodies were used: mouse monoclonal anti-actin 
(a cytosolic marker, 1: 1000; Abcam, Cambridge, UK) and rabbit 
monoclonal anti-cyto- chrome C (a mitochondrial marker, 1: 1000; 
Millipore).

Measurement of iron content

Iron content was determined by the ferrozine assay and 
expressed as nmoles of iron per mg of protein quantified by the 
Bradford method, as previously performed [7-9]. The ferrozine 
assay can detect low amounts of ferrous and ferric iron from 2 to 
300 µM [10]. It has been previously used by other groups to measure 
intracellular iron content in various cell types including cultured 
brain astrocytes [10] and HepG2 cells [11].

Gene expression analysis

Primers (Invitrogen, UK) for gene expression analyses 
of HAMP, TFRC and SLC40A1 were as previous described 
[7]. Primers TAGCCAACGGGATAGCTGG (F) and 
GTGGTGTAGCTCCGGTAGAAG (R) were used to assess SLC25A37 
expression (12). RNA extraction, cDNA preparation, real-time PCR and 
data analyses were conducted as previously described [7-9]. Essentially, 
RNA was extracted by using the TRI reagent (Sigma-Aldrich, UK), 
and cDNA was synthesised using QuantiTect reverse transcription kit 
(Qiagen, UK). Gene expression was analysed through real-time PCR 

by using Qiagen’s Quantifast SYBR green kit in Rotor-gene Q machine 
(Qiagen, UK). Data was obtained and analysed by using Rotor-gene 
software series 1.7, and was expressed as fold expression change, 
inferred by 2-∆∆Ct.

Statistical Analyses
Data analysis was performed using Student’s T-test. The level of 

significance was set at p<0.05. Data was presented as mean ± SEM.

Results
Cells accumulated iron over time

The control dDCNs (untreated cells) showed subtle iron 
accumulation up to 24 h and plateaued thereafter (Figure 1). The treated 
cells (cells treated with 100 µM 6-OHD for 2 h) gradually accumulated 
iron over time and exceeded levels in the control cells by approximately 
1.8-fold (p<0.05) at 24 h and 2.5-fold (p<0.02) at 48 h (Figure 1). As the 
study involved assessing cellular iron accumulation, the concentration 
of iron in the maintenance medium was measured and determined as 
approximately 4 µM (supplementary Figure 1).

Low mRNA expression of iron-importer, and high expression 
of iron-exporter and iron-regulator

The mRNA expression of major (iron-related genes following 2 h 
of 6-OHD treatment) was confirmed on 1% agarose gel (Figure 2A). 
Compared to the untreated control dDCNs, the treated cells showed 
significantly lower mRNA expression of the iron-importer gene TFRC 
(p<0.05), along with substantially higher expression of the iron-exporter 
gene SLC40A1 (9-fold, p<0.02) and iron-regulator gene HAMP (5.7-
fold, p<0.05) (Figure 2B).

Cells accumulated iron in the mitochondria 

The treated cells showed 2.1-fold (p<0.01) higher total 
cellular iron levels: Than the control cells (Figure 3A). While the 
control cells showed no major difference in iron content between the 
mitochondria and the cytosol, the treated cells showed significantly 
higher levels of iron in the mitochondria than the cytosol (p<0.05) 
(Figure 3B). Moreover, expression of the mitochondrial iron-
importer gene SLC25A37 was 3.5-fold (p=0.08) higher in the treated 
cells than untreated cells (Figure 3C).

Figure 1: Iron accumulation in dDCNs.
Intracellular iron content in the control dDCNs (untreated/unsupplemented 
cells) and treated dDCNs (cells incubated with 100 µM 6-OHD for 2 h) were 
measured by ferrozine assay at various time-points and normalised to protein 
content. Data is presented as mean ± SEM (n=3). *p<0.05 and **p<0.02 
compared to control to control untreated dDCNs at the same time point.
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Discussion
Iron accumulation in the brain is common in several 

neurodegenerative diseases including Parkinson’s disease [5,12,13]. 
Indeed, excess iron accelerates the Fenton reaction to generate 
noxious free radicals that cause cellular and tissue damage and thereby 
exacerbates disease pathology. However, iron regulation in the brain 
is poorly understood and whether increased brain iron is the cause or 
consequence of the pathology remains to be elucidated. In PD-related 
studies, the challenge arises particularly due to the lack of appropriate 
models that can accurately mimic human PD pathophysiology. Hence, 
this short preliminary study aimed to confirm iron accumulation in this 
human cell system of PD, so that future iron-related studies could be 
conducted using these cells to better understand human PD pathology.

Following the neurotoxin treatment on differentiated dopaminergic 
neurons, cellular iron accumulation was examined over time. In the 
treated cells, the gradual increase in iron accumulation over time 
(Figure 1) (1.8-fold and 2.5-fold higher than control cells at 24 h and 48 
h, respectively) is physiologically relevant [5] and demonstrate cellular 
iron retention and reflect a typical PD phenotype. This suggests that 
these cells could be used in future iron-related studies to understand PD 
pathology. Notably, although, the iron concentration of the maintenance 
medium was only 4 µM (Supplementary Figure 1), which is 2.5-fold 
lower than the serum iron concentration in human blood (10-30 µM) 
[14], there was a substantial increase in intracellular iron accumulation 
in the treated cells (Figure 1). As the maintenance medium was devoid 
of both, serum and transferrin, transferrin-bound-iron uptake was 
improbable, suggesting that the iron uptake was probably due to non-
transferrin bound iron (NTBI). Unlike the tightly regulated process of 
neuronal iron-uptake via transferrin [15], NTBI uptake is unregulated 
and leads to excess cellular iron deposition in several iron-related 
pathologies such as hereditary hemochromatosis [16]. In this study, 
indication of increased NTBI uptake in the treated cells suggests that 
under Parkinsonian conditions, the neurons may acquire the ability to 
uptake increased amount of NTBI, thereby enhancing oxidative stress, 
as observed in mice and rat neurons [17,18]. Nevertheless, it would be 
interesting to determine the rates of iron uptake by examining TFRC 
expression along with NTBI uptake and comparing between cells and 
between time points. In tandem with this, it would also be interesting to 
study the alterations in iron export genes and proteins. This is beyond 
the scope of this preliminary study and calls for further investigation.

We then examined the iron content and the expression of selected 
iron-related genes immediately following the neurotoxin treatment. In 
our knowledge, for the first time, we confirmed the mRNA expressions 

a b

Figure 2: Expression of iron-related genes in dDCNs.
(a) The mRNA expression of crucial iron-related genes TFRC, SLC40A1, HAMP and SLC25A37 along with GAPDH was examined in the dDCNs. Representative 
amplicons of cDNA probed with respective primers have been shown on 1% agarose gel. (b) Following 2 h of 6-OHD treatment to the dDCNs, the mRNA expression 
levels of these genes were assessed through real-time PCR and expressed relative to the untreated control dDCNs. Data is presented as mean ± SEM (n=3). *p<0.05 
and **p<0.02 compared to control untreated dDCNs.

Figure 3: Total and mitochondrial iron levels in dDCNs.
Following 2 h of 6-OHD treatment to the dDCNs, several parameters were 
assessed. 
(a) Total cellular iron levels were measured and compared to the untreated 
control dDCNs. (b) Cytosolic and mitochondrial fractions were assessed for 
intracellular distribution and levels in the mitochondria were expressed relative 
to that in cytosol. (c) The mRNA expression of SLC25A37, (encoding the 
mitochondrial iron-importer mitoferrin-1) in treated cells was expressed relative 
to the untreated control dDCNs. Data is presented as mean ± SEM (n=3). 
*p<0.05 compared to control dDCNs, #p<0.05 compared to cytosolic iron 
content in treated cells and ~p=0.08 compared to control dDCNs. 
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of the iron-transporters TFRC, SLC40A1 and SLC25A37, and the 
iron-hormone HAMP in these cells (Figure 2A). Comparisons in gene 
expression were made between the untreated and treated cells (Figure 
2B). Lower expression of the iron-importer gene TFRC, together with 
increased expression of the iron-exporter gene SLC40A1 is indicative 
of intracellular iron excess [19] (Figure 2B). The elevation in HAMP 
mRNA expression in the treated cells (Figure 2B) is in line with 
increased hepcidin expression observed in the ageing brain and in rat 
models [20]. Here, it could be due to elevated cellular iron levels (Figure 
3A), as hepcidin is responsive to increased iron levels [21]. However, 
raised HAMP expression could also be due to inflammation from 
6-OHD treatment, as hepcidin is also produced under inflammatory 
conditions [22]. Moreover, elevated hepcidin expression along with 
reduced TFRC expression (Figure 2B) in the initial stage could be a 
protective response against neuronal iron accumulation, as described 
by other groups [23]. Under physiological conditions, increased HAMP 
expression in the brain is highly probable due to either or both the 
aforementioned conditions because the PD patients demonstrate both, 
high iron deposition as well as inflammation [24]. 

Mitochondria are sites for redox reactions, haem biogenesis 
[25] and iron-sulphur clusters [26]. Thus, iron accumulation in this 
compartment is particularly prone to oxidative damage via Fenton’s 
reaction [27]. Therefore, not only cellular iron acquisition but also the 
subsequent iron distribution into cellular organelles plays a significant 
role in disease pathology. In our cell system, cytosolic and mitochondrial 
fractions were examined. Data indicated iron accumulation in 
the mitochondria (Figure 3B), which was further supported by an 
increased expression of the mitochondrial iron-uptake gene SLC25A37 
(Figure 3C). A similar iron distribution pattern could be expected in 
human PD, where increased mitochondrial iron uptake, may lead to 
overwhelming oxidative stress and exacerbate PD pathology. Our data 
and the resulting conclusion is in line with other studies which show 
that mitoferrin1- (encoded by SLC25A37) is capable of transporting 
iron into the mitochondria of nonerythroid cells [28]. Note that 
major iron elevations (iron loading) in the mitochondria, should not 
be expected as the cells were in maintenance medium without any 
additional supplementation of iron. 

These preliminary studies should be followed by subsequent 
proteomic studies in these cells to examine levels of iron-transporters at 
various time points. Study of iron-importer protein and iron-shutting 
in the mitochondria should be prioritized. 

Conclusion 
Increased iron content accelerates the pathological progression of 

several neurological conditions, where the exact role of iron remains 
unknown. Particularly with PD, the major obstacle is the lack of human-
relevant models that would accurately mimic human pathophysiology. 
Herein, 6-OHD-treated human dDCNs displayed Parkinsonian 
characteristics of gradual cellular iron accumulation over time and 
elevated HAMP expression. Also, the cells expressed other important 
iron-related genes such as the cellular iron-importer TFRC, cellular iron-
exporter SLC40A1 and mitochondrial iron-importer SLC25A37. Increased 
mitochondrial iron accumulation suggests further studies to clarify 
mitochondrial iron regulation in PD, as this could be the major cause 
of oxidative stress and consequent PD pathology. These exciting results 
suggest the suitability of this cell model for further iron-related studies on 
PD. Further studies will be very useful in elucidating PD mechanisms and 
will greatly aid in devising therapeutic strategies to halt and prevent the 
iron-induced oxidative damage in dopaminergic cells.
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